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Combining economic time series with the aim to obtain an indicator for business cycle analyses is an impor-
tant issue for policy makers. In this area, econometric techniques usually rely on systems with either a small
number of series, N, or, at the other extreme, a very large N. In this paper we propose tools to select the rel-
evant business cycle indicators in a “medium” N framework, a situation that is likely to be the most frequent
in empirical works. An example is provided by our empirical application, in which we study jointly the
short-run co-movements of 24 European countries. We show, under not too restrictive conditions, that par-
simonious single-equation models can be used to split a set of N countries in three groups. The first group
comprises countries that share a synchronous common cycle, a non-synchronous common cycle is present
among the countries of the second group, and the third group collects countries that exhibit idiosyncratic cy-
cles. Moreover, we offer a method for constructing a composite coincident indicator that explicitly takes into
account the existence of these various forms of short-run co-movements among variables.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Building a composite business cycle indicator froma set ofN economic
time series is, per se, not too difficult. One can simply either average the
relevant individual indicators or combine them using factor models, see
inter alia Stock and Watson (1989) and Forni et al. (2001). In practice, it
is not obvious that more elaborated methods produce more accurate re-
sults. For instance, it is illustrated in Hecq (2005) that randomly generat-
ed linear combinations of the four coincident indicators used by The
Conference Board provide with composite indicators that deliver very
similar turning points of the US economic activity. However, an improve-
ment in forecasting the business cycles is observed for methods that ex-
plicitly take into account the existence of short-run co-movements
among the individual business cycle indicators (Cubadda, 2007a).

This paper contributes to the literature on the identification of
common cycles and the construction of composite business cycle in-
dicators in two ways.

First, we provide methods for selecting the individual cyclical
indicators that are based on the detection of common cycles among
variables. Indeed, prior to the building of any composite business
cycle indicator, we propose to dig deeper into the detection of groups
of variables that are homogenous with regard to the presence of
short-run co-movements. For instance, let us consider the empirical
investigation that we have in this paper, namely the analysis of GDP
growth rates of 24 European countries. Several studies have empha-
sized the existence of business cycle co-movements among European
economies, see the survey by De Haan et al. (2008) and the references
therein. Our main concern in this paper is to develop a strategy
aiming at splitting those N countries into three groups of respectively
N1, N2, and N3 time series. These three clusters will be obtained
thanks to a measure of the degree of cyclical commonality among
the various economies. In particular, the first group is such that
there is a common synchronous cycle among these N1 time series
(Engle and Kozicki, 1993; Vahid and Engle, 1993); the N2 variables
of the second group share a non-synchronous common cycle
(Cubadda and Hecq, 2001), and the last group comprises N3 series
with idiosyncratic short-run dynamics. For small dimensional sys-
tems, a VAR analysis with additional reduced rank restrictions can
be undertaken to discover these groups (Cubadda, 2007b). However,
this strategy is unfeasible when N is too large relatively to the number
of observations T. Hence, we provide some mild assumptions under
which each equation of a VAR is endowed with a factor structure.
The main attractive features of this approach are twofold: (i) the
presence of the various kinds of co-movements is determined using
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only parsimonious single-equation models; (ii) these models can be
specified according to the general-to-specific methodology; see, inter
alia, Campos et al. (2005). In particular, one can rely on automatic selec-
tion procedures such as those already implemented in Gretl or in
OxMetrics for instance.

Second, after having determined these groups, we offer a method of
constructing the “best” composite coincident indicator that explicitly
takes into account the existence of these various forms of short-run
co-movements among variables. In particular, series from the second
group are preliminarily “aligned” in order to display a common syn-
chronous cycle with the variables of the first group. Then we exploit
the common cycle property in order to build a unique composite coin-
cident indicator.

The paper is organized as follows. Section 2 presents our newmeth-
od for investigating the presence of different kind of co-movements in a
set of N time series, N being too large to rely on usual multivariate time
series tools. Section 3 evaluates our procedure in the light of a Monte
Carlo analysis. We compare automatic selection procedures based ei-
ther on sequential Wald tests or on information criteria. Section 4 is
dedicated to analyze co-movements among 24 European countries,
build the composite coincident indicator, and compare it with already
existing indicators. Section 5 concludes.

2. Identification of business cycle co-movements

2.1. Synchronous and non-synchronous common cycles

Let Yt ≡ (y1t,…,yNt)′ denote the N-vector of the time series of inter-
est. We assume that Yt is generated by the following stationary vector
autoregressive model of order p (VAR(p) hereafter):

Φ Lð ÞYt ¼ εt ; t ¼ 1;2;…; T; ð1Þ

whereΦ Lð Þ ¼ In−∑p
j¼1 ΦjL

j and εt are i.i.d. innovations with E(εt) =
0, E εtε

′
t

� �
¼ Σ (positive definite) and finite fourth moments.

