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Abstract. The abstract commutation relations of the algebra of the square
of white noise of Accardi, Lu, and Volovich are shown to be realized by
operator processes acting on the Fock space of Accardi and Skeide which
is very closely related to the Finite Difference Fock space of Boukas and
Feinsilver. The processes are shown to satisfy the necessary conditions for
inclusion in the framework of the representation free quantum stochastic
caleulus of Accardi, Fagnola, and Quaegebeur. The connection between the
Finite-Difference operators and the creation, annihilation, and conservation
operators on usual symmetric Boson Fock space is further studied.

1. Introduction

The "square of white noise” or "SWN” algebra was defined in [ALV 99] as
the Lie algebra generated by elements B(f), BY(f), and N(f) satisfying the
commnutation relations:

BB = 2¢ [ Fods +4N(Tg)

IN(#), B(f)] = -2B(8f)
[N(#), BY()] = 2BY(4f)
[BY(£), B'(g)] = [N(¢),N(¥)]=0
where ¢ > 0 and f, g, ¢, ¥ are suitable functions.
Let D = {z € C/|z| < 1/2} and let S(R:, D) denote the set of step
functions defined on R, with valuesinDie fe S(R., D} & f= Ezﬂath,
a; € D, I; C {0,400}, N\ =0fori#34,4,5=1,2,..,n€N.
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2 Accardi and Boukas

A good candidate for a Fock space, on which the above commutation
relation can be realized in the operator sense, was defined in [AS 99] as
follows:

DEFINITION L.1. Let ¢ > 0. The SWN Fock space I is the Hilbert épace .

completion of the linear span of ” exponential vectors” ¥(f), f € S(Ry, D),
under the inner product

o =}

<p(f), () >= e tn(1 — 4Fg)as

After the rescaling ¢ —+ 2 and a; — § the SWN inner -product defined
above is seen to agree with that of the Iinite-Difference Fock space of [Bou

88land [Fei 87]. .
To realize the above commutation relations on I" we define the SWN
operators B(f), BY(f), N(f) by their action on the exponential rectors ¥(g)

of " as follows: :
DEFINITION 1.2. Let f,g € S(Ry, D). Then

BHIW(e) = pelecotb(g + <)
B(fwle) = (2 [ Tods+4BITe)u(o)

N(f)le) = 2le=0(cg)

REMARK 1.3 For ¢ sufficiently close to zero, f,g € S(Ry, D) implies that
g +ef and e’ g are also in S(Ry, D).

2. Matrix elements of the SWN operators

PROPOSITION 2.1 Let f, ¢, g € S(R., D). Then

<UBLBNNG) > = 20 [ LD a5 < y9),u00) >

1—4¢(s)g(s)
% f(s)p(s)g(s) :
Ay 4$(s)g(s)d < (@), ¥(g) >

<9, B > = 2 [T D a0, 000 >

<@ N (g > = 4e

SR

Square of White Noise Integrators

PROOF:

Y@L BUIWG) > = Ll <9(8), plo+ef) >

. gf&oe%cfo (1-48(g+¢f))ds .
€

o] T oo
= ch fé ds e-;ﬁfﬂ (1—4%g)ds
]

1 —4;59

= 2 " F i <), 0000 >

< () N(f)%(g) >

Il

o
25les <W(9),9(e g) >

8 e fo e
= 2&]'3:062 0 (1-4ge’ g)ds

= 40/00 _qs_f_g_.__ds B—cho (1—4dg)ds
0 1-—4¢g

- 40/0“’ 1_?%343 < 9(9),9(g) >

<9(@), BN(g) > = <v(g), (2 f0°° Tods +

4B (F®)u(g) >
- 2c/:079ds < ¥(¢),¥(g) >
+4 < ¥($), B' Fe¥)w(g) >
= (gcjom-fgds -
8¢ /Ooo I-Jiiz%;ds)
<9(),4(g) >

= 26[; I—iia_g < Y(P),1(g) >

N?TE: By Proposition 2.1 < (¢), BY(f)4(g) >= < B(f)s(¢), ¥(g) > ie
BY(f) and B(f) are one the adjoint of the other on the exponential domain e,

