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The central limit problem for algebraic probability spaces associated with the Haagerup
states on the free group with countably many generators leads to a new form of statistical
independence in which the singleton condition is not satisfied. This circumstance allows
us to obtain nonsymmetric distributions from the central limit theorems deduced from
this notion of independence. In the particular case of the Haagerup states, the role of
the Gaussian law is played by the Ullman distribution. The limit process is explicttly
realized on the finite temperature Boltzmannian Fock space. The role of entangled
ergodic theorems in the proof of the central limit theorems is discussed.

1. Introduction

The notion of statistical independence is basic for both classical and quantum prob-
ability and many papers in the past years have been devoted to the study of various
aspects of this notion. As usual, in quantum probability there are several ineqguiva-
lent ways to generalize the classical statistical independence to a noncommutative
context, see e.g., Refs. 16 and 19. In this paper we shall not survey these dif-
ferent approaches, but rather adopt a pragmatic point of view that a good notion
of statistical independence is one that allows nontrivial central limit theorems.

In recent years the free group F,, with countably many generators {g; : j e N}
has played an important role in the enrichment of the notions of statistical indepen-
dence with the introduction of the notion of free independence due to Voiculescu.2!
This group shall also be the starting point of this paper. Let A denote the group
#-algebra of Fl, i.e. the complex polynomial algebra with identity generated by
{g;, 9; L.je N} where the involution is defined by 9; = gj_l. In this paper we will
use the following notations: for £ = +1 and § € N we put

a=(je), o ={j,—€), ga=gj. (1.1)

A product
T =gay " Goy» kzlv (1'2)

*Also at Centro Vito Volterra, Universitd di Roma “Tor Vergata”, Roma 00133, [talia.
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is called a reduced word if s
. % af 41
i i th
In that case k is called the length of z and denoted by |z|. '];hle:) lldextl:lm‘;,fogm(zisniso
ition: = ing Figh-Talamanca and Ficarde
by definition: |e| = 0. Following .
ZglifSWZHT and Lyndon'®), a state p on A is called a Haagerup state if

(i) ple) = 1 and lp{g;)| <1 for all gj;
. 1y ad
((111?) iiﬁi))ﬁﬁcﬁ({(}gi(’m for any 2,y € Foo with lzy| = ol + 1yl
Examples of Haagerup states are given by the one-parameter family of states @,
0 <« < 1, defined by o e "
(P’Y (w) =7 ? €L oo

i = is the tracial
Throughout this paper we understand tacitly that 0° = 1, hence g 15 e

state on .A defined by:

1, if z=-¢ (1.5)
Pt} =g i zeFozie

i z riables
Voiculescu proved a central limit theorem showing that the random va

3 -1 1.6)
QN:%;(gﬁgj ) (

Realizing that the deep reasoin for this
A statistical property of the generators g.:tl-wm}} respect
d a new general notion of statistical mdep(?n-
eneral free central limit theorem with
These resulis established the role of
he Gaussian for classical

converge to a semi-circle random variable.

convergence is to be found in
4o the tracial state o, he abstracte
dence called free independence and proved a g
circle random vaiables.

convergence to semi- e
i-ci free independence as an analog ob LhE ia. -l
e o s y probabilistic technique originated by Giri

i dence. By means of the quantum : Bl "
m‘i?\):; Waldenfels, ' Speicher® extended the Voiculescu central limit theorem
an 3

the fully quanturn case where one considers separately the two sums

N
S L st (17)
1 o= .
N 29 ON T N 293 ’
NN ; i VN =
and one looks for the limit of the mized momenta: .
ay), EeN, 51,...,gke{i}, (1.8}

H £
lim @olay -
N—oo

information than the Hmit (1.6).

which clearly contains much more
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On the other hand, by a direct, combinatorial and analytical method, Hashi-
moto'? proved that the limit of the rescaled centered expectation values

lim o, o~ (@v — Qn))

N—ooo

with respect to the Haagerup state exists for any natural integer k and for 0 < A < 1,
where @ is the mean value of @}y with respect to ®x/vN- Moreover, the limit is
the kth moment of an absolutely continuous probability measure whose density

uy(t) = % X[-2-a2-3)(t) CACRE j_—t))(j At

(1.9)

belongs to the Ullman family of probability measures which was introduced in con-
nection with variational problems of potential theory. In fact, as shown by Hiai and
Petz,'® the distributions in this family are characterized, among the measures sup-
ported in the full positive half-line, by the property of maximizing, under constraints
on moments, the logarithmic energy which, as recently shown by Voiculescu?? (for
related results see Ben Arous and Guionnet?) can naturally be interpreted as a free
entropy. Beyond potential theory the Ullman distribution also emerged naturally
in quantum probability and in physics: Bozejko, Leinert and Speicher® obtained,
from a limit theorem on quantum convolutions of classical measures, a measure
different from the Uliman distribution (1.9) only for an additional atomic part. In
the half-planar approximation to the large-N limit of quantum chromodynamics, an
explicit formula for the n-point Green functions (correlations of the field operators)
was derived (formula (3.23) of Ref. 2}, The Ullman distribution appears from this
formula by restricting curselves to: (i) zero space—time dimensions, i.e. the space is
reduced to a single point; (ii} the interaction Hamiltonian Vi, is knear in the field
operator.