In this framework, serial correlation common feature (SCCF hereafter,
see Engle and Kozicki, 1993) holds if there exists a full-rank (N × s)-
matrix δ (s b N), whose columns span the cofeature space, such that

δ′Yt ¼ δ′εt ð2Þ

is a s-dimensional zero mean vector innovation process with respect to
the information available at time t − 1. Consequently, SCCF arises if
there exists a matrix δ such that the conditions δ′ jΦj ¼ 0 s�Nð Þ, j = 1,…,
p are jointly satisfied.

Notice that under SCCF, the VAR model (1) can be rewritten as the
following reduced-rank regression model

Yt ¼ δ⊥
Xp
j¼i

A′
jYt−j þ εt≡δ⊥Xt−1 þ εt ;

where δ′δ⊥ = 0 and Aj is a (N − s) × smatrix for j = 1,…, p. Since all
the predictable fluctuations of series Yt are due to the (N − s) com-
mon dynamic factors Xt − 1, the existence of SCCF is equivalent to
the presence of synchronous common cycles among series Yt.

Moreover, Vahid and Engle (1993) show that if series Yt are the
first differences of I(1) variables, condition (2) is equivalent to the
presence of (N − s) common components among the deviations of
the series levels from their random walk trends. Hence, the notion
of SCCF could in principle be used to construct composite business
cycle indicators based on both the traditional notions of “growth
cycle” (i.e. fluctuations in the economic activity around a long-run
trend) and “growth rate cycle” (i.e. fluctuations of the growth rate
of economic activity). Within this paper we follow the growth rate
cycle approach mainly because the limited time span of our data pre-
vents a statistically credible analysis of their long-run properties.

In order to allow for adjustment delays, Cubadda and Hecq (2001)
propose to look at the presence of non-synchronous common cycles
in the context of the polynomial serial correlation common feature
(PSCCF hereafter) modeling. In this framework there exists a full-rank
(N × s) matrix δ0 such that under the null hypothesis that PSCCF of
order m (1 ≤ m b p) holds if the conditions δ′0Φh≠0 s�Nð Þ, h = 1,…,
m, andδ′0Φj ¼ 0 s�Nð Þ, j = m + 1,…, p are jointly satisfied. This is equiv-
alent to requiring that there exists a polynomial matrix δ(L) = δ0 −
∑ h = 1

m δhLh such that

δ′ Lð ÞYt ¼ δ′0εt ;

where δh ¼ Φ′
hδ0, i = 1,…, m.

Under PSCCF, the VAR model can be rewritten as the following
partially reduced-rank regression model

Yt−
Xm
h¼1

ΦhYt−h ¼ δ0⊥
Xp

j¼mþ1

A′
0jYt−j þ εt≡δ0⊥X0t−1 þ εt ;

where A′
0j is a (N − s) × s matrix for j = m + 1,…, p, which reveals

that series Yt share common dynamics after m periods.
Issler and Vahid (2006) and Cubadda (2007a) discuss how to ob-

tain composite cyclical indicators under, respectively, SCCF and
PSCCF. For instance, Issler and Vahid (2006) look at the linear combi-
nations δ′⊥Yt . In Section 5 we extend this approach to the case that
both SCCF and PSCCF are present in the data.

2.2. A joint determination of the groups

Let us now assume that there exists a partition Yt = [Y1t, Y2t, Y3t],
where the N1 series Y1t share a synchronous common cycle, the N2 se-
ries Y2t share a non synchronous common cycle, and the remaining
series Y3t present idiosyncratic short-run dynamics. According to the
definitions provided in the previous section, this is equivalent to as-
suming that series Y1t are characterized by the presence of (N1 − 1)
SCCF vectors, series Y2t exhibit (N2 − 1) PSCCF vectors and the
remaining series Y3t do not present any SCCF or PSCCF. With the re-
searcher being not aware of this partition, the goal is to find out the
series that are co-moving and belong to sets Y1t and Y2t. This new
strategy is developed in this section.

Since we have assumed that series Yt are generated by a stationary
VAR(p) model, each series Yit follows the stable dynamic regression
model

yit ¼ ϕii Lð Þyit−1 þ
XN
k≠i

ϕik Lð Þykt−1 þ εit ; i ¼ 1;…;N; t ¼ 1;…; T; ð3Þ

where ϕit (L) and ϕik (L) are scalar polynomials of order (p − 1), and
εit is i-th element of the innovation vector εt.

