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We prove that, in the stochastic limit of the Anderson model only the non-crossing
diagrams survive for the transition amplitude from the first excited state of the free
Hamiltonian to the first excited state of the interacting Hamiltonian. This confirms a
conjecture of Migdal (1958) and Abrikosov, Gorkov, Dzyaloshinski (1975). From this we
deduce a closed (nonlinear) Schwinger—Dyson type equation for the limit transition am-
plitude whose solution can be found and gives the explicit dependence of this amplitude
on the momentum of the excited state.

1. Introduction

The Anderson model was proposed in Ref. 1 to explain the finite conductivity of
metals: it describes a system of fermions interacting with a d-correlated classical
Gaussian random field ¢ on R, with d > 3, modeling the impurities of the metal.
The Hamiltonian is:

H=Ho+ i = [ & (o) (32 ) 5 (@0)+ A [ do 9@ @0 (@), (1)
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where A is a real number (strength of the interaction), A ¢ R? is a square box
. o 2 - .
of side L, p = pi/2m is the chemical potential, pr is the Fermi momentum, m is

the fermion mass, and 1° (z), e = £1 is the fermionic field with periodic boundary
condition:

1€ 1 ickx
YE(z) = _LT/EZe ' (1.2)
k

whe:re k=2nm/L,n = (ni,...,ng) € Z¢ ¢ ¢ {1,-1}, {ai,a,:f’} = a.,ia,;":’ +

—E !
ak,-ai = d¢ o0k, kr. In what follows it will be convenient to expand the random
variables ¢(z) in Fourier series

) = Fld 3 e (1.3)

leading to a discrete family of (complex valued) Gaussian random variables @, with
p € (2nm/L)Z? and ’

B(drdw) = LWk, ¢} =y (1.4)
In the notations introduced above, the free evolution is characterized by the follow-

ing property:

¢~E($,t) = eiHDt,djs(m)e—ngt, — % Xk:eiE(k:m-k(J%I;—#)t) o

k

Il

5

ie(kz+wit
;e BHANE) oF (1.5)

where wy, = [|k|?/2m — p]. The Hamiltonian in interaction representation is
AH;(t) = AetHot fre—iHot _ / dz ¢(z)pt (z, ) (z,¢). (1.6)
A

It is convenient to regularize this Hamiltonian by introducing a cutoff and normal
order:

AH; () = )\fA de $(z) : $* (@, 0 (,8) 1+ hc. | (1.7)
where 9°(z,t) is the regularized version of e (z, t) given by
1 .
£ £) = ie(kz+w)t) €
¥ (z, t) —mzk:e gras (1.8)

gk is a complex valued cutoff function to be specified in the following and : - :
denotes normal order '

szt T
0y p0k: = af, ak — (Dp, a;’+p’gakld‘1>p) (1.9)
with respect to the ground state of H,
or = ] of0). (1.10)
|k|<pr
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The evolution operator at time T is defined in the usual way:
00 T tn—1
Up=UM =1+ Z{—«;)“Aﬂf dt; -« f dtn Hi(t)-- Hy(t,) (1.11)
n=1 0 0

where for each finite L and 7' the series converges in norm with respect to the
fermions and in L? with respect to the Gaussian field.

The first excited state ¥ ®p of the free Hamiltonian can be obtained by adding
or subtracting a particle to the ground state of the free Hamiltonian. The corre-
sponding interacting state is obtained imagining that the interaction is switched
on at time —oo so that it is given by U_9)f@p, where U_r is given by Eq. (1.11)
with Hy(—t) replacing H;(t).

This leads to study the projection of the interacting state on the free one

. (®p, Yy “U_r9i Or)
. ( (B, U 7, Pr) e

and from the known identity?