The emergence of the Ullman distribution in many different contexts naturally
raises the following problems:

Problem 1. Just as Voiculescu showed that free independence (i.e. wo-indepen-
dence} underlies the Wigner semi-circle law, can one show that there is some kind
of .-independence underlying the Ullman distribution? If such a notion exists, it
cannot be the free independence because one easily verifies (cf. Sec. 4 below) that
the subalgebras A; are not free with respect to the Iaagerup state ., if v £ 0.

Problem 2. Is there a fully guantum central lmit theorem extending the
Hashimoto result in the same sense as Speicher extended the Voiculescu result?
In other words, defining ax and aj; by (1.7) and &y, &}, by their centered versions,
we ask the existence of the limit:

lim gy, @ @%),  kKEN, ea,...e € {+}. (1.10)

N—oo
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Problem 3. How can ¢ne describe explicitly the GNS space of the limit? More

from the reconstruction theorem® we know that, if the limit (1.10) exists,

precisely,
¥} and two random variables

then there exist an algebraic probability space {Ax,
@, aj\', such that

i (@5 ) = VAR ) = el agay, (1)

where {Ha, 2} is the GNS space of {Ay, ¥} and ax, a,}: are identified with oper-
ators on M. The problem is to realize {Hx, ax, a;r, @} concretely, for example,

on some tensor algebra.

Problem 4. Can we abstract from this &p,y—independence a general algebraic notion
of independence which still guarantees the validity of a central limit theorem?

how that the notion of indepen-

In this paper we solve the above problems and s
has a peculiar

dence, underlying the central limit theorems we are going to prove,
festure with Tespect to all the notions of independence considered up to now in
the proofs of the central limit theorems by +he method of momenta: it does not
satisfy the singleton condition, see Sec. 2 below. This fact has a deep implication:
it accounts for the appearance of non-symmetric Hmit laws such as the Ullman
distribution arising from some central limit theorems. The solution of Problem 3
(see also Sec. 6) shows that the limi$ process ax, aj can be realized not on the
usual Boltzmannian Fock space but on its finite temperature analog, which was in-
troduced by Fagnola® to establish the free Lévy martingale representation theorem.
A posteriori this is clear since, before the limit, the generators gj,gj_1 are comn-
pletely symmetric with respect to any Haagerup states @, while a and ot are not
mannian Fock representation. Finally, in Sec. 7 we abstract

symmetric in the Boltz
dependence which allows the presence of singletons, and

the notion of singleton in
prove & corresponding central limit theoremn.

The results obtained in this paper naturally suggest the conjecture that, under-
mit theorem arising in the harmonic analysis on discrete groups
or, IMOTE generally, on graphs (cf. Ref. 14 for the latest developements in this direc-
tion), there should be an appropriate notion of independence or of weak dependence
and the corresponding fully quantum central limit theorem in the sense described
above. This conjecture is supported by several examples and more detailed analysis

ghall appear elsewhere.

lying any central i

2. The Singleton Condition

In Secs. 2 and 3 we discuss the role of the singleton condition in the proof of the
why this condition leads to symmetric random

central limit theorems and we observe
s with norm |- |, and E: A Ca

variables. Let A be a x-algebra, C a C*-algebr

real linear map.
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Definition 2.1. Assum
o1 e that we a i : .
sequiences re given a finite or countably infinite set of

GRrs BNy
of el i i '
elements in A with mean E(bgf )) = 0. We say that the set of sequences satisfies

tl}e S@Tlgleto” ('_'Oﬂld'ltﬁlﬂl wit e, ect to '.[() y O L9) () &
1 h Sp C E 1f 1
T all Ch He fj > 1,] PRI 3 N,

E (b;{ﬂ - 85) =0 (2.1)

holds whenever there exi i
xists an index 1, which Is di i
e e s which is different from all others, i.e. such

Th it () .
et ; Eﬁnd:l;’;lon of E{bs’) = 0 is, in fact, a consequence of (2.1) and hence redun:
e g - - =
above definition. We put it just for clarity. The singleton condition is

pendence 1 t
v E l ]Sila] lllt]e yi3 }le CL’:LSSlca.l case alld. f()ll()ws i[()]“ tlle ere

O O up[) ( Y y

I h.e T le § lh.e [+18 Sllfﬁ.(:es ()f b 15 111!13{313.'6(1 b a t plcal Sltila on
IIlale COI].CIete Central }Elmlt |}heoreInS. Leh {A, (P, B, ( ?ﬂ)} be an &lgeblalc StO haSEIC
pI()CeSS wit h state algebra. B. COHSI(ie] Ile case WIIEIB C i C aIl(i E = (‘DC. Let

{b(l)’b(z)a }C Bheas ;
et of algeb .
ne N define gebraic generators and for each 4 = 1,2,... and

I b = gn(87) — (a0 14
hen (by,"), (bn '), ... are sequences of elements in A with mean zero

Definiti
efinition 2.2. We say that sequences (bg)), (bgf)),... of elements of A satisfy

the condition of bounded, }
: ness of the mized momenta i i
a positive constant v > 0 such that o i for cach € N there exists

E (bl pliv)
| (0G0 890 | < (2.2)

for any choice of ny,...,nx and 41,.... 5k
oy Jhes

Given a sequence b = (b,)27, C A, we put
N
Sn(b) = ba. (2.3)
- n=1 .