Similarly < (), N(£)¥(g) >= < N)b(8), 9(s) > i.e. N(F) is the adjoins
gf N(f).Moreover (in the sense of matrix elements) B(f)}(0) = N(f)4(0) =
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PROPOSITION 2.2 Let g,7, f,¢ € S(Ry, D). Then

< B (g)¢(£), B! (1)9(e) > = (26/000 (1_35)(1)(;)(3))2

> G(s)g(s) -
@ ™

< Ton)
/0 1— 47(3)¢(3)d ) <¥(f),9(¢) >

= J©o(e)90s) . [° F@ben(s)
0 T-47E)8(s) Jo 1 4FE)(E)

. [ 28)F(s)6(s)g(s)
+8e | 0= 17 (5)3(5))2 =ds) < p(f),¥(¢) >

< N()9(f), N(v)(¢) > = (16¢°

©_g(&)fs) . [ _TFs)els)
o 1- 4?(s)¢(s)dfo = 7))

F(s)g(=)e* ()T (s)
+aze [ =T % <D >

< B(@)¥(f), B(mw(g) > = (4

IS YOI
<Bl@U(N N > = 6 | —Ere

g(s)v(s)g(s)
vie [ (1 41(s) phi(s))2 "

Fs)v(s)g(s)
o 1- 4f(8)¢(8)

T 2 [°_T)) L [P _F3)Hs)
< BYg)¥(f), B(v)i(¢) > = (4e b 1— 4¢(s)"f(s)d/0 1 —4p(s) f(s)

g(s)7(5)4°(s)
sse [ TOLERT S5 < (1), 4(6) >

9(8)fs) .
1 —4f(s)(s)

ds < P(f), ¥(®) >

< Bl No(e) > = (82 [~ L) /0°°

0 1-4f(s)$(s)
= 3(3)F (s)8(s)a(s)
o (1-4f(s)¢(s))?

+16¢

PROOF

) <#(f),(e) >
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< BY(g)y(f), BH (v)v($) >

< N(9)g(f), N(m)w(¢) >

< B(g)¥(f), B(7)¢(¢) >

&
= e 66'6:5:0 < Qr/)(f + Eg),@b((ﬁ + 6“}’) >

ik =J

3o |€—"— (1= A(F + €g)(¢ -+ 6v))ds

e[

4c2/0°° B__gy [T T4

L—4fp Jo 1—4fs

<Y(f), ¥(4) >

62
dossle=s=0 <W(e?f), (") >
36;5|e45 0™ 0" -se ) s
(;Lfsc2 _Jeg_gs [ Ty
1-4f¢ Jo 1—4f¢

vfé7 '
+8c ] g <¥(), (@) >

ds

< (2 /Ooo“g'fd.s +4B1@ ) f),

(2 [ Fods + 4B (6)u(e) >
SCfeooﬁfds < ¢(f),Bf(7¢2)’¢’(¢) >
+gc/:7¢ds < B‘L.(ﬁfz.)'ﬁl’(f),%b(ﬁb) >

+16 < B (g2)w(f), B (7629 (¢) >

% _ © Fg'f
(86/0 gfds-2C0 T 4f¢ds

X
+dc? f gfds / ~dds
1] 0

_ © gf'¢
+80/m7q5ds-2c A mds
° f Pg

e o0 f¢2-—
0 1—4f¢

+64c?
¢ 0 1—4f¢
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vd)gf
+32f i 4f¢)2d)<¢(f)¢(¢)>

¥ 4 [ fg

= (4C2 A 1_4}_-¢ o 1—4T¢
Fo8*T"
+32f a 4f@?d)<¢(f),1!)(¢5)>

< B gy (f), N(w(#) > = 5 (%le_a _o < P(f +€g), () >

2 Y
= 666‘6|e4_ e sdo (1-A(F+g)e’"¢)ds
©  fyg
— ——— dS
(8’ f 1— 4f¢ 0o 1—4fp

e
He / T < V(@) >

< BUoWw(f), Ba)(@) > = <BHow(f), (2 [ Tods +4BIG74")(9) >

= 2c/:°7¢d3 < BY(g)y(f), v(4) >
+4 < BY(g)y(s), B! (76" (9) >
_ e g¢
= {2c/m7¢ds-2c A 1—4f¢5d