(®p, ¥y “U_r950r)

= @ EU_ —SQ ,
(@F: U—T,q)p) < P> Yk T¢k F)Conn

where (-)conn denotes the expectation with respect to the connected diagrams, one
can restrict one’s attention to these diagrams. The determination of the limit (1.12)
is the first and the most difficult step towards the determination of two-point cor-
relation function

lim
L,T—cc

(Or, U_ry “¥5Ur &)
E( (@F,UJ;UT@@ ) (1.13)

The phenomenon of Anderson localization has been related to an exponential decay
of the Fourier transform of Eq. (1.15), as opposed to the power law of the free case.
This exponential decay was proved in Ref. 5 for large A or d = 1 as a consequence of
the results of Refs. 6 and 7 and others on the Schrodinger equation with a random
potential. However, it is not known what is the decay when A is small or d > 2. In
Ref. 2, following an idea of Ref. 9 for the boson case, it was shown that, if one ne-
glects a suitable class of contributions in the perturbative expansion for Eq. (1.13),
the so-called erossing diagrams, one obtains a closed equation Schwinger-Dyson
for the limit (1.13) from which the exponential decay can be deduced. However,
the above-mentioned authors did not specify under which physical conditions the
crossing diagrams can be neglected with respect to the non-crossing ones.

A first attempt to clarify this point was done in Ref. 11 who replaced the orig-
inal Hamiltonian (1.1) by a discrete mean field approximation in which a fictitious
N-valued index was added to the fermions and the classical random field was re-
placed by a random matrix. In the large-V limit of this model only the non-crossing
diagrams survive. This model was generalized by Ref. 10 who replaced the large
random matrix by free independent random variables and obtained an equation of



470 L. Aeccardi, Y. G, Lu & V. Mastropietro

Schwinger-Dyson type. However, this result is essentially equivalent to the origi-
nal assumption that only the non-crossing diagrams survive; in fact, as shown by
Voiculescu,' N x N Hermitian matrices with independent Gaussian entries become,
in the large-N limit, free random variables whose n-point correlation functions are
described precisely by the non-crossing (or half-planar) diagrams. Moreover, the
physical meaning of this type of results is not clear because they depend in an
essential way on the large-N limit of a fictitious index which is absent from the
original Hamiltonian.

We propose a different approach to study the Anderson model, based on the so-
called stochastic limit which in recent years has evolved into a very general method
yielding useful insights in a variety of physical problems ranging from quantum
optics to bosonization, to solid state or field theory models.*

The physical idea of the stochastic limit is that it is reasonable that even a small
interaction can produce a relevant effect if the time 7" and the box size I are very
large. This suggests one to study Eq. (1.12) in the limit A = 0, L — oo, T — .
These three limits cannot be performed independently, otherwise one would obtain
a trivial result. The detail about how the limit has to be performed in order to avoid
trivialities is given by the second-order term in the expansion (1.11). One finds in
fact that the only possibility that the limit of this term exists and is nontrivial is
to take the limits in the following way:

L-00, A0, T = 0o, MT — const.
The above limit is equivalent to the rescaling T' — T'/A? followed by the limits
L — oo, A— 0. (1.14)

The limits must be taken exactly in the order from left to right in (1.14) otherwise
no limit exists. In conclusion, our goal is to study the limit

lim lim E(((pF:w(x)UT/A2¢+(y)@F>Conn)' (1'15)

A=0 L—oa

We prove that only the non-crossing diagrams in the perturbative expansion for
the transition amplitude contribute to the above limit. This result can be physi-
cally interpreted as that the non-crossing diagrams are the dominating ones when
the time T is very long compared with the coupling A (this is just the physically
interesting regime). The reason why, in this limit, only the non-crossing diagrams
survive wili be explained in Theorem 2.1. Theorem 2.1 contains all the analytic in-
formations needed to deduce the main resuit of this paper, i.e. Eq. (3.2). We do not
give the full proof of the theorem, which is long and technical, but only illustrate,
in Appendix B, its main idea for the case of the four-point function.

Theorem 2.1 shows in particular that, even if the limit diagrams of the corre-
lation functions are only non-crossing, the corresponding probability distribution
for the time averaged interacting Hamiltonian is not, like in the large-N limit,

the Wigner semi-circle law, usually associated to these diagrams, but a nonlinear
deformation of it.
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The fact that we find a deformation of the free law is not surprising: one can
expect that our limiting mode! is much closer to the original one than the N — oo,
so a deviation from a mean field theory, taking into account the nonlinearity of the
interaction, is expected.