Lemma 2.3 et (b(l}) (b( ) i
m 3. L n 1, (b ), ... be sequences of elements of A s fys
i
condition of boundedness of the mized momenta. Then, for any o > (}Sa%tzshoy;dnsg thhai
t

lim E (SNU’(”) Sn () Sy (b))
N—ro0 Ne No T Na

= } —ak
N > > 3 E (b(l) e
ak<p<k m{l...k}={l...s} e{l..,p}={l,...N} aow(l) aro-n-(k)) ’

surjective :
4 arder-preserving

(2.4)
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in the sense that one limit exists if and only the other does and in this case they
are equal. (The limit is understood in the sense of norm. convergence m )

Proof. Expanding the product explicitly by means of (2.3}, we obtain

N
Sn(B) Sn(0®) Sn(BM)Y _ ek W ey (25
E ( Nl] N MN—;# - Nﬂ/_ - N Z E (bjl b‘?k ) ( )

jlv-':jkil

Note that the sum may be taken over all mappings 7 : [1,....k} = {1,...,N}. We
shall split the sum according to the cardinality of the range of 4. Suppose that j
has a range of p elements, 1< p &k Then there exist & unique surjective map
L.k} — {1,...,p} and a unique order-preserving map o : {1,...,p} =
{1,...,N} such that j = o ow. Then (2.5) becomes

N Z Z Z E (birlo)'n'(l) ' “bg?w(k)) : (2.6)

1<psk wif1,.. k{1 P ai{d,p) {1 N Y

surjective order-preserving

For the assertion (2.4) it is sufficient to show that, whenever p < ak, one has

m N7 Y S B0 b ) =0 )

N-—roo Y EUR S TS ¢ S o1, opy—r{t N}

purjeckive Drder—prex&erving

Let C,p be the number of surjective maps {1,...,k} = {1,...,p} and In(p) the
number of order preserving maps {1,...,p} = {1,...,N }. Then, it follows from
(2.2) that

\NJ“"“ Z z E (bilo)ﬂ(a) e bg?ﬂ(k)) \

wi{1, k{2 PY {1, prr {l o N

surjective order-preserving
< N~*uCrpIn(p). (28)
Then (2.7) follows from the obvious identity:
N 1
. —p Y —p _ 1 0
Jim NI @) = i, ()

Lemma 2.4. Notations and assumptions being as in Lemma 2.3, assume that the
sequences (bg)) satisfies the singleton condition with respect {0 E. Then the limit

. Sn(p®) Sn(b®) M(_'ﬂ_}l) _9 2.9
NhinooE( Nea N« Ne (29)

takes place if o > /2 orifa = 1/2 and k i5 odd, I[foa=1/2 and k= 2n, the
left-hand side of (2.9) is equal to the limit

1 (2n)
fim N 3 3 Bt ) (230)

— 00
N i1, zn}—*{l,...‘n} a-:{l,...,n}ﬂ{l,.”,N}
2—1 map order-preserving

i

R
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Moreover, the following Gaussian bound takes place:

limsup
N—oo

B (SN(b(i>) Sy () Sy (b)) {2n)!
N1/2 N1/2 v NI/Z ) } S 2”11' Yon . (2-11)
P . - i i
m;ooj ' \?ie use tkhe same notation as in the proof of Lemma 2.3. For each surjective
pr:{l,... k= {1l,...,p}put S; =="1(5), 1 <j <p. If|S;| =1 for some j
H
(1) k
3 B (b 0y 000 ) =0

i {1,..., pr—-{1,..., N} UDTI'(k)

order-preserving

by the singleton condition. Suppose that |S;] > 2 for all j. Then

P

b = .
leji = 2p. (2_12)

i=1

i?s cfondit'ion‘is incompatible with p > ok if « > 1/2 or if ® = 1/2 and % is odd
eSrZ ;;2,5 ;nt}\:;tzw oi the est;mate- (2.8), the left-hand side of {2.9) is equal to ;ero:
bt ot (5 5)04 = 1/ 2 and k is e\:ren, say, k = 2n. Then the limit on the left-
pand sice o ¢ . e-msts it and only if the limit on the right-hand side exists and
ght-hand side is reduced to (2.10). Finally, (2.10) is dominated in norm by

li —n .
Nlj}looN von {7 : {1,...,n} = {1,...,2n}, 2-1 map}| Ixn(n) = (2n)! vy
2npt

(2.13)

as desired.

m
3. Entangled Ergodic Theorems

He . . ‘u . )
re we give a suflicient condition for the existence of the limit (2.6) in terms of
- O

entangled ergodic theorems. In i
: d et . order to clarify the connections b
this notion it is convenient to introduce the following crveen G and

Definiti
efinition 3.1. Let (54,...,5,) be a partition of {1,...,k} and put

8; = min{s € Sj} , 5; = max{s € S_’f} :

Then S; is called non-crossing if for any h =1 P
e By

(8;,55) N (85,88) # 0 & (5,,5;) € (5,,5) or (s4,5) C (5;,5;).

Thy t 5, is sai 0 belor £ Lo he non-cro g component O a pa. on whenev
e 5e S} is said ¢ el tot ON-CTOSEE C DOTLE t of P rtiti if enever
H

t fo LS
called fofally crossing if no two consecutive indices belong to the same set é )
j .

