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Abstract — The well-known LPI (Low Probability of Intercept) 

and antispoofing capabilities of some radar waveforms as well 

some other desirable feature such as a low sidelobes level of their 

autocorrelation function can be enhanced by “tailored” pseudo-

random sequences, whose phase is made up by a deterministic 

part plus a variable random term. With such an approach it is 

possible to design a virtually unlimited number of noisy 

waveforms with good auto-correlation properties (PSLR, i.e. 

Peak to Side Lobe Ratio) and, for MIMO applications, good 

orthogonality between them. In this paper the LPI characteristic 

are analyzed by evaluation of the variation of their information 

rate with their “randomness” varying. It results that an ad-hoc 

tradeoff between the different requirements (LPI, PSLR) is 

required in most cases. 

Keywords – Entropy, entropy rate, mutual information, noise 

waveform radar, noise radar technology. 

I. INTRODUCTION 

Modern Electronic Warfare (EW) systems are aimed to 
deny the radar function of the enemy by a sequence of actions 
starting from the acquisition and the off-line analysis of radar 
signals (Electronic Intelligence, ELINT) and going on with the 
real-time detection and interception/analysis using ESM 
(Electronic Support Measures) systems with the aim to 
optimize radar jamming strategies and, whenever possible, to 
perform a Specific Emitter Identification. Short, high peak 
power pulses such as the ones from legacy magnetron-based 
radar are relatively easy to detect, identify and measure, but 
today complicated waveforms are being more and more used to 
improve some significant properties of radars and increase it 
performance, including a renewed interest in the old concept of 
continuous wave radar, an architecture often used nowadays. 
The more and more frequent usage of sophisticated waveforms 
in pulse-compression radar and of low-power signals (order of 
W versus the tens or hundreds of kW from magnetrons) in 
Continuous Wave radar is a challenge to the EW engineers [1]. 
A group of very interesting waveforms is based on band-
limited noise [2], sometimes modified, or “tailored”, to obtain 
some required properties for the ambiguity function, in the 
frame of the so-called Noise Radar Technology (NRT) [3], [4]. 
Noise radar technology (NRT) poses a new, or additional, 
threat due to the unpredictability of radar signals themselves, 
even when the operational scenario allows ELINT or ESM 
receivers to work with a very large signal-to-noise ratio. 

In the NRT community the question of “the amount of 
needed randomness” for the radiated waveforms is still open. 
Some expert would call for a “pure (and analog) noise” as 
originated by a noisy physical system (an amplifier, a Zener 
diode, a chaotic circuit and so on) while other experts prefer 
modern, all-digital NRT architectures using sequences from a 
Pseudo Random Numbers (PRN) generator. The objection that 
every pseudorandom sequence has a repetition period that can 
impair the LPI is easily rejected when considering that modern, 
open-access PRN’s [5] can reach periods as long as ʹଵଽଽଷ଻ 
(Mersenne Twister algorithm) [6], i.e. can generate “new” 
pseudorandom samples at 100 MHz (or better, Msps) 
frequency for ͳǤ͵͸ʉͳͲହଽଽସ  years, a rather long time when 
compared to the estimated age of the universe, i.e. ͳǤ͵͹ ȉ ͳͲଵ଴ 
years. 

However, a “pure digital noise”, e.g. a Gaussian sequence 
with some suitable spectral density in the radar band, is not 
always a good choice for NRT systems. The problems are two. 
First, most radar transmitters operate in saturation, i.e. with 
constant envelope during the emission (i.e. the waveform 
duration); the penalty of a possible linear emission would be as 
much as 10-11 dB in the radar power budget, unacceptable for 
medium and long range applications [7]. Second, in Noise 
Radar the correlation processing of echoes (duration T, 
bandwidth B) generates sidelobes (better, random fluctuations) 
whose suppression is difficult and whose peak amplitude below 
the maximum of the compressed signal is of the order  ܭ െ ͳͲ ȉ  ሻ decibels, with K close to 11-12 dB. Henceܶܤଵ଴ሺ݃݋݈

