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Abstract

Stable set problems subsume matching problems since a matching is a stable set in a so-
called line graph but stable set problems are hard in general while matching can be solved
efficiently [11]. However, there are some classes of graphs where the stable set problem can be
solved efficiently. A famous class is that of claw-free graphs; in fact, in 1980 Minty [19, 20]
gave the first polynomial time algorithm for finding a maximum weighted stable set (mwss) in
a claw-free graph. One of the reasons why stable set in claw-free graphs can be solved efficiently
is because the so called augmenting path theorem [4] for matching generalizes to claw-free
graphs [5] (this is what Minty is using). We believe that another core reason is structural and
that there is a intrinsic matching structure in claw-free graphs. Indeed, recently Chudnovsky and
Seymour [8] shed some light on this by proposing a decomposition theorem for claw-free graphs
where they describe how to compose all claw-free graphs from building blocks. Interestingly the
composition operation they defined seems to have nice consequences for the stable set problem
that go much beyond claw-free graphs. Actually in a recent paper [21] Oriolo, Pietropaoli and
Stauffer have revealed how one can use the structure of this composition to solve the stable
set problem for composed graphs in polynomial time by reduction to matching. In this paper
we are now going to reveal the nice polyhedral counterpart of this composition procedure, i.e.
how one can use the structure of this composition to describe the stable set polytope from the
matching one and, more importantly, how one can use it to separate over the stable set polytope
in polynomial time. We will then apply those general results back to where they originated
from: stable set in claw-free graphs, to show that the stable set polytope can be reduced to
understanding the polytope in very basic structures (for most of which it is already known).
In particular for a general claw-free graph G, we show two integral extended formulation for
STAB(G) and a procedure to separate in polynomial time over STAB(G); moreover, we provide
a complete characterization of STAB(G) when G is any claw-free graph with stability number
at least 4 having neither homogeneous pairs nor 1-joins. We believe that the missing bricks
towards the characterization of the stable set polytope of claw-free graphs are more technical
than fundamentals; in particular, we have a characterization for most of the building bricks of
the Chudnovsky-Seymour decomposition result and we are therefore very confident it is only a
question of time before we solve the remaining case.
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0.1 Preliminaries

Chudnovsky and Seymour [7] introduced a composition operation in order to define a decomposition
result for claw-free graphs. This composition procedure is general and applies to non-claw-free
graphs as well. We borrow a couple of definitions from their work (even if our definitions are
slightly different, and indeed closer to those in [8]). A strip (G, a, b) is a graph (not necessarily
connected) with two designated simplicial vertices a and b that are non-adjacent to each other (a
vertex is simplicial if its neighborhood is a clique).

Given two vertex-disjoint strips (G1, a1, b1) and (G2, a2, b2), we define the gluing of those two
strips as the union of G1 ∖ {a1, b1} and G2 ∖ {a2, b2} together with all edges between NG1(a1)
and NG2(a2) and all edges between NG1(b1) and NG2(b2). Note also that gluing (G1, a1, b1) and
(G2, b2, a2) would not result in the same graph but still we denote the gluing of (G1, a1, b1) and
(G2, a2, b2) by G1 +G2 because a1, b1, a2, b2 will always be clear from the context. The gluing can
be generalized to more strips by introducing a composition operation.

Definition 1. Let G0 be a disjoint union of cliques with 2k vertices and (G1, a1, b1), . . . , (Gk, ak,
bk) k vertex disjoint strips. Let Á be a one-to-one mapping from {a1, ..., ak, b1, ..., bk} to V (G0).
For all i = 1, ..., k, define Gi as the gluing of (Gi, ai, bi) with (Gi−1, Á(ai), Á(bi)). The graph Gk is
the composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t. (G0, Á).

In the paper we always denote by G0 the disjoint union of cliques with 2k vertices involved in
some composition of k strips. Also, for i = 1, . . . , k, we let Ai = NGi(ai), Bi = NGi(bi). We often
abuse notation and we talk about a strip Gi as the graph Gi[V (Gi) ∖ {ai, bi}] and about (Gi, ai, bi)
as the whole graph Gi i.e. including vertices ai and bi. We now introduce two crucial strips.