(84,%r) < (s;,8;) it follows that Sj is non-crossing. The partition {$;
.
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1. For each j € N let (bS{')) beg
to satisfy the entangled ergodic
ing pair partition

Definition 3.2. Let Aand F be as in Definition 2
A. These sequences are said

ts of
S e E il for any n € N and any totally cross

theorem with respect to

T ) . )
= bgy J 1 =iy <idg < < ns ir < Tk
{17 Sy 2”} - U {‘Lkajk} 3
k=1
the lmit | |
Y 1 i E(b(“) N AE IR plin) bg:)) (3.1)
N aq 1 7
N];I;noo v o1 yeettn=1
exists in C.

_ )
g due to the pon-commutativity. 1f b/ commuies

t i . -
R ot e n), the Yimit is reduced to a limit of usual ergodic

with %) for ¢ # j (and any ™,

averages:
N 1 i (in) i })}
_ 1 @pd) )b o ) banbE
&:“;OE{(W 2t ”“‘1) Vs

ai=1

. X
IheOIeHl 3.3. ]j‘ndei 1’;11,'(3 aSSUTTL {2018 O ]/8‘”).]”. 2 S 08€ i& ﬂ.t ihe (1]. eb'f (13 C’ Z

the complex numbers and that the mean covariance

LS v (3.2)
Jm gy B

d only if the entangled ergodic

exists for any o end V. Then the CLT holds if an

theorem holds.
.,2n} are in one-to-one

i it the set {1,..
Proof. Notice that the pair partitions of the set {1, g {1,“-12?1}} one

i i injective maps i : {1,.- ane

dence with the pairs of injec . T - e o
C'mrespon . — {1 an} \ {41, .. in} such that 4 < gl =1,.. ,T) !
s ) ton ly determined once one knows, for any element t¢

becauise 0 DA DAL e n this section we shall identily the two

of any pair, the element Ik paired‘ to it. I
notions. The limit (2.6) can be written

N ] .
- i) ... (zn)...b(m)_

lim j\% > E(bg;> B AR (i
N—oo _
i1,k {12 @15 0n=1
FEE S n.}A_»{t‘ ,,,,, ?ni}f‘:l ,,,,, in}
. ) olf that this limit is equal

iti it i ince ones
Using the singleton condition, it is easy to convi

to
l ‘ hm — E E b Tk b Jk un —— N_S_ E b 1, , . b(m'},n!)) kl
l 3 ( (". } ("' )) -l Nm ( (al } Q2m

N—oo N (11,---,0&,—,;‘=l

kemax{m) n=1 (33)
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where the product in (3.3) is extended to all pairs (ig, 4% ) belonging to the maximal
non-crossing component of the pair partition 7 and z1,..., 20, are the indices

defining the totally crossing pair partition associated to m = {i1,j1,...,4pn,9n}
Since we have assumed that the limit (3.2) exists, the statement follows because the
remaining imit has precisely the form (3.1). |

Corollary 3.4. For a state I satisfying the singleton condition and the wniform
boundedness of the moments (2.3), the CLT holds if any one of the following
conditions is satisfied:

{i) (g-commutation relations) for each i, j € N, i # j, there exists complex
numbers q;; such that 552 bg) = gy b,{f )bg,i) for any m, n € N;
{ii) (Symmetry) for any pair partition 7 (as above) the expectation value is
independent of g, ..., an;
(iii) (Pair partition freeness) for any totally crossing pair partition = = {iy, 1,...
tn,in} ONe has
E(bg'll) ...bg'll) . -b((j:) ...b‘(&':)) =0.

Proof. It is clear that each of the conditions (i), (ii), (iii) implies the existence of
the limit (3.1) hence, by Theorem 3.3 the CLT. |

That the same stationarity condition, which guarantees the validity of the usual
ergodic theorem, is also sufficient for the validity of the entangled ergodic theorem
in the general case was conjectured by us on the basis of several examples and some
indications of the proof were given in the case in which one could prove a priori that
only the non-crossing pair partitions are relevant in the limit. A first step towards
the proof of the entangled ergodic theorem has been done by Liebscher.!”

4. Properties of the Haagerup States

e
In this section we investigate some basic properties of the Haagerup states which
are essential to prove the associated CLT. Let F,, be the free group on countably
infinite generators {g, : n € N}. Denote by A the group *-algebra of F,, and for
each n € N by A, the x-subalgebra generated by g, (and g71). For 0 < v < 1 we
denote by ., the Haagerup state defined by

o (w) = vl wE Fy,.

The two sequences {(gn), (9, ')} satisfy the singleton condition with respect to .,
if and only if v = 0. In fact, the algebras 4,, are free independent with respect to
o and hence the singleton condition is satisfied. On the other hand, since

0y (0192011 ) =7, oy (92)ey(gigrt) =,

the singleton condition is not satisfied whenever v # 0, 1. In particular, the algebras
A are not free with respect to ¢, v# 0, 1.
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\‘Ve S]la] see ‘ha (.P a‘LSiieS a Weak_ anaig o the s1 el“ 0 1t1011. T() i}hlS
()dl lt 18 Convement to Hltl'oduce the fOﬂOWlIlg nOballoIlS. fOI = {J, 6) € Iq i
g

e put . i
Y Ggo=95: Ga=gar & = (j,—¢)-

. . TN
When the state ¢ under consideration 18 fixed, we write for simplicity
en oy
G = Ga — 7+