A statistical issue arises when the number of regressors, N × p, be-
comes too large with respect to the sample size T. For instance, in our
empirical application we have N = 24 and T = 56, which implies
that it is not even feasible to estimate the unrestricted model (3) by
OLS for p > 2. Hence, we further assume that

Xn
k≠i

ϕik Lð Þykt ¼ βi Lð Þ
Xn
k≠i

ωkykt ; ð4Þ

where βi (L) is a scalar polynomial of order p − 1 andωi is a scalar for
i = 1,…, N.

Notice that this is equivalent to postulating the following factor-
augmented autoregressive (FAAR) structure for each series yit

yit ¼ αi Lð Þyit−1 þ βi Lð Þf t−1 þ εit ; ð5Þ

where αi (L) = [ϕii (L) − βi (L) ωi] and the common factor is ft =
∑ k = 1

n ωkykt. In Section 4 we discuss various alternatives for
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constructing these country weights by using either official statistics
or multivariate techniques.

Let us suppose that series i and j share a common cycle with a nor-
malized SCCF vector (1,−δij)′. This implies that

yit−δijyjt ¼ εit−δijεjt ;

which, in view of equations

yit ¼ ϕii Lð Þyit−1 þ βi Lð Þ
XN
k≠i

ωkykt þ εit ; ð6Þ

yjt ¼ ϕjj Lð Þyjt−1 þ βj Lð Þ
XN
k≠j

ωkykt þ εjt ; ð7Þ

requires that the following set of conditions holds

βi Lð Þ ¼ δijβj Lð Þ; ð8Þ

ϕii Lð Þ ¼ δijβj Lð Þωi; ð9Þ

βi Lð Þωj ¼ δijϕjj Lð Þ: ð10Þ

From Eqs. (8) and (9) we get

ϕii Lð Þ ¼ ωiβi Lð Þ; ð11Þ

whereas from Eqs. (8) and (10) we get

ϕjj Lð Þ ¼ ωjβj Lð Þ: ð12Þ

If we put restrictions (11) and (12) in Eqs. (6) and (7) we finally
obtain

yit ¼ δijβj Lð Þf t−1 þ εit ; ð13Þ

yjt ¼ βj Lð Þf t−1 þ εjt : ð14Þ

This leads to the following condition for the existence of a common
synchronous cycle between variables yit and yjt:

Condition 1. Under assumption (4), it follows from Eqs. (13) and (14)
that an SCCF relationship between yit and yjt requires restriction (8) and

αi Lð Þ ¼ αj Lð Þ ¼ 0: ð15Þ

It is important to notice, and we will make use of this particular
case in our testing strategy, that the above condition is always satis-
fied when Eq. (15) holds and p = 1. Indeed, if p = 1, it turns out
that one simply needs to test for the restricted models

yit ¼ βi f t−1 þ εit ;
yjt ¼ βj f t−1 þ εjt ;

ð16Þ

versus the unrestricted models

yit ¼ αiyit−1 þ βif t−1 þ εit ;
yjt ¼ αjyjt−1 þ βjf t−1 þ εjt ;

ð17Þ

which include as special cases the idiosyncratic cycle models

yit ¼ αiyit−1 þ εit ;
yjt ¼ αjyjt−1 þ εjt :

ð18Þ

Indeed, system (16) exhibits an SCCF between yit and yjt when the
joint hypothesis H0: αi = αj = 0 is satisfied. The synchronous com-
mon feature coefficient is obtained by the ratio of the factor loading,
namely δij = βi/βj. Notice that when both βi and βj are different

from zero, system (17) exhibits a non-synchronous common cycle
with a PSCCF vector [1,−βi/βj]′.

When p > 1, we need to test for the reduced-rank regressionmodel

yit
yjt

� �
¼ δij

1

� �
β Lð Þf t−1 þ

εit
εjt

� �
;

where β(L) is a scalar polynomial of order (p − 1), versus the
unrestricted system

yit ¼ αi Lð Þyit−1 þ βi Lð Þf t−1 þ εit;
yjt ¼ αj Lð Þyjt−1 þ βj Lð Þf t−1 þ εjt:

ð19Þ

Let us now turn to the condition for the existence of a
non-synchronous common cycle between variables yit and yjt. For
the sake of interpretation, we only consider PSCCF relationships that
solely involve the lags of yit and yjt.