Tt
+4(2 f (1 4f¢>)

~
e / 1——4f¢> o T-473"
<$(f) () > 0

_ 2 [ __T¢ <7
(4cf0 7l Sy

o i

< BgW(f), N(Wy(d) > = < (2 foooﬁfds+4B*(§f2))¢(f),N(v)¢(¢)>

= 2 fﬂ ~ gTds < 9(f), N(v)w(s) >
+4 < BY @29 (), N(vyw(s) >

) <9(f),¥(8) >

SR nelnERn AR R B R e e e e R R e R

-
|
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_ Rl SR e f'w
= {2(.-/0 gfds 4c/; —4f¢
+ ( 2 gf ¢ 0 f Y
1- 4f¢ 4f¢>
Y e gf pi

o (- 4T¢)2)} <H(f),¥(8) >

a7 M T 7, —a”

yfdlg
Hioe f o

< ¢(f), ¥(g) >

In view of Propositions 2.1 and 2.2 we can extend the definition of
B(f), BX(f), and N(f) to f € L}, (Ry,C) = {/ : Ry — O/ J¢|f(s)|ds <
+00, ¥t > 0} as follows:

DEFINITION 23 If ¢ = Xf ja;z;, is a step function with a; € C,i =
1,2,...,n we define
n 1
B(C") = AE?’:IGZB('A-.TL)
BY(o) = A jaBl(sar)
1
N(o) = AEE”zlaiN(—-mfi)

where A > 2 is arbitrary. Notice that B(3z7,), Bf(AmI) and N(/\mI ) are
defined as in Definition 1.2

DEFINITION 2.4: Let f € L} (Ry, ). We define:

B(f) = lim,B(oy)
BY(f) = lim,B'(0,)
N(f) = limaN(on)

where convergence is in the sense of matrix elements, and {2322, is any
sequence of step functions converging to f in L} (R, C).

3. Commutation relations of the SWN operators

PROPOSITION 3.1. Let p,0, f,g € S(R4, D) and let ¢ > o be as in Defini-
tion 1.1. Then,in the sense of equality of matrix elementa:
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[B),BY0)] = 2¢ [ T)a(e)da+4N(To)
[N@), BY(fH)] = 2B(ps)

[N(p), B(f)] = -2B(®f)

[B1(1),Bl(9)] = NG}, N(o)} =
Moreover if a3 = 0 then |L(a), M(8)] = 0 for al} L, M € {B, B, N}

PROOF: Let ¢,

~ & S(Ry, D). Then, using Proposition 2.2,

< [B(), B'(9)] w(#)$(x) >

= (2

AR

(9)¥(9), Bf(f)w(v) > =< B(f)¢(¢) B(g)$(7) >

00 o ¢f
=d,
0 (1—4¢7)2d5+ f 1-— 4¢V}' ./0 1 — 4y 3
—3
~ 19 > _ g 0 [ 31,
40./0 = ds[} 1_457013 32¢ s)

1—4gy 0 (1—4¢7)?

< (), w(’)') >

=(f

© FIVE
(1 —4¢7)? -)

(1~ 4¢f7)2 % Jo

< ¥(9),¥(v) >

=2]

ey 4”’% < (@), ) >

Moreover, by Propos1t10n 2.1,

< (2¢ [) cofgds

Thus

+ 4AN(fg))o(#), ¥ (7) >
— 9 /°° fgds < P(e), w(v) > +4 < N(Fg)w(e), v(v) >
= (o0 [ rds pre [ L5 129 ZEds) <980 >

= 2 [THAEI s <y, 0t

[B(), BY(@)] =2 [ Fads +4N(Fo

L
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Similarly

< [NE), Y] w(o),u(n) >

= <B() psile), NI () > ~ < N(phb(s), B(F () >

_ w2 [ _ I ® 9Py ° _ Tmy

= (SC/O ___—1“4$7d,3/0 ——~——1_4$7d8+4c A (1—4&;"/)2@
o2 [ P ° Ty . ° PYer

Eéc fo 1—47$ds 0 1—4'730! 160 /0 (1_475)2d3)