Then ¢-{da) = 0-

<, if
Definition 4.1. (i) A product Ja, o+ G, 15 called separable at k, 1 <k<
efinition 4.1.
ap%a;whenever1§p§k<q$m' Lt L
5 . ifa g* for any .
~ s ; i oduct g, - Gom if fay, 7 Gay - .
(i) §a is called a smgleto?l in the pr o e s ealled outer i foy % B
(iii) Let gy bE2 singleton in the product go; =~ Jom-
ke

for any p < k < ¢- _ o ke
(iv} A singleton o, is called inner if Ga, = o, for some p

Gaby 039 &, is an inner single-
Example. Consider the product §1929; } 3o, where the first gz 18 &
ton while g3 and the last §o are outer singletons.

Proposition 4.2. oy Gom separable at k, then

‘P'r(g'oq e Gam) = ‘P’r(gm s ga;«)‘f’(gam—l o f}am) .

i O = G — to
Proof. Explicit computation in terms of o = G — leads

k

Ga; o = z Z Ga,, " o, {—v
=0 1<p < Epsk

m—k ekt
SRR S S DI PRR O
Ot 1 "

=0 k+i<aq < Lqrsm

)k—f. ,

Then

k
o (Gon Fom) = 2 > >

‘T 1<p < <pi<k bHSaSSarsm
kol . ym—k—t
X‘P'y(gapl ©r o, Jougy T 'gaq[,)(—”{) ( ¥)
i i t
Since Goy - Gam 8 separable at k by assumption, it follows tha
[a 5 [ 250

‘ga L gam Qg T gaqt, I = \g'lpl Tt gam] + !gﬂful T gﬂfqlf \ !
Pl
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therefore,

(P'Y(gc‘:nl Tt gap; ’ gaq] e gﬂfq‘“) = (’IO'Y(gﬂpl Tt gap!) ) [la’)’(gocq] R gaqu ) )

whence the result follows by resumming the right-hand side of (4.1).

£
Corollary 4.3. If §o, -+ §u,, has an outer singleton, then
o Fan) = 0.
Proof. If g,, is an outer singleton, by applying twice Proposition 4.2 we find
©(foy *** Gon) = P(Ban - e )P Geryr * Gam)
= ¢(Ga, - Qo )go(gak)(lo(g‘lk+l e 'g'am)
=0. [
Corollary 4.4. For any m > 1,
(gt +an)™) =@+ +3y")") = 0.
Proof. The statement follows from Corollary 4.3 because in the expansion
N
G+ +an)™ = Y G Gim
J1yendm=1
every §; in each product g;, -+ g;,, is an outer singleton. [

Lemma 4.5. Assume that o product u, - §n,, includes no singleton at all or no

outer singletons. Let s be the number of inner singletons in the product and let
p={g; : there exist 1 <k, < m such that oy = (j,+), a1 = (4, =)} -
Then

™m—§
s<m—2 and p<

(4.1)

Proof. Since there is no outer singleton, there exist at least two factors g, and
Joy With of = a;. Hence m > 2 and s < m — 2. If g,, is not a singleton, there

exists at least one element j,, such as o = oy and then ji = j; (k # 1). Therefore
2p+s < m. O

Definition 4.6. Assume that a product Ja, -+ §o,. contains s > 0 inner single-

tons and no outer singletons. Let a;,, ..., a;, be the suffices which correspond the
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singletons and denote the rest by B1,. .+ Om—s in order. We say that the product
satisfies (NCI) if gg, *~ - 9Bm-a = &

The term (NCI) stands for non-cressing pair-partition with inner singletons.

Lemma 4.7. If the product o, = Gom consists only of non-crossing pair partitions

and s inner singletons then
‘P’Y(gal "'gan.) = ("Y)s + (Q'Y)E+1P('Y) ) (4'2)
where P is a polynomial. If the (NCI) condition is not satisfied then

Gy "+ Fam) = (—y) T P(7)- (4.3)

Proof. Suppose that the product Joy - - - Jom includes s inmer singletons {vi}
Expand the product

oG+ Fom) = D > (=) oy (98 98m—r)

k=0 B, Bm—k

Let s, be the number of ga, 's which appear in the product

3

9y GO and h:1gﬁl"'9ﬁmrki-

Obvicusly b = 51 and k > s — s1. Now, suppose that 81 # 0. Then h > s3 o1
E > s — s holds: since h = s; implies that all elements except the 51 singletons
are canceled and that gg, =" 98m—x consists of a non-crossing pair partition with
s; outer singletons which are inner in Jag ©° * Gam- Let ga., be one of such outer
singletons. Then there exist at least two elements p and g with p < ¥j < g and
op = aj which are not included in gp, " 9Bm—w- Hence k> § — 81 +2 > 8— 51
Thus, any term (=) (98, <+ 9B .) which includes at least one inner singleton
v; gives (—y )t = (—1)F~" where s’ =k + h> s

TFinally, we consider a term (=) ey (98 - 9p,n._. ) Without inner singletons {v;}-
We see that this term gives (=) if and onlyif ga, =~ 98m - = & that is, the product
consists of a non-crossing pair partition. This completes the proof. O