Condition 2. Under assumption (4), in view of Eq. (19), a PSCCF rela-
tionship between yit and yjt and their own lags of orderm requires the
restrictions

βi Lð Þ ¼ δ0ijβj Lð Þ;

and

αi Lð Þ ¼
Xm
h¼1

αihL
h
;

αj Lð Þ ¼
Xm
h¼1

αjhL
h
:

In the particular case with p = 1 the above condition is trivially
satisfied when both βi and βj are different from zero and at least
one coefficient between αi and αj is not null in system (17). When
p > 1, we need to test for the partially reduced-rank regression
model

yit
yjt

� �
¼ ∑m

h¼1αihyit−h
∑m

h¼1αjhyjt−h

� �
þ δ0ij

1

� �
β Lð Þf t−1 þ

εit
εjt

� �
ð20Þ

versus the unrestricted system (19).
Interestingly, as long as the coefficient matrices of ft-1 have the

same reduced-rank structure as in systems (19) and (20), it is possi-
ble to “align” series with PSCCF relationships in order to display a
common synchronous cycle with variables having SCCF relationships.
Indeed, to simplify matters let us consider the following system for
three variables

yit
yjt
ykt

2
4

3
5 ¼

0
∑m

h¼1αjhyjt−h
0

2
4

3
5þ

δik
δ0jk
1

2
4

3
5β Lð Þf t−1 þ

εit
εjt
εkt

2
4

3
5: ð21Þ

It is seen that yit and ykt share a common synchronous cycle with an
SCCF vector [1,−δik]′, and yjt and ykt share a common non-synchronous
cycle with a PSCCF vector [1,−δ0jk]′. We can rewrite system (21) as

yit
y�jt
ykt

2
4

3
5 ¼ ~δ⊥β Lð Þf t−1 þ

εit
εjt
εkt

2
4

3
5;

where yjt∗ = yjt − ∑ h = 1
m αjhyjt − h and ~δ⊥ ¼ δik; δ0jk;1

h i
′
, fromwhich

we notice that yit, ykt, and the aligned series yjt
∗ share a common syn-

chronous cycle.
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3. Monte Carlo results

The results of the previous section suggest that, under assumption
(4), common synchronous and non-synchronous cycles can be
detected simply by applying a general to specific selection procedure
to each unrestricted FAAR model (5) and checking if some of the se-
lected models satisfy the (P)SCCF restrictions. Hence, we carry out a
Monte Carlo study to evaluate the performances of information
criteria as well as Wald tests in selecting restricted models that are
compatible with the existence of common cycles.

As in our empirical application, we consider a VAR system with
N = 24 variables. We simulate 24 time series accordingly to the fol-
lowing stationary VAR(1) model

Yt ¼ ΦYt−1 þ εt ;
Φ ¼ Aþ bω′

;

where A is a 24 × 24 matrix that can be partitioned as

A ¼
0 0 0
0 A− 0
0 0 Aþ

2
4

3
5:

Each block of A is composed by an 8 × 8 matrix. Moreover, A− and
A+ are diagonal matrices where the diagonal elements are respec-
tively generated by an U(0.1,0.9) and an −U(0.1,0.9), and b is a
24-vector where the first 16 elements are generated by an U(0.5,2)
and the other 8 elements equal zero. Finally, ω is a 24-vector of pos-
itive numbers that are drawn from a uniform distribution such that
∑ i = 1

24 wi = 1, and the factor is ft = ∑ i = 1
24 wiyit.

This DGP allows us to divide Yt in three different clusters: (i) the
first 8-subvector of Yt, say Y1t, is a function of its own shocks and
the factors ft − 1 only; (ii) each element of the second 8-subvector
of Yt, say Y2t, is a function of its own shock, its own lag, and the factors
ft − 1; (iii) each element of the third 8-subvector of Yt, say Y3t, is a
function of its own shock and lag only. Hence, series Y1t have a single
common synchronous cycle, series Y2t share the same cycle but in a
non-synchronous way, and series Y3t share no cycle among them-
selves and with the remaining series.

We generate T + 50 observations of the vector series Yt for T =
50, 100, 250 where the first 50 points are used as a burn-in-period.
The errors εt are Gaussian i.i.d. with zero mean and a variance matrix
generated from a standard Wishart distribution with 24 degrees of
freedom, and 5000 replications are used.