<P(@), () >

~ fica, el

B R e
<(¢), (7} >

= 4c/(: - fz’;vdmzb(é) () >

= 2<4(¢), Blef)¥(y) >

< 2Bt (pf)0(), ¥(7) >

Similarly

A

fl

Also

<

[N(p), BN ¥(#),%(7y) >
< B(f)4(e), N®)(v) > — < N(p)y(s), B*(f)?!)(v) >

s [ ¢By ©  fé p¢527f
(scfo ——_—1_4%(13/0 ol 6/ s
o2 [ _f9 ©  pp )
= 1_4%43]0 e —te | —_-—(1_47@2@)

<P(@), ¥(y) >
(16¢

B P
0 (1"457)20!8 4Co (1 — 4v9)?

ds) < 9(é),%(7) >

—te [* s <40, 90 >

—2 <y(g), B*(pf)w(»r) >
< —2B@S)¢(4),%(v) >

[BY(), B(0)] 9(8),wm) >



10 | Accardi and Boukas
= <B*(g)w(¢) B(f)¢(7)> < BY(f)w(#), Bla)p(r) >

oo o0 =7.2
- 4/ f P gerse [T,
( 1-4¢7 o T-dgr " T% ) =g
(o a]
_4czf Iy as [T ° I3y
0

o —lg — —_
T—457" b T-45% %)y =iy

< {(9), ¥(7) >
= 0

ds)

and

< [N, N(o)]9(¢), (v} >
= < N(0)¢(¢) N(p)iﬁ(v > — < N(p)¥(9), N@)p(7) >

= (e f 149y 4¢7 /“’14;!)719 ds + 8 f (121?;)2

® VT oY
—lee f 1_4md o To4; f G ™

<9(8)¥(y) >
= 0

Finally, suppose e.g that I, = Bt and M=B. Then

< [L{a), M(B)|9(4), ¥(7) >
= < [Bl(a), BO)| ¥(9),v(7) >
= < B(B)y(4), B(e)y(v) > — < B (a)y(s), B (B)u(r) >

_ g2 B 2 © FHYE
{4c . _4¢7d ; _4$7ds+32cf -——-——(1 _4¢7)2ds

oo [T B 42 [T [T #8
A~ L e~ M e
< (), %(7) >

*© GH(1 + 4v¢
_ o /0 %%@ds<¢(¢),w(v)>
= 0

since a, 8 € S(Ry, D) and af = 0 imply a8 = 0
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4. Inclusion of the SWN calculus in the represen-
tation free quantum stochastic calculus of Accardi,
Fagnola, and Quaegebeur '

A general, representation free, quantum stochastic calculus, which included
all known examples, was developed in [AFQ92].We will show that the SWN
calculus is also included. For quick reference, we provide some basic facts of
the AQF calculus related to what will follow (cf. [AFQ92],sections 1 and 2).

Denoting by H: a complex separable Hilbert space, B(H): the algebra of
all bounded operators on H, D: a total subset of H, (A4)t>0: an increasing
family of W*-algebras of operators on H, Hy(£): the closure of the subspace
{of/a € Ay}, where £ € D, Aj: the commutant of Ay in B(H), Dj: the
linear span of Ay D, L(D, H): the vector space of all linear operators F with
domain containing D such that the adjoint operator F* also has D in its
domain, a “random variable” F is defined to be an element of L(D, H), and
a “stochastic process in H, indexed by R.,” is a family (F(t})>0 of random
variables such that for each n € D the map { € Ry - F(t)n is Borel
measurable. A random variable I is “f-adapted to Ay” if domain (F') = Dj,
domain (F*) 2 Dj and Foyé = o F§, "oy = o F*¢ for all of € Ajj and
¢ € D. A stochastic process (F(£))e>0 is "adapted to the filtration (A4y))s»o if
F(t) is t-adapted to Ay for all £ > 0. A ”simple” adapted process (F(t)}:>0
is a process which can be written in the form F(t) = X7, F(tk )X, ,.,) for
somen € N and 0 < #; € #3... <itpt1 < 00, An "additive process” is a family