5. The Central Iimit Theorem for the Haagerup States

In this section we prove a centra) limit theorem for

N - 1 -1
+D91+"'+9N and - &% + - TN

WETTUN TN

with respect to the Haagerup states. To obtain a meaningful limit we need the
rescaling v = A/VN. In fact, let us consider, for instance, the expectation value of
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the product a;{, a,f,;,a,&

- 1
rlafalam) = = 3 orGnini) = —
0] {gg " — o e
\/j\/ﬁh,jz,js V92 912955 ) NIE Z (p’?’{gjlgjzgjll)

i1,d2
1
- mﬁ JZJ ((p'?’(gj]g.hg_f;l) — Yy (gjl.a;l))
i
VN Z (=9 =) = VNy(y* - 1),

71,2

Then, obvious] i i
. , ¥, we obtain a finite limit == i
is nontrivial onty when oo = —1/2 vhen 7 = QW) with o< =/, wad i

Let TN S {‘a &
a9 m} be the set = ~ .
property: o et of products Jus - oy, With the following

;)ell[li}at}()ll] arl E,... N Loy — T = {7 —--1 . mw.
{ ? }St k ( k) ( (Jk‘)’gk)) k bl ‘e

(5.1)

h . y 4 M g g . g q .
\‘\/ €n relatlon (5 1) h()lds wWE Sa I:h.a-‘ oy o and : are e LBVa].e]Ll
? b ™m @y ol

Proposition 5.1. Given a product 3,
1

defined above. Let 5 b Qo and let Ty = [Ga, + * fa,| be th
‘ e the numb ; . , 1 o) D€ the set
and put er of inner singletons in the product Jo,  +* o

p={g; : there ezist 1 < k,I < m such that oy = Go+), e = (=)
Then,

lim mf2 = =
N—oo _ _Z N SC,)\/\/W(gcn "'gcxm)
Goq v Fam €ETN

_ { (—A), if the product satisfies (NCI)

0, otherwise.

PI‘OOf. It iS Su&icien 0O ]’ case wiere he g eton 1
d sSCuss the 3 h i
¢ 18 no Out‘el‘ Sii’l ]. i
tlle pl()d.u(:tu It tllell fOHOWb from Lemmd 4.5 'hat} . = 8 + p
1{0 H s & }| —
. m <

(rm+ $)/2 and there a N
re exactly .1
properties. (“’p) ways to choose indices o, ..., ., with these

Notice that, if a product g, -

g !
finition 4.6, then all the other products §.
&

** Ja,, satisfies the (NCI) condition of De-

v 40, L i “Gor € Ty also satisfies (N
, in this case m = 2p+ s where s is the number of inner singletons aid(;li)sl

tvlle Ilmllbel Of palIS in tlle pI‘OdUCt. I}lelef()le TTE ‘f‘ 815 even aﬂd & p = ( )/ -
“3“ S + e 2
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Tt follows from Lemma 4.7 that

lim
N—ooo | ~
Fay - Gam €TN

- {7 6]
=(=X)*.

In all the other cases, it follows from Lemma 4.7 and s+p < (s -+ m)/2 that

1 - -
W¢A/W(gal T go‘Wl)

1 1 a a
Jm o Y el G

a1 amETN
1 N Y s41 ( by )
= lim —=—— —=) Pl—=)=0 =
N o0 Nm(s+p> (\/—N) \/ﬁ

Theorem 5.2. Let N Clm(s,e) be the set of all equivalence classes of products
oy - Jomn With the index € = (€1,.-:Em)> which consist of p = (m — 5)/2 non-
crossing pairs and s inner singletons. Then, i the notation (1.11), we have

m—2

Pa(a -a) = D (N INCLin{s,€)} - (5-2)

Proof. From Proposition 5.1 each class with s singletons gives to the limit the
same contribution (—A)¢. This immediately implies (5.2). a

Remark. The dissribution of the field operator {(at +a7)f v/2} with respect to
the limit state @, was obtained in Ref. 12 and is given by the following

Theorem 5.3. Let py,n be the distribution of {(afy +an)/ 2} with respect to the
Haogerup state . Assume that y = M2N)* as N — 0. Then,

(i) Ifa < —-1/2, dty,N CONVETGES weakly to the normalized semi-circle distribu-
tiomn:

. 1
I&{I:’lmdg%_w{m) = 3 X1-22) (z)v4-—- 2 dx.

(i) Ifa=—1/2 and 0 < X <1, dyy i converges weakly to a probability measure

with a pararneter A:

_ 1 Crata)2-A-9)
1 Ve+tAre)2- AT
Jim dpy n(2) = X2 ae- (=) 1- )z .
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6. Identification of the Limit Process
Tet

T(C), =Cepce" (méc) ,  v=LR
n=0 ’

n=1
denot i
azi?hi tt\fVO copze[sJ of the full Fock spaces on C with free creations ] and f
ilation a,. Let 7 = @ o Hm.n be the fr (C)n. that
s e L mn=0 Flm.n e the free product T'(C)r * T(C)g, th
i e (?’:L_, 7) parvtmle siz‘wace Hm,n is the complex linear span of the set( of)R, t a't
w - a,, ®} which satisfy the following conditions: i
Wilvi=L}=m, [ilw=~R}=n

and the scalar product is given by

+ - 1, i =
(ot oy oeaga) = { B TG0 = Gt
1
I 0, otherwise.

