We perform a joint numerical and experimental study to systematically characterize the motion of 30 μl drops of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally and numerically the dissipation inside the droplet by studying the relation between the average velocity and the applied volume forces.

Sbragaglia, M., Biferale, L., Amati, G., Varagnolo, S., Ferraro, D., Mistura, G., et al. (2014). Sliding drops across alternating hydrophobic and hydrophilic stripes. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 89(1) [10.1103/PhysRevE.89.012406].

Sliding drops across alternating hydrophobic and hydrophilic stripes

SBRAGAGLIA, MAURO;BIFERALE, LUCA;
2014-01-01

Abstract

We perform a joint numerical and experimental study to systematically characterize the motion of 30 μl drops of pure water and of ethanol in water solutions, sliding over a periodic array of alternating hydrophobic and hydrophilic stripes with a large wettability contrast and a typical width of hundreds of microns. The fraction of the hydrophobic areas has been varied from about 20% to 80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond number, i.e., the critical dimensionless force needed to depin the drop before it starts to move. Close to the critical Bond number we observe a jerky motion characterized by an evident stick-slip dynamics. As a result, dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of magnitude compared to the sliding on the homogeneous surface. Lattice Boltzmann numerical simulations are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of capillary, viscous, and body forces by varying the Bond number, the surface composition, and the liquid viscosity. Beyond the critical Bond number, we characterize both experimentally and numerically the dissipation inside the droplet by studying the relation between the average velocity and the applied volume forces.
2014
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
Sbragaglia, M., Biferale, L., Amati, G., Varagnolo, S., Ferraro, D., Mistura, G., et al. (2014). Sliding drops across alternating hydrophobic and hydrophilic stripes. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 89(1) [10.1103/PhysRevE.89.012406].
Sbragaglia, M; Biferale, L; Amati, G; Varagnolo, S; Ferraro, D; Mistura, G; Pierno, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
a187.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Copyright dell'editore
Dimensione 5.96 MB
Formato Adobe PDF
5.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/101019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 61
social impact