In order to compare alternative methods of identifying series that
belong to the three different clusters, we start from the following
FAAR model:

yt ¼ α0 þ α1yt−1 þ α2yt−2 þ β1f t−1 þ β2f t−2 þ εt ;

where Yt is the generic element of vector Yt.1 First, we apply a sequence
of t-tests following a general to specific approach.We recursively delete
variables associated with the smallest values of the t-tests until we re-
ject the null at a 10% significance level. Second, we estimate all the pos-
sible nestedmodels and keep the one associatedwith the smallest value
of the Bayesian information criterion (BIC).2

In the Tables 1 and 2 we report the frequencies with which all the
possible nested models are chosen by the considered criteria. We
write in bold characters the frequencies with which we correctly select
series belonging to the three sub-vectors [Y1t, Y2t, Y3t]. For instance, row
ft − 1 reports the percentagewithwhichmodels that include ft − 1 as the
unique regressor are detected. Notice that this is a sufficient condition

for having an SCCF vector because a common cycle may be present
also in models retained under either ft − 2 or [ft − 1, ft − 2], although in
this latter case, we need to check whether the factor loadings share
the same left null space.

Overall, we would recommend the use of information criteria in-
stead ofWald type tests because the frequencies withwhich the groups
are detected are much higher. Moreover, when a synchronous cycle is
not detected, either [ft − 1, ft − 1] or [ft − 1, ft − 2] are more often found
than cases associated with no co-movements at all. Similarly, for series
from the group without any co-movement, there is a very small per-
centage to find both synchronous and non-synchronous cycles.

4. Empirical application

4.1. Clustering European economies on business cycle co-movements

This first subsection applies our new approach for detecting the
existence of various kinds of co-movements. We use growth rates of
the gross domestic product of 24 EU member states. We select
European countries for which at least 50 observations were available
at the time we took the data, excluding consequently Greece, Roma-
nia and Malta. The quarterly seasonally adjusted series from 1997Q1
to 2011Q1 are taken from the Eurostat short-term indicators data-
base. The series are plotted in Fig. 1. In addition to the presence of
similarities that seems obvious from that graph, it also emerges that
the growth rates of most countries exhibit very parsimonious individ-
ual ARMA structures, e.g. ARMA(1,1). This feature can signify the
presence of many co-movements. Indeed, using the final equation

1 In line with what we do in the empirical application, we treat the factor ft as
observed.

2 We report only the results relative to the BIC since it outperforms both the Akaike
and Hannan–Quinn information criteria. Results are available on request.

Table 1
Selection results: Wald type t-deletion.

Model T = 50 T = 100 T = 250

Y1t Y2t Y3t Y1t Y2t Y3t Y1t Y2t Y3t

ft − 1 0.59 0.11 0.06 0.63 0.07 0.03 0.61 0.04 0.01
ft − 2 0.11 0.03 0.06 0.06 0.01 0.03 0.02 0.00 0.01
yt − 1 0.04 0.13 0.59 0.01 0.04 0.66 0.00 0.01 0.71
yt − 2 0.04 0.01 0.05 0.01 0.00 0.02 0.00 0.00 0.01
[ft − 1,ft − 2] 0.04 0.01 0.01 0.06 0.01 0.01 0.10 0.00 0.00
[ft − 1,yt − 1] 0.07 0.48 0.05 0.09 0.63 0.06 0.13 0.70 0.06
[ft − 1,yt − 2] 0.06 0.01 0.00 0.07 0.01 0.00 0.07 0.00 0.00
[ft − 2,yt − 1] 0.01 0.09 0.06 0.02 0.05 0.06 0.00 0.02 0.06
[ft − 2,yt − 2] 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
[yt − 1,yt − 2] 0.00 0.01 0.06 0.00 0.01 0.07 0.00 0.00 0.08
[ft − 1,ft − 2,yt − 1] 0.01 0.04 0.03 0.02 0.07 0.04 0.03 0.11 0.04
[ft − 1,ft − 2,yt − 2] 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00
[ft − 1,yt − 1,yt − 2] 0.01 0.06 0.02 0.01 0.07 0.00 0.01 0.09 0.00
[ft − 2,yt − 1,yt − 2] 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01
[ft − 1,ft − 2,yt − 1,yt − 2] 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.03 0.01

Table 2
Selection results: BIC.

Model T = 50 T = 100 T = 250

Y1t Y2t Y3t Y1t Y2t Y3t Y1t Y2t Y3t

ft − 1 0.66 0.14 0.06 0.78 0.12 0.03 0.85 0.07 0.01
ft − 2 0.12 0.04 0.06 0.07 0.02 0.03 0.03 0.00 0.01
yt − 1 0.05 0.17 0.69 0.02 0.08 0.82 0.00 0.02 0.92
yt − 2 0.04 0.02 0.05 0.02 0.02 0.03 0.00 0.00 0.01
[ft − 1,ft − 2] 0.03 0.01 0.00 0.03 0.00 0.00 0.03 0.00 0.00
[ft − 1,yt − 1] 0.04 0.47 0.04 0.04 0.65 0.03 0.13 0.82 0.02
[ft − 1,yt − 2] 0.03 0.01 0.00 0.04 0.00 0.00 0.05 0.00 0.00
[ft − 2,yt − 1] 0.02 0.07 0.04 0.00 0.05 0.03 0.04 0.03 0.02
[ft − 2,yt − 2] 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[yt − 1,yt − 2] 0.00 0.01 0.04 0.00 0.00 0.03 0.00 0.00 0.01
[ft − 1,ft − 2,yt − 1] 0.00 0.02 0.02 0.00 0.02 0.00 0.00 0.03 0.00
[ft − 1,ft − 2,yt − 2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[ft − 1,yt − 1,yt − 2] 0.00 0.03 0.00 0.00 0.04 0.00 0.00 0.03 0.00
[ft − 2,yt − 1,yt − 2] 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[ft − 1,ft − 2,yt − 1,yt − 2] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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representation of a N-dimensional VAR(p) model, each series can be
written as an ARMA (Np, (N − 1)p) model (Zellner and Palm,
1974). However, Cubadda et al. (2009) show that the presence
co-movements implies more parsimonious ARMA structures. As an
example, s SCCF vectors yield individual ARMA ((N − s) p, (N − s)
p)) models.

In order to implement our new approach, we need to build a factor
that represents the aggregate dynamics of the country growth rates.
In principle, this factor can be obtained either from official statistics
or by means of some statistical models. We consider five potential
factors. The first one, denoted Eur, is the growth rate of the total
GDP of the 24 considered countries. Since Eur is, strictu sensu, a
non-linear aggregate of the individual growth rates, we also consider
a linear approximation of Eur, denoted as ^Eur , which is obtained by a
least-squares projection of Eur on the 24 country growth rates. The
third factor, denoted PC, is the first principal component of the coun-
try growth rates. Stock and Watson (2002) provide the conditions
under which PC is a consistent estimator of the common factor
when both the sample size T and the number of series N diverge.
The fourth factor, denoted PLS, is the first partial least squares factor,
whose weights are obtained as the eigenvector corresponding to the
largest eigenvalue of Γ′Γ, where Γ is the matrix of the covariances be-
tween elements of Yt and Yt − 1 after having standardized them to
unit variance. Cubadda and Guardabascio (2012) discuss the condi-
tions under which PLS is a consistent estimator of the common factor
when only the sample size T diverges. Moreover, Cubadda and Hecq
(2011) provide evidence that PLS are capable to identify a common
cycle even when the sample size is small compared to the number
of series. However, this approach would be invalid if the common
cycle affects some countries in a non-synchronous fashion. Hence,
we propose a variant of the method by Cubadda and Hecq (2011)
that can handle series generated by models as Eq. (17). In particular,
the procedure, which is similar in the spirit to the switching algo-
rithm suggested by Centoni et al. (2007) to jointly test for common
trends and common cycles, goes as follows:

I Standardize individual elements of both Yt − 1 and Yt and obtain
an initial estimate ω̂ of the factor weights ω = (ω1,…,ωN)′;

II For fixed ω ¼ ω̂ , obtain an estimate α̂ of the AR coefficients
α = (α1,…,αN)′ in Eq. (17) by regressing yit on yit − 1 and
ft − 1 ≡ ω′Yt − 1 for i = 1,2,…, N;

III For fixed α ¼ α̂ , obtain ω̂ as the eigenvector corresponding to
the largest eigenvalue of Γ ′�Γ�, where Γ∗ is the matrix of the
covariances between elements of Yt

∗ and Yt − 1, and Yt
∗ is a

N-vector such that its i-th element is equal to (yit − αiyit − 1);
IV. Repeat II and III until numerical convergence occurs.

We label the factor obtained by the above procedure as PLS-AR.
The following matrix

Eur Êur PC PLS PLS−AR

Eur 1

Êur 0:999 1

PC 0:970 0:970 1

PLS 0:974 0:974 0:999 1

PLS−AR 0:973 0:973 0:999 0:999 1

gives the correlation coefficients of these five potential factors, which
are obtained from the growth rates (not the levels) of the 24 vari-
ables. It is obvious that all these indicators convey very similar infor-
mation on the aggregate cycle of the considered countries. Hence, we
use the observed variable Eur as the factor ft in the subsequent
analysis.