The trivial strip (g, a, b) is the strip with vertex set V (g) := {a, w1, w, w2, b} and edge set
E(g) := {aw1, aw, bw2, bw, w1w2, w

1w, w2w}. The generalized trivial strip (g∗, a, b) has vertex set
V = {a, u, w, w1, w2, v, b} and edge set E = {au, uw, uw1, ww1, ww2, w1w2, vw, vw2, bv}.

Throughout the paper, we often replace a strip (Gi, ai, bi), involved in some composition, with
the (generalized) trivial strip. In these cases, we however keep the designated simplicial vertices of
(Gi, ai, bi) and let therefore the trivial strip be (gi, ai, bi) (with vertices ai, w

1
i , wi, . . .). Of course,

in these cases, we also keep the same mapping Á. Finally, we let [k] denote the set {1, 2, . . . , k}.

1 Warm up: a first extended formulation

Let G be the composition of the strips (Gi, ai, bi), i ∈ [k], w.r.t. a pair (G0, Á). As it is shown
in [21], a mwss in G can be efficiently computed, provided that we are able to solve the mwss
problem on each strip. We sketch the argument in the following, the reader should refer to [21] for
more details.

Suppose that we are given a weight function w : V (G) 7→ ℚ. The main observation is that,
in order to compute a mwss of G, for each strip we are interested in four crucial stable sets of
Gi ∖ {ai, bi}: a mwss SĀB̄

i that picks no vertex from both Ai and Bi; a mwss SĀ
i that picks no

vertex from Ai; a mwss SB̄
i that picks no vertex from Bi; a mwss S∅

i that has no restrictions.
One may therefore replace each strip (Gi, ai, bi) with the trivial strip (gi, ai, bi), and give each

non-simplicial vertex of the strip a suitable weight. For sake of clarity, in this section, we refer
to the non simplicial vertices of gi respectively as e∅i ≡ w, eĀi ≡ w1, eB̄i ≡ w2. The weights are:

w(e∅i ) = w(S∅
i )− w(SĀB̄

i ), w(eĀi ) = w(SĀ
i )− w(SĀB̄

i ) and w(eB̄i ) = w(SB̄
i )− w(SĀB̄

i ).
Let H be the composition of the trivial strips (gi, ai, bi), i ∈ [k], w.r.t. (G0, Á). It can be shown

that H is a line graph, and that every mwss of H corresponds to a mwss of G. We have therefore:
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Theorem 2. [21] Let G be the composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t. a graph
G0. Suppose that the mwss problem can be solved in time O(pi(n)) for the different strips i =
1, ..., k (n being the number of vertices of G). Then the mwss problem on G can be solved in time
O(

∑
i=1,...,k pi(n)+matcℎ(n)), where matcℎ(n) is the time required to solve a matching problem on

a graph with n vertices. If pi(n) is polynomial for each i, then the mwss problem can be solved in
polynomial time.

As we show in the following, Theorem 2 has a “polyhedral” counterpart; namely, we are able
to derive an extended linear description EF1(G) of STAB(G), provided that we have a (possibly
extended) linear description of STAB(Gi), for each strip (Gi, ai, bi). Moreover, if the separation
problem over each STAB(Gi) can be solved in polynomial time, the separation problem over
EF1(G) can also be solved in polynomial time.

We start with a few notations. For each strip (Gi, ai, bi), i ∈ [k], let ni + 2 be the number of
vertices in the strip; the number of vertices of G is therefore n =

∑
i=1..k ni. Also the number of

vertices of H is 3k.
We let y : V (H) 7→ ℝ+ be a vector with one component for each vertex in H. We extend it

with a vector y(eĀB̄) : [k] 7→ ℝ+ with one component for each strip. Recall that, by construction,
V (H) can be partitioned into k classes, each corresponding to some strip. Each class, in its turn,
consists of the vertices e∅i , e

Ā
i , e

B̄
i . Also since H is a line graph, a linear description Ay ≤ b of its

stable set polytope is thus available ([10], see also [25]). Note that the latter constraints do not
involve vector y(eĀB̄).