The actions of the creation operators

[+._ a+*1.?£ '
* L . m,n_)’H: R+ = +.
m+1,n 3 =1% CLR : ?{'m,n — Hm,n+1

are given respectively by

tot gt +
L7ag, auk@:aLa;fl...ajkq),
Rtat ...ab & = af

yy ﬂ‘ukq) - G’Ra'jl e a':_k@a

and the action of the annihilation

L= :
a’L*l-?{m,n%Hm—l,n, Rzl*ﬂ,R:Hmn‘-}?{m 1
, J—

is given by
+ gt -
. X a;, -ra, @, ifin=Landk>2,
ag ra) = (@, ifrn=Land k=1,
0, otherwise ,
+ -
aygu-aj‘k@, fin=Randk>2,

3 ifV1:Randk:1,

, otherwise .
Let P : # — H be the orthogonal projection onto Hg . Put
A, =LY +R+AP, Al =L+R'"+AP

where A > 0 is a constant.
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The(}rem 6-1. The lzmzt rocess (@, ¥ 15 TE Tesented ’&Tl. ?’t Thﬂt ?-.S, (I” its
P P

group with N generat L :
correlations are given by ors, called the principal series, and obtained positive definite

functions. A special one is given by

(e = (@, AT - AR

plg) = (1 + }QINI; 1) (2N — 1)~l9l72

Proof. In Theorem 5.2 we have seen that the 1py-correlators are completely

. o mees wh i
determined by the cardinalities of the sets NCI,,. Therefore all we need to do : als?: i\r flis the nm'nber of generators of finitely generated free group Fiy. Thi
is to establish a bijective correspondence between NCL,-partitions associated with : . aﬂlls es thelz singleton independence. N s state
gt -+ g™ and terms in the expansion of : n the notations introduced at the beginning of Sec. 4 we define th
: - e sums
(qb,Ai‘-'-Aimqb): Z (¢’Bi;...35::¢>, ; . N y
B BT f; NG, e=dl,
: s

where By = L*, By = R Bf = R*, Bf = Land By = Bf = -AP. Ina

and, for fixed k € N and ¢
1y-.4,Ep €41 i
product B§! -+ By, we call (B2, Bf,; (p < q) & pair it Bi,’f = L and Bi; — LT or yeees {#1} we consider the product

&~ Rand B = RY. 1 BJp = AP we call it a singleton. From the definition of P N
H, AT, Ay we see easily that (¢, BSL - Bird) # 0 if and only if BE! - B forms : NoEN ) ZMIQJ-; G = Y Bay Fan -
a non-crossing pair partition with s inner singletons O<s<m— 2). In this case, ' bt 1 Lok Itk

E ut =

. N , : k {(1,e1),...,(k,ex)} and consider « as a functi .
(6B By = (N For given o let on oty 3 {L,...,N)
Therefore we obtain the desired bijective correspondence. O L p = ja(lp)i,
where | - | denotes cardinalit

. o y. We denote by a{l;) = {& N
7. Singleton Independence @; # &;) and put y a{l) = {a1,...,@,} its range (with
In our proof of the central limit theorem for the Haagerup states in Sec. 4, we have _ ,
used some very specific properties of these states which allowed explicit computa- S =a" (@), i=1,...,p,
tions. In this section we show that, for the validity of the CLT alone, much less is : Pip = 1(5

_.: 7 Ll

- S ; pa titi . .
required. This allows to generalize our result to *-algebras. ») s partition of Iy of cardinality p},

[S1,---, 5] = {e; als, =
T ; als, = &{S;) = const. and a(S; e g o
Definition 7.1. Let A be a -algebra and let 5 = {gn.gn3 M€ N} be a countable . With these notati (5:) # ;) if i # j} .
+ — — g ; ' notations our goal i
subset of A. Put gt =gand g =4 and use the notation (1.1). Assume that we : goal is to study the large-N asymptotics of the rescaled

expectati
are given a family of states ., v = 0, on A such that ¢y (ga) =" for any fo. The P on values

sequence {gn} 18 called smgleton—independent with respect to @ il 1 ) . .
(G -G} € F0El (GG ay VR O I = e 2 3 D
whenle\'fer .053 is a singleton for (oos - o) If wa? .take y :‘0, t%le usual singleton . @ (G ”]_’:-'SP)EE‘P eSS
condition is related (where we put 00 = 1). Condition (7.1) implies that jv e Gou ) {7.3)
o (g - )] < O 72) Lemma 7.2. Given s =0,1,...,k, denote
whenever ga, * - - Joy, has § singletons. : Pi o ={(51....,5,) which have ezactly s singletons} .
Remark. Conditions (7.1), (7.2) are easily verified for the Haagerup state but there Then it holds that p < (k + 5)/2. Moreover, if p < (k + 5)/2 then
1

are also other states which satisfy the singleton independence. For example, Figh- lim

Talamanca and Picardello studied a family of unitary representations of the free ' N—oo Nk/2 (s ;) - Z @y (Gor G ) = 0.
1 Sp)EPR a€{S1,...,5,]
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5
Proof. For (S, ...,S5p) € Pi, we have

1S;l+5>2p-s)+s=2—s
F=1 J€{1,....p}H|5;1=2

. . . . - . -
an thlS rove t k}a{ negu lll :; 1 hBS l}hdb e suini1s d()llllll&tE(i b a ('-OIIStaIlt

times 1

Nz

AP O
nji‘:,p‘})_! NP = 0.

. e limit
From L a 7.2 we conclude that the only nonirivial contributions to the limi
“rom Lemma 7.

of {7.3) come from those partitions (S1,---,9p) € Pip satisfying

k+s (7.4)

p= s k=2p—s.

L a 7.3. Let (S1 Sp) € Py, be such that (7.4) is satisfied. Then
emma 7.3. Yo ,

.Sjl:10T1Sﬂ:2.

. N
Proof. If for some j {with no loss of generality we can put j )

lSjl = lSla =3,

then

k=341 Y,

i>2,05;1>2

_ —9p—s5+1
ISJ.H_S23+2(pﬁ5_1)+5:3+2p-25 Q+s5=2p— 8

O

which is incompatible with (7.4).

] i d|S;|=1or2
it i .,k} with s singletons and |5;
sition (S1,-..,8,) of {1,..-, sine S o o
]?OT Elmy pa; ldenot(e (81,...,5p-s) the set of all Sy’s with |55} ;2. We S:ftiti:n
fogl: T :é ) ’) ;s the pair partition associated with (S1,. .. ,Sp).ldee ;e)allir ip;le .
( sit,).ci.z;,;ecf;ci a2 1map8:{L....2p} = {L... ,p} shall be called neglig
as

(7.5)

1‘P’Y(gﬁl T gﬁw)\ ey,

it ; = 0,....,k and
Lemma 7.4. Suppose that . satisfies condition (7 .5).‘h Ij’zz‘s - Su,Ch ond
let Pr19. denote the set of all partitions (Sy,... ,S?) w‘zt 5 ;zvr.tlie e
1551 kyll’ ;1" 9 and such that the associated pair partition s negrgioie.
j _

1
limﬂ—,;/*2 Z Z

e (SI)---asp)Ef)k,l,2,s CIE{SD...,SP}

(7.6)

o3+~ on) = -

AR

Notions of Independence Related to the Free Group 219

Proof. Iterating (7.1), we see that the sum (7.6) is majorized by
C

Nk;L_w Z Z {WA/W(gﬁl e '.&ﬁk—s) ’ (77)
(51,0152 )€Pr 3 2,0 @E[S1,...,5p)
where (81,..., 8r_,) is obtained from {ce1, ... ax) by removing the singletons. Since
the pair partition associated to (S1,.-.,85) is negligible, by (7.5)
0o, )] < e
Go, - da_ ) <o ——=,
Py\g8 98 JN
the sum (7.7) is majorized by a constant times
c p A
Ve [Pr,1,2,6] - 7 (7.8)
As we have shown that p = (k -+ s)/2, (7.8) is majorized by ¢/v/N — 0. O
Summing up, we come to
Theorem 7.5. In the notations of Definition 7.1 suppose that the states ©y satisfy

conditions (7.1) and (7.5) for v € [0,3], ¥ > 0. Then one has

1 1 1 €
N, N7z v (SN - S

= Jm N >

1<s<k =:negligible pair partiton
== with s singletons

v e Ga ). (T.9)

Remark. The existence of the limit (7 .9) is guaranteed by conditions of the same
type as in Corollary 3.4.

Remark. One easily verifies condition (7.1) for the Haagerup states. For these

states the negligible partitions are precisely the crossing ones. Other examples shall
be considered elsewhere.
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Regarding the adj
adjacen atri
! noncommu?;t;::tnxbof fxlgraph as a random variable in the f
e lprot ability, we discuss a central limit the ; r‘amework o
P al patterns. Various limit distributi ek the
e imit distributio

ey e Coms.dxstar}ce-regular graphs. To obtain the :S 'Te Dl)'SEI"VEd oo
inatorial analysis of mixed momenis of noen T e o

ncommutative random

variables on one ha
nd, and asym i i
varlables o , ymptotic analysis of spectral
. structure of the
graph on the

1. Introduction

1.1. Theme

In this pa :

per we discuss a cent ..

{or the Laplaci - ral limit theorem (CLT) fo ;

graph. Thli: as;‘?n) (f? graph in connection with asymptiticrsthetadjacency- b

the size of a grapII:: otic is concerned with a certain infinite \E):lc ral analysis of the

in the same ma.mlergl;:ivgksl. t;lNef;‘egard an adjacency matrix asu;n:ailigu b in which

: . om vartabl

simplest setting of e framework of noncommutati o €

probability or IgnOI‘e gz;lngHUtatwe probability (often re;’ei:;zozzbmty. In the

: ally as algebrai s as quantum

is replaced by a pai gebraic probability), a u .

(ie. $(1) = 1{ lineI;?ui;uElAt"qﬁ) of {possibly noncommut;;:ive) S;Zig rObjblhty space

functions and hence anc 110na1 ¢ on A. A corresponds to the al Ebra ! and unital
element in A is regarded as a noncogmnfatot_meﬁSurabie

utative random

variable. The distributi
vark ion of X € A under ¢ i i
ual of Clxz] {the polynomials in one va,r:ia.bleg;5 ll)ir fetermized a5 an clement fn the

Clz] 3 f — #(f(X)) € C.

Considered in th

( e context of a C*-algebr i

- ¢ oL

oridored in tho context o pmbabﬂgity ;,1 Il;e distribution of a self-adjoint element
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