Within the general to specific selection procedure, we also test for
the presence of outliers in the variables. In particular, for each country
we estimate the FAARmodel (5) with 2 lags of both the factor and the
country itself. We then test for residual autocorrelation through the
application of the Ljung–Box Q test and, if the null is rejected at 5%
significance level, additional lags are added. This is the case for
Spain, for which three lags of the variables are needed to whiten the
residuals. In each FAAR model, outliers are identified as those obser-
vations whose residuals are larger than 2.5 times the residual stan-
dard deviation. We add an impulse dummy into the model for each
of the previously identified outliers and then apply the general to

Fig. 1. European country growth rates.
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specific approach to remove redundant regressors (both variable lags
and impulse dummies). In line with the results of the Monte Carlo
analysis, we finally select the model that minimizes the BIC among
all those that are nested within the unrestricted model.3

In order to validate the selected models, we reply the test for re-
sidual autocorrelation. Moreover, for most of countries one cannot re-
ject the hypothesis that errors are Gaussian and homoskedastic. The
final model for each country and the associated outliers are reported
in Table 3.

From Table 3 we distinguish four different groups of countries:

1. The first lag of the factor, ft − 1, is the only relevant explanatory
variable for Austria, France, Germany, Italy, Luxembourg, The
Netherlands, Poland, Portugal, Slovenia and Sweden. It follows
that these countries share a synchronous common cycle;

2. The first lag of the factor as well as some lags of the country are signif-
icant regressors for Bulgaria, Denmark, Estonia, Finland, Hungary,
Ireland, Latvia, and Slovakia. Hence, these countries share a non-
synchronous common cycle among them and with countries from
Group 1;

3. Two lags of the factor as well as some lags of the country are in-
cluded in the final model of Cyprus and Spain. It follows that
these countries may share a PSCCF that involves lags of both the
country and factor. Since the economic interpretation of such a
case is tedious, we will not consider these countries in the subse-
quent phase of the analysis.

4. No common cycle is found for all remaining countries: Belgium, the
Czech Republic, Lithuania and the United Kingdom. Indeed, country
lags are the only relevant explanatory variables for these countries.

Overall, these findings seem to corroborate the conclusions of the
numerous previous studies (see De Haan et al. (2008) for a recent
survey) which document that, starting from the 90s, business cycle
synchronization in the Euro area has increased. Indeed, the empirical
evidence suggests that 10 countries, including those traditionally
seen as the European core, display a synchronous common cycle.

4.2. Building the “best” business cycle indicator

In this subsection we show how to construct a coincident business
cycle indicator that takes into account the presence of the various
forms of co-movements among countries. The proposed procedure
is based on two steps. First, countries from the second group are
“aligned” in order to make their common cycle synchronized with
the one of the first group. Second, we exploit the common cycle prop-
erty in order to build the “best” composite coincident indicator.

The procedure goes as follows. For countries from the first group,
we can easily compute the normalized SCCF coefficients − βi

βN1
, for

i = 1,2,…N1, where N1 represents the number of countries from
this group. Hence, we obtain a (N1 × N1 − 1) SCCF matrix δ with
the following structure:

δ′ ¼

1 0 0 0 … − β1

βN1

0 1 0 0 … − β2

βN1

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1 −

βN1−1

βN1

0
BBBBBBBBB@

1
CCCCCCCCCA
: ð22Þ

Similarly, for countries from the second group, we can construct a
(N2 × N2 − 1) matrix δ0 with the same structure as Eq. (22). Finally,
we build the composite coincident indicator as ~δ

′
⊥ Y ′

1t ;Y
�
2t

′
h i′

, where

~δ′ ¼ δ′ 0 N1−1ð Þ�N2

0 N2−1ð Þ�N1
δ′0

" #

and Y2t
∗ is the N2-vector of the “aligned” time series of the second

group, i.e., for each country of this group, the partial effect of the
country lags is removed.

Table 4 reports the composite indicator coefficients for countries
from the first two groups. In order to facilitate the interpretation,
the coefficients refer to variables that have been standardized to
unit variance.

Overall, the results suggest that France, Germany, Italy and The
Netherlands are responsible for a large portion of the European com-
mon cycle.

3 The impulse indicator saturation method (see Hendry et al., 2008) can in principle
be used as an alternative to the large outlier approach that we follow here. However, in
the specific case of the present empirical application, the large outlier approach pro-
vides models that are more parsimonious and economically meaningful than those
obtained through impulse dummy saturation. A possible explanation of this outcome
is that variability in our sample is dominated by a specific episode, that is the 2008 fi-
nancial crisis.

Table 3
Selection of single equation models.

Country BIC selected model Outliers

Austria ft − 1 [2001:Q2]
Belgium yt − 1 [2008:Q4]
Bulgaria ft − 1,yt − 1 []
Cyprus ft − 1,ft − 2,yt − 1,yt − 2 []
Czech Republic yt − 1 [2009:Q1]
Denmark ft − 1,yt − 1,yt − 2 [2005:Q2]
Estonia ft − 1,yt − 1,yt − 2 [2008:Q4]
Finland ft − 1,yt − 1 [2009:Q1]
France ft − 1 [2008:Q4; 2009:Q2]
Germany ft − 1 [2009:Q1; 2009:Q2]
Hungary ft − 1,yt − 1 []
Ireland ft − 1,yt − 1 []
Italy ft − 1 [2009:Q2]
Latvia ft − 1,yt − 1,yt − 2 [1998:Q1; 2008:Q3]
Lithuania yt − 1 [2009:Q1]
Luxemburg ft − 1 [2000:Q1]
Netherlands ft − 1 [1999:Q1]
Poland ft − 1 []
Portugal ft − 1 []
Slovakia ft − 1,yt − 1 []
Slovenia ft − 1 [2008:Q4; 2009:Q1]
Spain ft − 1,ft − 2,yt − 1,…yt − 3 []
Sweden ft − 1 [2008:Q4]
United Kingdom yt − 1 [2007:Q2]

Table 4
Composite indicator coefficients.

Country yt yt − 1 yt − 2 Total

Austria 0.0595 0.0000 0.0000 0.0595
Bulgaria 0.0390 − 0.0155 0.0000 0.0235
Denmark 0.0926 − 0.0600 − 0.0250 0.0075
Estonia 0.0194 0.0053 0.0032 0.0279
Finland 0.0875 − 0.0425 0.0000 0.0450
France 0.0891 0.0000 0.0000 0.0891
Germany 0.0710 0.0000 0.0000 0.0710
Hungary 0.0386 0.0177 0.0000 0.0563
Ireland 0.0568 − 0.0212 0.0000 0.0356
Italy 0.1038 0.0000 0.0000 0.1038
Latvia 0.0394 − 0.0028 0.0197 0.0563
Luxemburg 0.0342 0.0000 0.0000 0.0342
Netherlands 0.0806 0.0000 0.0000 0.0806
Poland 0.0327 0.0000 0.0000 0.0327
Portugal 0.0360 0.0000 0.0000 0.0360
Slovakia 0.0478 − 0.0137 0.0000 0.0342
Slovenia 0.0304 0.0000 0.0000 0.0304
Sweden 0.0417 0.0000 0.0000 0.0417
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4.3. Comparison with other business cycle indicators

In this subsection, our business cycle indicator, CI, is compared with
two other composite indicators: the quarterly version of Eurocoin
(Altissimo et al., 2001) and the growth rate of the European Gross Do-
mestic Product produced by Eurostat, GDP. These series are graphed in
Fig. 2. Visual inspection suggests that these indicators provide a similar
picture of the business cycle, although CI and GDPmore strongly empha-
size the deep decrease in economic activity after the 2008 financial crisis.

Table 5 reports the estimated cross-correlation functions between
the considered series. These three indicators are highly cross correlat-
ed. Moreover, CI and GDP are clearly synchronous, whereas Eurocoin
seems to be partially lagging with respect to the other indicators.

Although our sample size includes only a single recession, we also
evaluate the performances of the various indicators in detecting the
turning points of the euro area business cycle as defined by the
CEPR business cycle dating committee. For this purpose, we consid-
ered the quarterly version of the Bry–Boschan rule, which states
that a peak (trough) occurs when the level of a business cycle indica-
tor attains a local maximum (minimum) relative to 2 quarters on
both sides (Harding and Pagan, 2002). We see from Table 6 that the
CI and GDP match the CEPR chronology, whereas Eurocoin identifies
the turning points with a one quarter delay.

5. Conclusions

In this paperwe have proposed a simple strategy that allows us to de-
tect the presence and kind of co-movements in a time series system.
Under plausible assumptions about the existence of a factor structure,
we provide conditions for the existence of a common short-run compo-
nent among variables. These conditions can easily be checked by means
of automatic selection procedures. In particular, a Monte Carlo study has
revealed that the BIC works quite well for this purpose. Our strategy al-
lows for clustering time series that are homogeneous with regard to the
form of their cyclical co-movements, i.e. a common synchronous cycle, a
common but not synchronous cycle, and idiosyncratic short-run
dynamics.

Moreover, we have shown how to construct a composite indicator
that is based on the co-movements of the individual time series. First,
we align those series that are affected by the common cycle in a
non-synchronous fashion to construct a new set of variables that are all
characterized by synchronous cyclical fluctuations. Second, a composite
coincident indicator is constructed as the “most cyclical” linear combina-
tion of these variables. Both these steps are entirely performed in the
time-domain since they only require the estimation of simple FAAR
models.
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