We now move to vertices of G. Let z : V (G) 7→ ℝ+ be a vector with one component for each
vertex in G. Observe that also the vertices ofG can be partitioned into k classes, each corresponding
to some strip. We associate to each vertex v of G, that is coming from the strip Gi, four more
variables (copies), namely: x∅i (v), x

Ā
i (v), x

B̄
i (v), x

ĀB̄
i (v). The rationale is the following: xĀi (v) is a

copy of z(v) that is “active” if y(eĀi ) = 1, i.e. if we are considering stable sets of Gi that take no
vertex in Ai etc.

Now assume that we are given a linear description Dizi ≤ fi of the stable set polytope Pi of the
strip Gi ∖ {ai, bi} (note that by now we are assuming that this description is given in the original
space ℝni , we shall generalize this later). Then a linear description of the convex hull of the stable
sets of Gi∖{ai, bi} that take no vertex from Ai is the following: {xĀi ∈ ℝni : Dix

Ā
i ≤ fi;x

Ā
i (Ai) = 0}.

With the same argument, we can characterize the convex hull of the stable sets of the graph
Gi ∖ {ai, bi}, that takes no vertex from Bi etc. With a slight abuse of notation, for each X =
{∅, Ā, B̄, ĀB̄}, we refer to the corresponding system of inequalities as DX

i xXi ≤ fX
i . Consider the

following polytope:

EF1(G) = {(z, x, y) ∈ ℝn+4n+4k
+ :

Ay ≤ b (1)

z(v) = x∅i (v) + xĀi (v) + xB̄i (v) + xĀB̄
i (v) ∀v ∈ V and i : v ∈ V (Gi) (2)

y(e∅i ) + y(eĀi ) + y(eB̄i ) + y(eĀB̄
i ) = 1 for all i ∈ [k] (3)

DX
i xXi ≤ y(eXi ) ⋅ fX

i ∀i ∈ [k] and X ∈ {∅, Ā, B̄, ĀB̄}} (4)

As we show in the following, EF1(G) is an extended linear description of STAB(G). First, we
recall the following well-known result (see e.g. [25]).

Theorem 3. A polyhedron Q is integral if and only if maxx∈Qcx is an integer for each integral c
such that the maximum is attained.
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Theorem 4. EF1(G) is an extended integral formulation of STAB(G).

It is easy to check that (z̄, x̄, ȳ) is a integral point of EF1(G) only if z̄ is the characteristic
vector of a stable set of G, and conversely the characteristic vector z̄ of each stable set of G can
be extended to an integral point (z̄, x̄, ȳ) ∈ EF1(G) (i.e. EF1(G) is a formulation of STAB(G)).
Thus in order to prove Theorem 4 we are left to show the integrality of the polytope. Note that the
polytope in the y−variables defined by constraints (1) and (3) is non-empty and integral, since it is
a matching polytope plus some equations that univocally define the vector y(eĀB̄). Moreover, all
its variables are non-negative, since for each i ∈ [k], vertices e∅i , e

Ā
i , e

B̄
i form a clique in H. Thus,

if the polytope in the (x, y)−space defined by (1), (3), and (4) is integral, then EF1(G) is also
integral, since variables z are defined via constraints (2) as the sum of x−variables. The integrality
of EF1(G) is then an immediate consequence of the next lemma.

Lemma 5. Let n, q, p ∈ ℕ, and P = {y ∈ ℝn
+ : Ay ≤ b} be an integer non-empty polyhedron for

some A ∈ ℤp×n, b ∈ Zp. Moreover, for i ∈ [q], let ni, pi ∈ ℕ, and P i = {xi ∈ ℝni : Aixi ≤ bi} be
an integer non-empty polyhedron for some Ai ∈ ℤpi×ni, bi ∈ Zpi. Last, let Á : [q] → [n]. Then the
polyhedron Q = {(x, y) ∈ ℝN+n : y ∈ P and Aixi ≤ yÁ(i)b

i for each i ∈ [q]} is integral, where we

set N =
∑q

i=1 ni and x = {x1, . . . , xq}T .
Proof. For each i ∈ [q] and ® ≥ 0, let P i

® := {xi ∈ ℝni : Aixi ≤ ®bi}. We start with two claims
whose simple proofs we skip.

Claim 6. Let B ∈ Zn×q and c, d ∈ ℤq for some n, q ∈ ℕ. For ® ∈ ℚ+, let R® be the polyhedron
{x ∈ ℝn : Bx ≤ ®d} and suppose that x̃ is an optimal solution to maxx∈R1 cx. Then for each
® ∈ ℚ+, R® is non-empty and ®x̃ is an optimal solution to maxx∈R® cx.