= (M(s,t))o<s<t of random variables such that , for all s < ,M(s,t) is
t-adapted to Ay and, for all v, s,¢ with r < s < ¢, M(r,t) = M(r,s)+M(s,t)
and M(t,t) = 0 on D. With every additive process we associate the adapted
process M(t) = M(0,t). An additive process is said to be "regular” if, for all
£€Dand 0 <r<s<t, Hy) C domain (W(s,t)) and M#(s,t)D C D/,

where "-* denotes closure and M is either 3 or M". If M is a regular
additive process and F = (F(t))t>0 is a simple adapted process then we
define the "left stochastic mtegral” of F' with respect to M over [0,1] as an
operator on D} by

[ aM(s)P(5) = S At AOF @)

and the "right stochastic integral” by

]ﬁt F(s)dM(s) = Sp_ F(tx)M(tr AL, tre1 AL)
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An additive regular process M is called an *integrator of scalar type” if
for each £ € D there exists a finite set J(£) C D such that for each simple
process F and for each 0 < T < 400

| [ e @r el < e [ aut)SuenolFnl?

T
[ Feanelt < one [ due)SaesoIFeIn?

for some constant ¢r¢ > 0 and some positive, locally finite, non atomic

measure g, and

J(n) € J(€)

for all n € J(¢).

If M is an integrator of scalar type and, for all £ € D, the measures ¢ are
absolutely continuous with respect to Lebesgue measure, then the stochastic
integrals defined above can be extended to any I € L2 (R, dM), the space
of all adapted processes F such that

Ltle(s)an + ”F*(S)ﬂlp)dﬂg(s) < too

for all { € Dyn € J(€),and 0 < ¢ < +o0. Once the stochastic inte-
grals have been extended, one can discuss Ité tables, stochastic differential
equations, unitarity conditions for their solutions e.t.c.( c.f [AFQ 92)for a
complete treatment). :
We will show that the SWN processes B, BY, N are integrators of scala
type, thus including SWN calculus in AFQ calculus. In the above notation,
letting Hp be an ”initial” complex separable Ililbert space, we take H =
~Hp @ I" where I'is as in Definition 2.1, D = {u ® ¥(f)/u € H,,y(f) € T},
and we take Ay to be the algebra of all operators of the form Ly ® I;; where
Lyis a bounded operator acting on vectors of the form u @ (f X[o,) and I
is the identity operator acting on vectors 3 Xt 400}

DEFINITION 4.1 For 0 < 8 <, we define
B(s:t) = B(X[s,t}) BT(sa t) = Bf(x{s,t]) N(s: t) = N(X[s,tl)
B(t) = B(0,1) Bi(t) = BY(0,t) N(t) = N(0,1)
B =(B(s,))ocs<t BT = (Bi(s,t))ocs<t N = (N(5,t))ogsxt

By Propositions 2.1 and 2.2, B, B ,and N are regular additive Processes.
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DEFINITION 4.2.For ¢ > 0 we define the ”stochastic differentials” dB, dBt,
and dN by '

dB(t) = B(t,t +dt)dB'(t) = BY(t, ¢ + dt)dN(t) = N(t,t + dt) (1)
PROPOSITION 4.3. Let F = (F(t))t>0 be a simple adapted process on I
and let M ¢ {B', B, N}. :

Then for al é =u @ ¢(f) € D and 0 < ¢ < +oc0:

| [ M @R @ s o [ 1P @
I [ F@a@el? < e [ 1reeitas

where

e = G- th+ /N0 ) L1600, )
8t, 1) = 8mit, £)(T +2m(t, £))t +42¢- mt, f)?
Mt f) = 8e-mift, f)
1
m(t, f) = maﬂ?[o,tj(l—j_w)
Le , with J(£) = {¢}, M is an integrator of scalar type.
PROOF. We will only prove the second inequality. The proof of the first

one is similar. Let

F(t) = 231 F(3))Xlsg,8741) )

where 0 < 51 < 82 < ... < 8ppq <t < +00. Then

I [ Feameer

= | [ Poyamis o v

= 15 F(s5)M(s5, 5541)u @ ()2
= Zfiper < F(s5)M(s5,8511)u @ B(f), Fsk)M(sk, s141)u @ %(f) >
= i1 < F(s;)M(s;, 3511)u @ Y(f), F(s;)M (s, 8511)u @ 9(f) >

+2ReBicjcken < F(s:)M(s5,8541)u @ W), F(s1) M (s, sp11)u @ Y(f) >

(which using the notation I = Ixoon fo = IX(00))
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= i < F(s)u®9¢(fs;), Fss)u@¥(fey) >
< M (85, 8541)8(Fs; )s M35, 854:1)0%(F(s4)
+2ReT < jeken < F(s)M(8j,8541)u @ (fo1), Fsp)u ® ¥(fs) >
< "wb(f(sk)’ M (sx, Sk+1)¢(f(sk) >
(which by Propositions 3.1 and 3.2 is )
= 0 1P (s5)u ® 9 (fo) 1P (f) - I (is )P
+2ReT cjckan < F(85)M(85,8541)u @ 9(fsy) Fsk)u @ 1/)(fs,‘])

-k (f) - (S
where for k,j € {1,2,...,n}

- 4 3 -
4c* s” AT dsf 1= 7l ds + 32c f; s'” T 4Ifi)ds if M =B

ﬂYJ(f) = 402 ‘?Jr} 1_4"‘”2 de 4+1 I—ﬁTFdS +2Cfsj+1 le—TQ'jgdS if M= Bi‘

16¢2(J2 147 ds) +8c [+t ﬁJqlrfp)2ds if M =N
and
2cf 'y =T ds f M =B
Sk(f) =3 2c [ —J—Fds if M = B
de fort? —|——|qu ifM=N
Thus

fOtF(s)de)uwcan

= T lF(s)u® ()P
+2Re21<3<k<n < Fs;)M(s,5311)u ® 9(1), Flsiu @ (£) > &u({)

= S FG)uewDIPu()
" 42ReNp, < fﬂ F(s)dM(syu @ (1), Fsi)u @ (1) > ()

which implies that

[ FEaMEu g < Tl Fsu @ NI (1)
120 [ F(o)AM (5 @ 9ISl F(s2)u @ HNII0k(F)

Since, for all j,k € {1,2,...,n}

Square of White Noise Integrators

Iy (F SO F) - (55401 — 55)

and

8 S A ) (5141 = 55)

we obtain

| [ Foaue I

ot,) [ 1P v()|ds

12NN [ FOaMEuov) [ P u(plds

06,1) [ 1FG)u@ w(r)lPds

A [ FOAMu@u(nI [ 1P @ w()lPasy /262

IA

IA

Letting

]
R(t) = [ F6)aM(s @)l
and
t
a(®) = (| Flayuop(f)|asp/?
the above inequality becomes

RA(t) < 0(t, £)a®(t) + 2X(t, ) R(t)a(t)t/?

ie
R3(t) — 2M(t, F)a(®)M2R(t) - 0(t, a’() <0
which yields
RE(t) < [(t, H)EY2 + /102, £) + 0, £)]2a%(0)

I fot F(s)aM(s)e) < cug /Ot I1F(s)u ® %(f)[Pds

15
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5. On the connection between the Finite Difference
operators and the creation, annihilation, and con-
servation operators '

"To obtain a realization of the commutation relations of the Finite Differ-
ence algebra of [Fei 87] and [Bou 88] in terms of creation,annihilation, and
conservation operators on the usual Boson Fock space, Parthasarathy and
Sinha defined in [PS91] operators Q(f}),P(f), and T(f) as follows:

DEFINITION 5.1, Let g : Ry — R be a step function such that |g} < 1,.

and let a(g) = {%}g‘;l € ly. Let also h = L*(R,, l2) be equipped with the
inner product

<alga@)> = [, LETE,,

_ fo  In(l - g(s)6(s))ds

|

We denote by I'g(h) the symmetric Boson Fock space over h, defined as
the completion of the linear span of *exponential vectors” ¥ (g) under the
inner product

< ¥(g), ¥(¢) >= eSv@Ded> = = i In(1-g(s)e(s))ds

DEFINITION 5.2. For u = {u,}32; € I we define Xqu, Xou €Iy by

(X1u)n = nu, + ¢/nln+ Dupy
(Xou)n = nug+ y/n(n— Duy

DEFINITION 5.3. Let f : Ry -» R be a step function such that |f] < 1.
We define operators P(f),Q(f), and T(f) on I'y(h) by

P(f) = A(f® Xaer) + AN(f ®e1) + A(M; @ Xy)
QU = A(f®e)+AN(f @ Xaer) + MMy @ Xo)

() = P+ [

where
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er = (1,0,0,..) €ly

Xoer = (1,V/2,0,..)
fe®e = (£,0,0,.)
f@Xeer = (£,V2£,0,..)
Xia(g) = {vnlg"+g"N2,
Xaa(g) = {Vn(g"+g" N},
My ®Xia(g) = {Vnf(¢" +4"")}2,

M;® Xaa(g) = {vnf(g"+g"" N2,

and Af, A, A are the creation, annihilation, and conservation operators
defined in [Pa92].
It was pointed out in[PS91] that, on the exponential domain in T's(k)

P(f)* = Q) T(f) =T(f)

and

{{P(),Q(9)] = [P(),T(@]=[T(f),Q =T(f9)
{[PU) Pg)l = [QF), Q)] =[T(f),T(9)}=0

ie P(-),Q(-),and T(-), realize the commutation relations of [Bou88] on
I';(h). However, the next proposition shows that the operators P,Q,T defined
in Definition 5.3 differ statistically from the operators P,Q,T of [Bou8s|.

PROPOQOSITION 5.4. In the notation of Definitions 5.1,5.2,5.3

<QUIE) (@) >= [~ (fa-+ o+ 02+ LA Dyas < ) g >

(while the corresponding matrix element in [Bou88] is
_ [® fel+g) osi
QU9 w(@) >= [~ 1T ds < y(g), psi(9) >)

PROOF:

<A(f@e)ylg), v(d) > = << [f®er,alg) > v(g), () >
= <a(g),f ®er >< ¥(g),¥(¢) >

# ¢
= < (g,ﬁ, n\/_—?;,...),(f, 0,0,...) >< ¥(g),¥(¢) >
= [ afds <(9),9(0) >
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while 7 i [ALV 99] L. Accardi, Y.-G. Lu, and EV. Volovich, White noise approach to
. classical and quantum stochastic calculi. Lecture notes of the Volterra

International School of the same title. Trento, Italy, 1999.

< AT(f ® Xae1)u(g), ¥(9) > = < {g), A(f ® Xper)(9) > -

= <(g), < f ®Xsey,a(d) > () > s " - [AS 99 L. Accardi; M. Skeide, Hilbert module realization of the square of
= < f®Xzen,ald) >< ¥(g), b(d) > o * white noise and the finite difference algebra. Submitted.
= ’ ’ - :
¢ & 4 Bou 88] A. Bouk tum stochastic analysis: -Browni
= < (£,V31,0,.), (8,22, ) > [Bou 88] A. Boukas, Quantum stochastic analysis: a non-Brownian case.
(£ V20, ) V2 V3 Ph.D thesis, Southern Ilinois University, USA, 1988.

< (g), ¥(¢) > : | P.J. Folnsilver, D |
o0 9 . Fei 87] P.J. Feinsilver, Discrete analogues of the Heisenberg-Weyl algebra.
fo (fo+ Jo%)ds < P(g),¥(9) > Mh.Math, 104(1987), 89-108.

and [Pa 92] K.R. Parthasarathy, An introduction to quantum stochastic calcu-
: lus. Birkhduser 1992.

< A(M; @ Xa)(g), (8) >
= < Plg)A(M; @ Xa)*(¢) > _
< (), A((M] ® Xo)*)(8) >=< 1(g), A(My ® X1)(¢) >
= <a(g), My ® Xia(@) >< ¢(g),¥(¢) > |

< {%ml, (VA" + ™), >

< %(g), ¥(¢) >
= [T Emaganen + s < w(a), v(9) >

= [T+ 9mgneds < (o) vi9) >
0 1
| 1@+ = — s <9(0),46) >

© f(1+¢)gd
fﬂ “‘“1“7035 < (g),¥(¢) >

and, in view of Definition 5.3, the result follows by addition.

REMARK 5.5. The matrix elements < Q(f)¥(g),¥(¢) > in the sense of
[PS91] and [Bou 88] agree if and only if g + ¢ = 0 e.g in the vacuum state.

[PS 91] K.R. Parthasarathy, K. Sinha, Unification of quantum noise in Fock

space. Quantum Probability and Related Topics, ed. I.. Accardi, vol.
VI (1991), 371-384.
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