Despite this nonlinearity, some properties of the free random variables still sur-
vive and this allows us to obtain {using a combinatorial argument described in
Appendix A) the main result of this paper, i.e. Eq. (3.2). This is a closed equation
for the transition probability amplitude which, even if similar to the Schwinger—
Dyson equation obtained in Refs. 2 and 9 for the two-point correlation function
by resummation of the non-crossing Feynman graphs and to the equation for the
one-particle Green function in the N' — oo limit of the Anderson model, was not
previously known in the literature.

This dominating role of the non-crossing diagrams is not specific to the present
made] but seems to be a universal phenomenon for interacting guantum fields. In
fact it first appeared in the stochastic limit of QED without dipole approximation®
(but in that case the nonlinear deformation of the semicircle law is completely
different from the present one). As noticed in Ref. 8 this universality is related
to the momentium conservation in Feynman graphs, a fact which also plays an
important role in this paper.

The paper is organized as follows. In Sec. 2 we show that the time averaged
interacting Hamiltonian becomes, in the limit, a quantum stochastic variable dis-
tributed according to a deformation of the Wigner law. In Sec. 3 we study the
limiting evolution operator and we show that it obeys a remarkable closed equa-
tion. It is likely that from the structure of such equation it follows exponential
decay for the Fourier transform of Eq. {1.12).

2. The Limit of the Connected Correlators

The first step of the stochastic limit approach was suggested by the first-order term
of the iterated series (1.11) after the rescaling T — T//A%. This is equal to the “time
averaged” interacting Hamiltonian (with § = 0):

T/)2 1 , o
BA(T,8) = ,\/ dt =5 > g(R)g(k Y nay ape’ D (2.1)
S AQ L

/ kk!

We show that:

Theorem 2.1. For each N ¢ N

limn lim E((Gf'F,akon(Tl,Sl)"'BA(TN,SN)G?C'OG’)F)CDM), (2.2)

A—oo L—roo

where {+, Yeonn neans expectation with respect to the connected diagrams, al-
ways ezists and is equal to zero if N is odd while, if N = 2n, it is equal
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to

Z Z H(X[S.;(zh),Tgah,]:X{S,,(,.h),Ta(Thﬂ)Lz(R)fdkh ceedky

TE81 2 {lh,rh }7_ EP(1,20) h=1
(2.3}

XBg (kﬂ) H <klh ’ ki"h )FG (klh )Fa- (km) y
h=1
where

(a) P(1,2n) is the set of all non-crossing pair partitions {li,r1,... vlnyTn} of the
set {1,...,2n},

(b) Si,2n are the permutations of the set {1,...,2n},

(c) the k., are linear combinations of the {ky, }i_, determined in the following
systemn of linear equations:

ko = kzn; ki | ~ ki, =k

Th kTh.—l .

(khkr> :/ ez’[w(k:)‘w(kr)]ug(kz)zg{kr)Z du

(e) denoting By the Fermi sphere By = {k,|k| < pp}, B¢ = R\ By its set-
theoretical complement, the function Fo(ky,) is defined by:

XB: (k',gh) if 0(1}1) < O’(lh + 1) ,

Folky,) = .

(Fun) { xeelky,)  if o(ln) > o(ln +1), 24)

otk ) { xBg(kr,) if olry) <o(ry +1), (25)
xBp(kr,) if o(ry) > olry +1).