Claim 7. The projection of Q over the y−space coincides with P .

Let (u,w) ∈ ℝN × ℝn be an integral cost function such that max(x,y)∈Qux + wy is attained.
Then, for each i ∈ [q], maxuixi is obtained in some vertex x̄i that we can assume integral by
hypothesis. Then:

max
(x,y)∈Q

ux+ wy = max
y∈P

(wy + max
x:xi∈P i

yÁ(i)
for i∈[q]

q∑

i=1

uixi) = max
y∈P

(wy +

q∑

i=1

max
xi∈P i

yÁ(i)

uixi) =

= max
y∈P

(wy +

q∑

i=1

ui(yÁ(i)x̄
i)) = max

y∈P
(

n∑

j=1

yj ⋅ (wj +
∑

i:Á(i)=j

uix̄i)) = max
y∈P

(w̄y)

the first equality holds by Claim 7, the second by the fact that the polyhedra P i live in different
spaces, and the third by Claim 6. Also, for each j ∈ [q], w̄j = wj+

∑
i:Á(i)=j u

ixi is a sum of integers
and thus an integer itself. Given the integrality of P and Theorem 3, the statement holds.

The next lemma, whose simple proof we skip, addresses the separation problem over Q.

Lemma 8. Let P, P i for i = 1, . . . , k be as in the hypothesis of Lemma 5. If the separation problem
over P and each of the P i can be solved in polynomial time, then the separation problem over Q
can be solved in polynomial time.

Corollary 9. Let G be the composition of strips (Gi, ai, bi) for i = 1, . . . k. If for each i the
separation problem over Pi can be solved in polynomial time, then the separation problem over
EF1(G) can be solved in polynomial time.
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Remark. It is straightforward to extend Theorem 4 and Lemma 9 to the case where for some strip
(Gi, ai, bi) we have a description of the stable set polytope Pi of graph Gi ∖ {ai, bi} in an extended
space rather than in the original one. We defer details to the journal version of this paper.

We conclude with a couple of comments. Lemma 5 can be interpreted as a “polyhedral com-
bination” of polyhedra and, in this sense, generalizes Balas’ union of polyhedra [1, 2]. One could
indeed repeat the argument used in this section in order to derive an extended formulation for
other polytopes which admit a decomposable structure similar to STAB(G) (a similar approach
has been proposed by Kaibel and Loos [17]). Although being simple, the extended formulation
EF1(G) “splits” the variable corresponding to each node of G into four new ones; it is not clear
therefore how to derive from this extended characterization a complete description or a separa-
tion routine in the original space. In the next section, we show a formulation requiring a better
knowledge of each strip but giving more insight on the polytope in the original space.

2 Another extended formulation

For the sake of simplicity, in this section we assume that Á(ai) ∪ Á(bi) is a stable set of G0, that
Ai, Bi ∕= ∅, and that the strip is connected. In all these cases, we have a 1-join in the graph
G and we can use Chvátal clique separator theorem [9] to show that those strips can be treated
independently. We are interested in understanding when a point x ∈ ℝ∣V ∣ lies in STAB(G). By
definition, x ∈ STAB(G) if and only if it is a convex combination of stable sets of G. In particular
x∣Gi

should be in STAB(Gi) for all i, thus from now on we assume this is true.

Definition 10. Let G = (V,E) be a graph and A,B ⊆ V two cliques of G. We denote by
STAB(G, t,A,B) :={x ∈ STAB(G) : ∃x1, ..., xS stable sets of G and ¸1, ..., ¸S ≥ 0, such that

x =
∑

s ¸sx
s,

∑
s ¸s = 1 and

∑

s:xs(A)=1&xs(B)=1

¸s = t}.

For each strip (Gi, ai, bi) and point x∣Gi
, let ti (resp. ti) be the minimum (resp. maximum)

t ∈ [0, 1] such that x∣Gi
∈ STAB(Gi, t, Ai, Bi). Observe that, by convexity, for all ti ∈ [ti, ti],

x∣Gi
∈ STAB(Gi, ti, Ai, