We performed non-equilibrium Molecular Dynamics simulations of water flow in nano-channels with the aim of discriminating static from dynamic contributions of the solid surface to the slip length of the molecular flow. We show that the regularization of the slip length divergence at high shear rates, formerly attributed to the wall dynamics, is controlled instead by its static properties. Surprisingly, we find that atomic displacements at the Angstrom scale are sufficient to remove the divergence of the slip length and realize the no-slip condition. Since surface thermal fluctuations at room temperature are enough to generate these displacements, we argue that the no-slip condition for water can be achieved also for ideal surfaces, which do not present any surface roughness.

Sega, M., Sbragaglia, M., Biferale, L., Succi, S. (2013). Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale. SOFT MATTER, 9(35), 8526-8531 [10.1039/c3sm51508g].

Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale

SBRAGAGLIA, MAURO;BIFERALE, LUCA;
2013-01-01

Abstract

We performed non-equilibrium Molecular Dynamics simulations of water flow in nano-channels with the aim of discriminating static from dynamic contributions of the solid surface to the slip length of the molecular flow. We show that the regularization of the slip length divergence at high shear rates, formerly attributed to the wall dynamics, is controlled instead by its static properties. Surprisingly, we find that atomic displacements at the Angstrom scale are sufficient to remove the divergence of the slip length and realize the no-slip condition. Since surface thermal fluctuations at room temperature are enough to generate these displacements, we argue that the no-slip condition for water can be achieved also for ideal surfaces, which do not present any surface roughness.
2013
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
Sega, M., Sbragaglia, M., Biferale, L., Succi, S. (2013). Regularization of the slip length divergence in water nanoflows by inhomogeneities at the Angstrom scale. SOFT MATTER, 9(35), 8526-8531 [10.1039/c3sm51508g].
Sega, M; Sbragaglia, M; Biferale, L; Succi, S
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
1304.8098.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 479.08 kB
Formato Adobe PDF
479.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/100951
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 32
social impact