The proof of the above theorem for n = 4 is in Appendix B, and a general proof
be will published elsewhere. Note the analogy of the above result with a central
limit theorem; the B, {T, S) are integrated over an integral extended on an interval
of amplitude n = TA"? and normalized by 1/y/n. However, the distribution of the
limiting fields is not Gaussian; there is not a sum over all the pair partition bui only

over the non-crossing pair partitions, This property characterizes the free variables,
and in fact if in Eq. (2.3) we neglect

(a) the dependence on the pair partition of the momenta &

Th?
(b) the dependence on ¢ of the factors <X[Sa(lh)vT=(1h)1’X[Sa(rh)sTa(r,,ﬁ)L?(R) and
Fa(klh)Fa(km)r

then the above theorem says that BA\(T, 8) are, in the limit, free (in the sense
of Ref. 12) random variables as their distribution is given by the Wigner semi-
circle law, This result has to be compared with Ref. 10 in which in the mean

field approximation, i.e. in the Hmit N — oo it was shown that the interacting
Hamiltonian is a free variable.
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3. The Limit of the Connected Transition Amplitude

Theorem 3.1. In the notations of Theorem 2.1 the following identily is valid at
any order of the perturbative series:

lim lim E((‘I’F, aio UT/AZG';:: @F>conn)
A—=0L—roo

=01
7
= E EXE("‘JO)T E : § :
: n e8] 2n
n=0 torn i, €P(L20) a{l.h_)—cr(rh)zdzll ¥ he{l,...,n}

T

f b, -~ by, T oo o Yeu B Ut ) B () = Gk}, (3.1)
h=1

where e, = 1 if o(l),) — o(ry) = +1 and e, = —1 otherwise,

0
(kh kr)fl — f ei[w(ki}—w(kr)]ug(ki)Eg(kr)Q d'u,,

U k)t = f ikt —wtke)lu g (120 (6 V2 du,
[H

and x*{ko) = xpz (ko) if £ = 1 and x*(ko) = xBr (ko) e = —1.

The above theorem says that, in the perturbative expansion for the transition
amplitude, only the non-crossing diagrams contribute in the limit.

From the explicit expression of Eq. (3.1) it follows that G* obeys a closed equa-
tion. In fact, the foliowing holds:

Theorem 3.2. In the same notations as in Theorem 3.1 one has:

+oo )
G k) = G (ko) + TG (ko) G (ko) [ du e~ kot g ()2
X f g(k)2e“®e|GH (k) + G (k)] dk, (3.2)
R

where G§(ko) = x* (ko).

Proof. Let us denote G4{(™) (k) the nth term of the series Eq. (3.1) so that
GE(R) =) _ GO(K).
n=0

We use a well-known property of the set P(1,2n) of the non-crossing pair par-
titions (n.c.c.p.) namely:

P(1l,2n) = CJ {(1,2m)UP(2,2m — 1) UP(2m +1,2n)}

me=l
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with th i
& convention that P(z,y} = 0 if z > 4. From it, it follows that

il

:Z Z Z

{thra}po €P(1,20)  m=1
= 1 = l,, m—1 n
{rn} 5 €P(2,2m—1) {leman Y, EP(2m+1,2n)

er t}l i i()I & .ﬁxe OI1-CT Oy alr Itltl( 11
I\f{()] cov mn Appelldix A ].tr 15 plo“ed &
( y ) 4 d. 4. non SSlng p p&

Z HF“(klh)Fﬂ(krh) = n!
h=1

“f’h)*’("h:-e—“:gtll‘gghe{l ..... n} (m—1){n - m}!

% x% (ko) | x 8y (ke mol
F 1) GESZZ H F"(klh)Fa(kTh)
Tla)metry)=E1 v'L'Eiir'yf‘it"*1}-‘7(!2)>o(!1) h=2

+ xag (ki,) ) e

TESD 2
ey )—e(rpi=+1 ¥ he{2,..., ?m-kl},a(:?)(a(ll) h=2

x > 1 #®)F(k,).

TESam 41,2 -
allp)alry, )=+1 vRE{mt1 he=mi1

(3.3)
Furthermore, b
» by the momentum conservation, in every connected component

of the pair partition, the i :
e incomin fe
particular, : g momentum is equal to the outgoing one. In

ko = krl = k:r'n .