the interest in “tailored” pseudorandom waveforms [8] with (i) 
a crest factor equal to, or close to, the unit (for maximum 
exploitation of the transmitter power) and (ii) fairly low 
sidelobes in Range and Doppler. Of course these waveforms 
must significantly differ from realizations of band pass, 
Gaussian noise. Hence, question arises about their “degree of 
randomness”. In practice, the main question is about their 
properties in the ELINT – ESM context, and can be reworded 
as follows: how much information about type and parameters 
of the signals emitted from particular radar (or a class of radar) 
is obtained by analyzing more and more samples from the radar 
emission? Probably, there is not a unique answer, independent 
of the operation and performance of the ELINT – ESM and of 
the operational theatre, but a rather general answer may be 
searched in terms of Information Theory, where a measure of 
information contained in a signal is related to the entropy 
concept [9]. This is fundamental in many signal processing 
applications such as source coding, bit-rate reduction or data 

IRS 2014, 15th InternaƟonal Radar Symposium, June 16-18, Gdansk, Poland

123



compression, where the number of bits is reduced by 
identifying and eliminating statistical redundancy or 
unnecessary information and removing it. 

In NRT pseudo-random signals are transmitted and 
correlation processing of echoes is used with the primary goal 
of LPI capability. To generate a pseudo-noise waveform for 
NRT applications we may consider a sequence of time ordered 
samples obtained by sampling a continuous random process. 
To ensure that the proposed waveforms have Low Probability 
Intercept (LPI) characteristic, it is necessary to evaluate the 
Mutual Information Rate (MIR) i.e. the additional information 
that is added when one more sample is observed [10]. MIR is 
related to the concepts of joint and conditional entropy of a 
stochastic process [11]. Knowing MIR, a well-known criterion 
for measuring the randomness of a process is the Spectral 
Flatness Measure (Ͳ ൏ ܯܨܵ ൑ ͳ), which is defined as the ratio 
of the geometric mean to the arithmetic mean of the power 
spectrum [12]. If ܵܯܨ ՜ ͳ it corresponds to a random signal 
(no significant information can be obtained by looking at 
longer blocks of samples). When ܵܯܨ ՜ Ͳ  the signal is 
strongly structured and can be considered as a deterministic 
signal. 

In this paper we analyze the information rate of pseudo 
noise waveforms with their randomness increasing. 

This paper is organized as follows. Chapter II describes the 
mathematical definition of the main parameters introduced to 
evaluate the mutual information of a signal. Chapter III 
introduces the generation of pseudo noise waveforms, whose 
entropy, information and MIR will be evaluated in chapter IV. 
Chapter V reports final considerations, conclusions and future 
perspectives. 

 
II. MATHEMATICAL DEFINITION OF MIR 

 Given ݊  real random variables ሼ ଵܺǡ ܺଶǡ ǥ ǡ ܺ௡ሽ  having 

marginal probability density function ݂ሺݔ௜ሻ for ݅ ൌ ͳǡʹǡ ǥ ǡ ݊, 

and joint probability density function ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻǡݔ  the 

marginal entropy for each ௜ܺ is defined as: ܪሺݔ௜ሻ ൌ ௜ሻሿ൧ݔሾ݂ሺ݃݋െ݈ൣܧ ൌ െ න ݂ሺݔ௜ሻ݈݃݋ሾ݂ሺݔ௜ሻሿ݀ݔ௜          ሺͳሻ 

In the following, the natural logarithm will be used (note that 

when dealing with discrete random variables the equivalent 

formulation with ݈݃݋ଶ is more widely used). The joint entropy 

is: 
ଵǡݔሺܪ          ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ൌ െ න ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ଵǡݔ௡ሻ݈݊ሾ݂ሺݔ ଶǡݔ ǥ ǡ ଵݔ௡ሻሿ݀ݔ ǥ ௡Թ೙ݔ݀           ሺʹሻ 

If ሼ ଵܺǡ ܺଶǡ ǥ ǡ ܺ௡ሽ  are independent, i.e. ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ݂ሺݔଵሻ ȉ ݂ሺݔଶሻ ȉ ǥ ȉ ݂ሺݔ௡ሻ, from (2) the joint entropy becomes: ܪሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ଵሻݔሺܪ ൅ ଶሻݔሺܪ ൅ ڮ ൅  ௡ሻ          ሺ͵ሻݔሺܪ

 The mutual information, related to the ݊ random variables, 

is given by: ܫሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ൌ න ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻ݈݊ݔ ቈ ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ଵሻݔ௡ሻ݂ሺݔ ȉ ݂ሺݔଶሻ ȉ ǥ ȉ ݂ሺݔ௡ሻ቉ ଵݔ݀ ǥ ௡Թ೙ݔ݀  ሺͶሻ 

 If ሼ ଵܺǡ ܺଶǡ ǥ ǡ ܺ௡ሽ  are independent then ܫሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌͲ, otherwise: ܫሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ෍ ௜ሻ௡ݔሺܪ
௜ୀଵ െ ଵǡݔሺܪ ଶǡݔ ǥ ǡ  ௡ሻ            ሺͷሻݔ

 Using the mutual information, the Marginal Information 

Redundancy (or Mutual Information Rate, MIR) ߩ௡, is defined 

as: ߩ௡ ൌ ଵǡݔሺܫ ଶǡݔ ǥ ǡ ௡ሻݔ െ ଵǡݔሺܫ ଶǡݔ ǥ ǡ  ௡ିଵሻ                ሺ͸ሻݔ

 The quantity ߩ௡  measures the rate of growth of the 

common information as a function of the time. If ሼ ଵܺǡ ܺଶǡ ǥ ǡ ܺ௡ሽ are independent, then ߩ௡ ൌ Ͳ. 

 By (5) ߩ௡ can be written as: ߩ௡ ൌ ௡ሻݔሺܪ െ ଵǡݔሺܪ ଶǡݔ ǥ ǡ ௡ሻݔ ൅ ଵǡݔሺܪ ଶǡݔ ǥ ǡ  ௡ିଵሻ         ሺ͹ሻݔ

 Using the relation (chain rule) between the joint and the 

conditional densities for ሼ ଵܺǡ ܺଶǡ ǥ ǡ ܺ௡ሽǣ  ݂ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ݂ሺݔ௡ȁݔ௡ିଵǡ ǥ ǡ ଵሻݔ ȉ ݂ሺݔ௡ିଵȁݔ௡ିଶǡ ǥ ǡ ଵሻݔ ȉ ǥ ȉ ݂ሺݔଶȁݔଵሻ ȉ ݂ሺݔଵሻ , the 

joint entropy can be written as a function of the conditional 

entropy: ܪሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ௡ିଵǡݔ௡ȁݔሺܪ ǥ ǡ ଵሻݔ ൅ ௡ିଶǡݔ௡ିଵȁݔሺܪ ǥ ǡ ଵሻݔ ൅… ǥ ൅ ଵሻݔଶȁݔሺܪ ൅  ଵሻ                                         ሺͺሻݔሺܪ

 Therefore equation (7) becomes: ߩ௡ ൌ ௡ሻݔሺܪ െ ଵǡݔ௡ȁݔሺܪ ଶǡݔ ǥ ǡ  ௡ିଵሻ                         ሺͻሻݔ

 The parameter ߩ௡  represents the entropy of a single 

sample, ܪሺݔ௡ሻǡ  reduced by the knowledge of its past 

(conditional entropy). In the case of a Strictly Sense Stationary 

(SSS) process: ܪሺݔ௡ሻ ൌ ሻݔሺܪ  independent of ݊ǡ  while the 

conditional entropy depends only on the vector size ݊  that 

contains the previous samples of the process. Introducing the 

entropy rate ଵǡݔ௥ሺܪ  ଶǡݔ ǥ ǡ ௡ሻǡݔ  defined as the average 

uncertainty per sample in a block of ݊ consecutive samples 

ଵǡݔ௥ሺܪ :[9] ଶǡݔ ǥ ǡ ௡ሻݔ ൌ lim௡՜ஶ ͳ݊ ଵǡݔሺܪ ଶǡݔ ǥ ǡ  ௡ሻ          ሺͳͲሻݔ

if the limit exists. For a SSS process it can be demonstrated 

that the entropy rate equals its conditional entropy when ݊ ՜ λ, i.e. [11]: ܪ௥ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ଵǡݔ௡ȁݔሺܪ ଶǡݔ ǥ ǡ  ௡ିଵሻ            ሺͳͳሻݔ

 Since the process is SSS, equation (10) can be rewritten as: ܪሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ൌ ሻݔሺܪ ൅ ෍ ௞ݔ௞ାଵȁݔሺܪ ǡ ௞ିଵǡݔ ǥ ǡ ଵሻ  ǡ௡ିଵݔ
௞ୀଵ        ݊ ՜ λ          ሺͳʹሻ 

 Dividing (12) by ݊, when ݊ ՜ ൅λ the left term coincides 

with the entropy rate, while the right one, applying the Cesàro 

mean theorem, converges to the conditional entropy ܪሺݔ௡ȁݔଵǡ ଶǡݔ ǥ ǡ ௡ିଵሻǤݔ  Summing up, for a SSS process, ߩ௡ 

asymptotically shows the difference between the marginal 

entropy ܪሺݔሻ of the process and its entropy rate ܪ௥ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ߩ :௡ሻݔ ൌ ሻݔሺܪ െ ଵǡݔ௥ሺܪ ଶǡݔ ǥ ǡ ݊          ௡ሻ  ǡݔ ՜ λ           ሺͳ͵ሻ 
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 We consider now the relevant case of Mutual Information 

Rate for a real SSS Gaussian process. 

 Assuming a SSS Gaussian, discrete-time process with 

power spectrum ܵሺ߱ሻ  where ߱ ൌ ߨʹ ௙ி  ( ܨ  is the sampling 

frequency), ߩ௡  is evaluated by a separate estimation of the 

marginal entropy ܪሺݔሻ and the entropy rate ܪ௥ሺݔଵǡ ଶǡݔ ǥ ǡ  .௡ሻݔ

Each random variable ௜ܺ ൌ ܺሺݐ௜ሻ, extracted from the process 

at the instant ݐ௜ , has a Gaussian density function with zero 

mean and variance ߪଶǤ The marginal entropy (it is well known 

that this is maximum over all SSS random processes with 

different distributions) results [11]: ܪሺݔሻ ൌ ݈݊ൣξʹߪߨଶ݁൧. 
Replacing ߪଶ  with the average power of the process: ܲ ൌ ଵଶగ ׬ ܵሺ߱ሻ݀߱ାగିగ , the marginal entropy becomes: 

ሻݔሺܪ ൌ ͳʹ ݈݊ ቈ ͳʹߨ න ܵሺ߱ሻ݀߱ାగ
ିగ ቉ ൅ ݈݊ൣξʹ݁ߨ൧             ሺͳͶሻ 

 The entropy rate ܪ௥ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ  of a SSS Gaussian 

process, also called Sinai-Kolmogorov Entropy, is [11]: ܪ௥ሺݔଵǡ ଶǡݔ ǥ ǡ ௡ሻݔ ൌ ͳͶߨ න ݈݊ሾܵሺ߱ሻሿ݀߱ାగ
ିగ ൅ ݈݊൫ξʹ݁ߨ൯       ሺͳͷሻ 

 Therefore: ߩ௡ ൌ ͳʹ ݈݊ ቈ ͳʹߨ න ܵሺ߱ሻ݀߱ାగ
ିగ ቉ െ ͳͶߨ න ݈݊ሾܵሺ߱ሻሿ݀߱ାగ

ିగ         ሺͳ͸ሻ 

 We observe that ߩ௡  has the following properties [12]: 

(i) ߩ௡ ൒ Ͳ , it is due to the fact that െ݈݊ሺȉሻ  is a convex 

function, and then applying Jensen’s inequality, i.e. ݈݊ሾ׬ ݃ሺܽሻ݀ܽሿ ൒ ׬ ݈݊ሾ݃ሺܽሻሿ݀ܽ , the property is verified; (ii) ߩ௡ ൌ Ͳ if and only if ܵሺ߱ሻ ൌ  .Ǥ, i.e. for a white processݐݏ݋ܿ

From (16) we can introduce the Spectral Flatness Measure 

(SFM) [10]: 

ܯܨܵ ൌ ௡ሻߩʹሺെ݌ݔ݁ ൌ ݌ݔ݁ ቂ ଵଶగ ׬ ݈݊ሾܵሺ߱ሻሿ݀߱ାగିగ ቃଵଶగ ׬ ܵሺ߱ሻ݀߱ାగିగ              ሺͳ͹ሻ 

 SFM is a well-known accepted method for evaluation of 

the “whiteness” (or “compressibility” in audio or imaging 

applications) of a signal. It can be shown that Ͳ ൏ ܯܨܵ ൑ ͳ, 

which also follows from the non-negativity of ߩ௡. Values of ܵܯܨ close to zero correspond to a structured (or non-random) 

signal. ܵܯܨ ൌ ͳ  corresponds to a random, unpredictable 

signal. We can estimate ߩ௡  inverting (17). The concepts 

mentioned above can be extended to complex processes as 

reported in [13] – [15]. 

III. NOISY WAVEFORMS DESIGN METHODS 

In [16] has been developed a waveform whose ACF has 

very low sidelobes ( ̱ െ ͺͲ ݀ܤ ). This waveform is called 

Hybrid-NLFM because is achieved by a combination between 

a linear law and a tangential one. 

Therefore it is well known that Hybrid-NLFM waveforms can 

provide good Peak Side Lobe Ratio (PSLR) of the 

autocorrelation even with a low compression ratio, and good 

cross correlation (orthogonality) between up and down signals 

with an increasing compression ratio. The drawback is their 

limited number (only two) and their LPI  in a defense context. 

Now we introduce and compare two methods for generating 

noisy waveforms. The goal of these methods is good PSLR 

and orthogonality, with a large number of generated 

sequences, in addition to the LPI characteristics. We will show 

that a tradeoff between the different requirements is necessary. 

These two methods are a modified versions of the Advanced 

Pulse Compression Noise (APCN) radar waveforms 

introduced in [17], [18].  

In the first method (named Hybrid-APCN, H-APCN for 

short) the waveform is obtained as: ݏுି஺௉஼ேሺݐሻ ൌ ሻݐሺߙ ȉ ݁௝௞ȉఝ೙೚೔ೞ೐ሺ௧ሻ ȉ ݁௝ఝಹಿಽಷಾሺ௧ሻ                ሺͳͺሻ 

where: ߮ுே௅ிெሺݐሻ is the Hybrid-NLFM phase as defined in 

[16] (in [17] the phase follows a LFM law); ߙሺݐሻ is a rectangle 

of unit amplitude and duration T (the signals are hard limited 

in amplitude); ߮௡௢௜௦௘ሺݐሻ  is a random phase with uniform 

distribution in [0, 2ʌ], whose related signal ݁௝௞ఝ೙೚೔ೞ೐ሺ௧ሻ has a 

spectrum equal to the deterministic one, added to the 

deterministic phase ߮ுே௅ிெሺݐሻǢ  the parameter Ͳ ൑ ݇ ൑ ͳ 

limits the variations of the random phase termǡ i.e. for example 

if ݇ ൌ ͲǤͷǡ then ݇ ȉ ߮௡௢௜௦௘ሺݐሻ ג ሾͲǡ  ,ሿ. For H-APCN processߨ

as the noise increases, the deterministic phase ߮ுே௅ிெሺݐሻ 

remains unchanged and  is always present. 

 In the second method, called Semi-Deterministic 

(HNLFM-SD, H-SD for short) because the deterministic phase 

does not remain the same, the waveform is: ݏுିௌ஽ሺݐሻ ൌ ሻݐሺߙ ȉ ݁௝ఉȉఝ೙೚೔ೞ೐ሺ௧ሻ݁௝ሺଵିఉሻȉఝಹಿಽಷಾሺ௧ሻ           ሺͳͻሻ 

where the parameter Ͳ ൑ ߚ ൑ ͳ  limits the variations of ߚ ȉ ߮௡௢௜௦௘ሺݐሻ  and ሺͳ െ ሻߚ ȉ ߮ுே௅ிெሺݐሻǣ  for ߚ ൌ ͳ  the phase ߮ுே௅ிெሺݐሻ  vanishes. The noise ݁௝ఉ஦೙೚೔ೞ೐ሺ௧ሻ  has a spectrum 

equal to the deterministic one. Fig. 1 and 2 show the power 

spectrum evolution varying k and β for a bandwidth of 50 

MHz and a compression ratio BT of 4096 respectively for ݏுି஺௉஼ேሺݐሻ (Fig. 1) and ݏுିௌ஽ሺݐሻ (Fig. 2) signals. 

 
Figure 1.  k-evolution of the Power Spectrum, B = 50 MHz, BT = 4096. 
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Using the Short Time Fourier Transform, in Figures 3–6 

are shown the spectrograms of the waveforms. Increasing k or 

β the random phase noise merges the deterministic phase. For 

the random phase limiter (k or β) greater than 0.7 the 

extraction of the instantaneous frequency law becomes very 

complicated. For Semi-Deterministic waveforms when ߚ ՜ ͳ 

the NLFM law degenerates into a straight line. 

 
Figure 2.  β-evolution of the Power Spectrum, B = 50 MHz, BT = 4096. 

 

 
Figure 3.  Spectrogram of the H-APCN waveform for k = 0, 0.3. 

In Fig. 7 the mean PSLR (averaging 10 PSLR values) is 

shown versus the random parameters k and β. Two waveforms 

were added; they are obtained substituting ߮ுே௅ிெሺݐሻ in (18) 

and (19) with ߮௅ிெሺݐሻ for both APCN (LFM-APCN, L-APCN 

for short) and Semi-Deterministic (LFM-SD, L-SD for short) 

method. Fig. 7 shows that for ݇ǡ ߚ ՜ Ͳ the PSLR is -43 dB 

and -13 dB, as expected for hard-limited NLFM and LFM 

respectively. 

 Increasing ݇ǡ ߚ  till 0.6 the PSLR regularly worsens for 

NLFM and improves for LFM with no evident difference 

between APCN and SD waveforms. For ݇ǡ ߚ ൒ ͲǤ͸ the PSLR 

of H-APCN and H-SD signals remains quite constant  

(̱ െ ʹͷ ݀ܤ) while the PSLR of L-SD signal worsens rapidly 

reaching െͳͷ ݀ܤ  which corresponds to a pure noise signal 

without deterministic phase (L-SD for ߚ ൌ ͳ). For the case of 

L-APCN, even when ݇ ՜ ͳ, the PSLR remains almost costant 

(-28 dB) being the spectrum of the L-APCN resulting by a 

combination between random phase and deterministic one 

which doesn’t vanish unlike Semi-Deterministic case. With 

respect to the cross correlation, Fig. 8 shows, for all 

considered waveforms that when the random phase limiter 

increases, a regular improvement of the orthogonal property. 

However a good orthogonality (-20 dB) is reached only for ݇ǡ ߚ ൐ ͲǤ͹ͷ. 

 

 
Figure 4.  Spectrogram of the H-SD waveform for β = 0, 0.3. 
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Figure 5.  Spectrogram of the H-APCN waveform for k = 0.7, 1. 

IV. MULTI INFORMATION RATE (MIR) ESTIMATION 

 Applying equation (16) MIR has been estimated for the 

waveforms previously introduced varying the random phase 

weight. Fig. 9 reports the results. Two signals are considered 

as reference: the first (continuous line) represents the case of 

only phase noise waveform, in which the phase is uniform 

between ሺͲǡ ሻߨ݇ʹ  being Ͳ ൏ ݇ ൑ ͳǤ  Where ݇ ՜ Ͳ  the 

waveform is deterministic (i.e. structured signal) and MIR 

assumes very high value; the second (dot line) represents a 

band limited Gaussian white noise, whose MIR is always 

close to zero (maximum entropy signal due to pure Gaussian 

noise, with independent Gaussian I, Q componentsሻ. For low 

values of ݇ǡ  the curves H-APCN and H-SD start from the ߚ

same point because the signals are all-deterministic (݇ǡ ߚ ൌ Ͳ). 

 For high values of ݇ǡ ǡ݇) ߚ ߚ ൒ ͲǤͺ) the curves H-APCN 

and H-SD don’t reach the zero value (as expected because the 

added noise makes signal unpredictable) because the added 

noise doesn’t change much the psd shape (see Fig. 1 and 2) 

which remains Gaussian-like, then the related MIR recognizes 

them as structured signals. In particular H-SD power spectrum 

is narrower than H-APCN one (see Fig. 1 and 2 for ݇ǡ ߚ ൎ ͳ), 

 

 
 

 
Figure 6.  Spectrogram of the H-SD waveform for β = 0.7, 1. 

 

then from point of view of the MIR the H-SD signal seem to 

be less “random” than H-APCN one. 

 
Figure 7.  Average PSLR (10 trials) versus phase weight. 

For L-APCN waveform MIR seems to be appropriate only 
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 L-APCN signal is a poor LPI waveform when ݇ is close to 

zero (pure LFM waveform), nevertheless from the point of 

view of the MIR seems to be very close to Gaussian noise, 

which represents instead the best LPI waveform. This 

incoherence is due to the fact that MIR takes into account only 

the total shape of the PSD, i.e. the total harmonic content, 

without considering the temporal evolution of the 

instantaneous frequency. That’s why L-APCN and Gaussian 

noise have almost the same MIR close to zero. 

 

Figure 8.  Cross-level average versus random phase weight. 

 
Figure 9.  Multual Information Rate (MIR) versus Random Phase weight. 

 

V. CONCLUSION AND FUTURE PERSPECTIVES 

 To summarize, if you are interested to orthogonal 

waveforms you must use high values of ݇ǡ  This leads to not .ߚ

optimized PSLR and good randomness (in the sense of the 

MIR). If you are interested to good PSLR waveforms, you 

must choose low ݇ǡ ߚ ,values for H-APCN and H-SD signals ߚ ൎ ͲǤ͸ for L-SD signal or ݇ ൐ ͲǤ͸  for L-APCN one. Low ݇ǡ ߚ  values for H-APCN and H-SD signals lead to non-

orthogonal waveforms and poor randomness in the signals (in 

the sense of the MIR).  

 For low values of phase weight, there isn’t a big difference 

between H-APCN and H-SD signals, however in this case the 

H-APCN signal is a bit more “random” (in the sense of the 

MIR) than H-SD one. 

Future perspectives are related to prove on these 

waveforms the goodness of the recognition waveforms 

algorithms when the random phase weight increases. 
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