Usi
ng the remarks above G=(™ (k) can be rewritten, for n > 1. as:

O

“+oc
ﬁ—i—“——~x‘€k ifw(kyy )—w(kolu
= (m—1)l(n~ m)! (ko) f_m d“fe o) —wtkolln gy g(kg)2g(ky,)? diy,

x {xgp (a,) f i, - dby,, > :ﬁ >

{le e Y0 €P(2,2m—1) TES am 1
ol —etry Y=k 1, oty ) <o(ly )

<klh B k'r';. )Eh_ F, (kih )FU (k'f‘h)

= m71

+ XBp(ki1)fdkl2 dky, H Z
{lnrs }2:m+1 €P(2,2m—1} h=2 FESn gm_1

Ty )—o{rp)=+1,0(g)>0(ly)

<klh ’ k’-‘"h )Eh Fﬂ(klh )FO' (kTh ):l
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T

X x (ko) ] dh,,,. - dh, 2 11

{lhsTh Yt £ P{2m+1,2n} h=m+1

Z <kl’.h7 kTh)EhFo(kLh )FU (k""h) . (34)

FE€Samd1,2n
a(ip)—o(rp)==+1

By associating the factor (n — m)! to the P(2m + 1,2n) sum we see that this
term reproduces G5 (™) (k). Similarly associating the factor (m — 1)! to the two
P(2,2m—1) sums in square brackets; we see that these sums reproduce respectively
G+ (k) and G—{m=1)(ky). This shows that Eq. (3.4) can be written in the
form

+oo
G (ko) =T f du f giltwthin )kl gy g(ko)2g(ky,)? dki, X“ (ko)

x (GH) (ki) + G ) (k)]G (ko)

n1t+na=n—1

and summing over n, Eq. (3.2) is found. O

Remark 3.1. Let S(k,w) be the Fourier transform of the Green function
S(CE -y b= S) = I %L,{IBDOE((@F: T"p:,tw;sUTU—T(pF))conn

if T is the time order product. The closed equation found in Ref. 2 is
+oo
S(ko,w) = Solko,w) + Sg(ko,w)S(ko,w}f dku(ko — k)S{k,w),

where So(k,w) is the free Green function and u(p) is a suitable cutoff function. The
similarity with our Eg. (3.2) is striking. In fact equations of this type are a general
feature of the non-crossing diagrams.

Appendix A. Proof of Eq. (3.3)
In this Appendix, we prove Eq. (3.3). Fix the injective maps
l:he{l,...,n} =l € 1,...,2n
{(Loooorm} > I € {Loos20), "
r:le{l,...,n} 7R €C {1,...,2n},

in such a way that {(ll,n),...,(ln,rn)} is a non-crossing pair partition of
{1,...,2n}.
For each subset of pairs I © {1, 7r1)s -5 (ln,7n)} define

I(o‘,l) = {Ih : (lh,ﬂ"h) el; J(lh) < o‘(lh-I- 1)} .

Similarly we can define

Hoyr) = {rn: @) € 1 alm) <ol t 1},
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Definition A.l. Given a finite set I and a permutation o on I, the indez of
monotonicity of o is the map

jr{o,) rx €I = j{o,x) € {1,0}
defined by:

jloz) =10z <olz+1).
Introducing the convenction (for any set A)

. i, fe=0

xa(k)” = { xa(k), ife=1

one can write the L.IL.S. of Eq. (3.3) in the form

Z { H X s (klh)j{o,zh)XBF(klh)hj(o,z,,)}

o€} g L =1

X [ II XB;(krh)j("‘“")XBF(km)l_"'("”"‘)l ; (A.2)
h=1

where

FES] €81 25

L2n oty )—a(ry)=%1 ¥ Re{1,....n}

Now the set {{1,71,...,1,,7n} coincides with {1,...,2n}.
The sum (A.2) can be rewritten in the form

2n
> e (ke xm, (ko) -9 (A.3)

JE‘S;.,ZTL a=1

Remark A.1. We see that the terms in the sum (A.3) depend on ¢ only through
the function j(a, -).

Lemma A.l. Every o € 8] 5, can be written unigquely:
O =00m0n_m,

where

(a) 7 is characterized by the property that there exist sets FF C {1,...,2m}, F' C
{2m+1,...,2n} such that:
GF=F'; §F =F; &)=z forany z¢ FUF (A.4)
and @ is monotone on F U F.
{b) om(x)==a forz ¢ {1,...,2m}.
(¢) Onmlz) =2 for z ¢ {2m + 1,...,2n}.
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The proof of the above lemma ig trivial. Denote now
I= I? = ‘_—"1{1,2’171} y
then
©=z"t2m+1,...,2m}.
Denote
= ~—1
S_IT (E) = E‘S‘iljm}a—]! S}“ (0’) = US£2m+l,2n}o- {A5)
and notice that, if & has the form (A.4),
o= (Eamaﬂ,mﬁ_l)ﬁ" = 0[O . (A.6)
Introducing the notation
plkz, i (o, x)) = XBg (km)j(mm)XBF (km)l_;’(d‘m)
and using
ororeox = ojox for x€ {1,...,2m}

and the analog identity for e, the sum (A.2) can be written in the form

Z 2 Z H ‘P(kmaj(UIUJcE,:c))

7 S5{F) 5 (F) me{l, 20}

=S > I1  elksilord.a)

o1 ESL(@) ze{l,...,2m}

x > II o(kz, (010, 2)) | - (A7)

are €85 (F) ze{2m+1,...,2n}

Thus, if we prove that both the op-sum and the oje-sum do not depend on o,
the expression (A.7) shall be equal to

(:b) 2 1T elks,i(o2)

oES] om z€{l,...,2m}

| 3 I wlkaite®) ) - (A8)

a’ES;m,‘_l‘?n z€{2m+1,...,2n}

Lemma A.2. For every &, the two sums

> I elkeiloz) (A9)

se8(1,2m) ze{l,...,.2m}
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and

o1 €8(8) z€{1,...2m}

cotncide.

Proof. 1t is sufficient to show that, given 7, for each o/ € &} there exists o € S, |
such that

Hore,z) = jo,z), Ve e{l,...,2m}.
Recall that, by definition
o{l,...,2m} = Iz
and let oy © S} be the unique permutation such that
ool =005 {1,...,2m} = Iy

is an ordered set, i.e. the ordered version of I. Clearly the sum (A.10) is equal to

> T el ioro0m,2)). (A.11)

o1ES(F) xE{1,...,2m}
The map
Bi=0o7:{1,...,2m} = Iy

is the unique monotone mapping between {1,...,2m} and the ordered version of I.
The sum (A.11) then becomes

oo I elkwiteb ). (A.12)

are8i{a)ze{l,....2m}

Now denote
o= ﬁ_lgfﬁ (AIS)

and notice that

jlo1B,x) =1 & ar(B(z)) < or(fz +1))
but 3 is monotone, so because of injectivity 37! is also monotone, therefore

jleiB,z) =14 8"018(z) < 1018z + )=o) <olz+1) e jlo,z)=1.
This implies that
jloiB,z) = jloyz) = 1.

So we can write the sum (A.12) as

> I elkeitem).

ﬁﬂ'ﬁ_I:UJES;(?) ze41,...,2m}
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It is now clear that the sum over all o7 € S{(F) in (A.9) is equivalent to the
sum over all o € 8] 5,,. This ends the proof of {A.8).

The proof of {3.3) follows noting that ko = k. and ki, =k, where {t—1,
Trm_1) i the last pair partition “enclosed” in ({1,71), so that the only dependence
of the summand of (A.8) on o(l1),o(r1) is that p(k,) = ¢k} = xBe (k) if
o(ls) < o(l:) and @(ki, ) = w(kr,._,) = XB= (ki, ) otherwise. O

Appendix B. The Four-Point Function

We do not prove here Theorem 2.1 in general, but we consider a particular case in
order to explain in an intuitive way why in the limit only the non-crossing diagrams
survive.

Let us consider

lim bm BE({dp,arB(T1, S1)Ba(T2, S2) Bx(Ts, 83) Ba(Ty, Sa)lay ¢v)) . (B.1)

Using (2.6}, {B.1) can be written more explicitly in the form:

Ty /A2 To /A2 Ty /A2 Ta /22
)\4] dtl/ dtz/ dt:g/ dtq]dlﬂ]_ de d$3 dﬂ?4
51 /A2 52 /A2 Sa /A2 84/ 22

x E(¢(z:) (w2 }(zs)d(xa)) (Pr, ar 0T (z b ){wr, B} o b T (22, T )b (w2, L2}

x 2 (s, e (s, ts) 1 7 (24, La)¥(@a,84) 1 8 oonn - (B.2)

The above fermionic expectation is given by the sum of several terms. Let us
select (for definiteness) the following one (the sum over ¢ in {2.3) comes from taking
into account all such terms):

{apt ™ (1, 10)) (b (@1, 0)8 " (wa, )} (P (, L) (23, 1))
X {3(zs, ta)T (x4, ta)) (P(a, ta)a]) - (B.3)

Since the expectation over the Gaussian variables in (B.2) is given by
§(x1 — 24)8(x2 — m3) + 8(z1 — 22)8(2 — 24) + 6(z1 — 23)0(22 —4). (B4}

We have three terms which shall be studied separately (notice that the third term
corresponds to a crossing diagram while the other ones are non-crossing).
The first term is

Ty /A2 Ty A® Te /22 Ta /X2
A4j dt1/ dtQ/ dtgf dtdfd:ﬂl dﬂ:z(ak1p+($1,t1))

5 /A2 Sy /A2 Sa/22 AL

X (2, to 0 (2, t2)) ((2, 82 )T (2, 88)) (9 (22, £a)00 ™ (21, La )} (W (21, ta)a)))

1 Ty /X2 Ty /22 Ty /A2 Tu /X
:,\4m Z/ dtlf dtzf dtgf dty

K B 51722 Sz/)\2 Sa /22 Sg/)«z

% e—i(u(k)—w(k.'))(h7tz}efi(w(k)*w(k”)){t3““t‘i), (B.5)
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x(|k| = pr)x(|K'| = pe)x(|K"| = pr)lg(k)g (k") g(k)a(k")][g(k)g(k")g(k)g(k")]

(T2—71) (Ta—ta)/
dTlf d‘Tzf d’."‘df
de Zf —71)/)\2 5-4 —ta /)\‘2

k.’ kH

~ e—i(w(k);w(k'))'rg efi(w(k)fw(k")}"n;

x X (k| = pr)x (K] = pe)x(IK"| = pr)lg(k)g(k)g(k)g(k')]
x [g(k)g(k")g(k)g(k")] .
In the limit A — 0, L. — oo the above expression becomes

(X[81,73]» X[S2,T2]) L2 (R) {X[Ss,T5)» X[S4, Ta] ) L2 (R)

X/m%MMWMW%WMMm%%

The second term is

Ty /A2 T /A2 T5 /A2 T2
MLM Z f dtq f dts f dt3 / dty

K k! Si/A2 Sa /A2 Sz /A2 Sa/A2

x & () (k) (b1 =ta) =ik )—w(k") (t2ta)

x(k] < pr)x (K| < pr)x(IK"| < pr)lg(k)g(k)g(k)g(k)][g(k)g(k")g(k)g(k")]

T2 (Ta—t1)/A* ' 1 (B.G)
- 2d Zf dTl/ dTZ/ d7'467"(“’{k)*w{k ))7a
kK" Sa

(Sa—m1)/A2

(Ta f.z)/)z : ’ "
“J. e I (k] = pe)X(IK'| 2 pr)
(Sa—72)/A?

X(IK"| = pr)lg(k)g (K )g(k)g(k')]lg (K )g (K" )g(k')g(K")] .

In the limit L — co the sum over &', k" becomes an integral which is bounded
by O[1/((74)%?(ma — 73)%?)] so that by taking the limit A — 0, we have

(X[81, 7] X[Sa,Ta] ) L2(R) (X[S2,Ta]» X[Sa,Ts]) L2 (R)

x / dhy dky x5 (k) (kr, k) (Ko, B Y (k) xms (K)

P —

The Semi-circle Diagrams in the Stochastic Limit of the Anderson Model 481

Finally the third term, corresponding to the only crossing diagram in the four-
point function, is

Ty A2 Ty /A2 Ts /A2 Ty A%
X == ), f dt f dt f dts ] dt

Kk S1/A2 Sa /A2 Sz /A2 Sa/A2

% B —i(w(k)—w(k ) (t1— tg)efw. (w(k" ) —w(k—k'+k"))(ta—ta) 71,(w(k)7w(k”)t.2€—i{w(k)—w(r'c”}f“;

x x(|k| > pr)x (K| = pr)x(|K”| = pr)lg(k)g(k")g(k)g(K g (k)g(k")g(k)g(k")] .
(B.7)

With the change of variables A2ty = 79, Aty = 74, t1 — 72 /A2 = 7, t3 — Ta/N? = 73
this becomes

/ (Ti—72)/2® (Ts—7a)/N*
dTg / d’?‘4/ d‘Tl/ dTg
LZ“! g;, Js, —73)/A2 (Sa—ra) /A2

¢ o=@ —wk ) g=il@ (k") —w(k—k'-+K"))7s g —i(uo(k) —w (K" ))ra/N? =il (k) —w(K"))7a/3?

x x(k| < pe)x(|k'| < pr)x(|k"| < pr)lg(k)g(K")g(k)g(k")][g(k)g(k")g(k)g(k")] ,

and, after the limit L — oo, the resulting integral vanishes in the limit A — 0 by
dominated convergence and the Riemann-Lebesgue lemma.

Note Added in Proof

If, as in the case of physical interest, w(k) = |k|? and g(k) depends only on | k |, i.e.
g(k) = g(|k|), then the nonlinear Eq. (3.2) can be explicitly solved as follows. First,
note that, for ¢ = 1,2, G%(ko) = 0 if and only if G§(ko) = 0. The “if” part is clear
because G§(ko) multiplies the right-hand side of (3.2). Conversely, if G*(ko) = 0,
then (3.2) becomes G§(ko) = G°(ko) = 0. Second, note that, by definition of G§,
one has G (k) + Gy (k) = 1 identically in k. Therefore, by the above remark

Gi(k)=1&G,(k)=0= G (k)=0,
Gy (k)=1eGfk)=0<Gt(k)=0
for all k. Equivalently this means that, identically in k
GIG~ =G, G =0.

It follows that, adding the two equations (3.2) (for € = %), one obtains

3G (ko) = > Gilko) + T Y Gi(ko) Y G (ko)
==+ e=+ e=+

gl=4

x/du/ e I ED g (kYo (k)2 3 G5 (k). (1)
R Rd =+
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Using again that G¢ (k) + G; (k) = 1 for all k and introducing the notation
G(k) =Gt (k) + G (k)

we have
G(ko) = 1+ TG(ko) f du f dk et k)—wko)u| gk )g(k)[2G (K). (2)
R R

Under our assumptions on w(k) = |k|? and on g(k) = g(|k|), the integral (2) can
be explicitly evaluated giving

[ dlaUkaDakDPGR)2m3 K = kol?) = 2mlg(ro)l* 7o [ Glro, o)

Therefore (2) is equivalent to
1
1—27Tg(ro)g(ro)|? - o fSrD G(rg,0)do’
where S, denotes the sphere centered in the origin and with radius rg. The right-
hand side of (4) tells us that G(ky) depends only on | kg |, so that
1
1 — 27T[Sy,|G(ro) 9(ro)[*r0 ’

where |Sy,| is the surface of the sphere S,,. Denoting

G(ko) =

(3)

G(ro) =

(4)

a == 27T|Sr, | - |g(r0)|*r0
we see that G(rp) satisfies the equation
G%(rg)a—G(ro) +1=0 (5)

which, if 4a < 1 (and this can be realized either by taking T' to be small or by
taking g to be large, because g is a Schwarz function) has solutions G(r¢) =
(1++/1 —4a)/2a. But (4) implies that G — 1 as a — 0 and therefore

1—+1—4a 2
2a T 1441—ta

which is smooth and tends to 1 as 79 — co.

G(ro) =

(6)
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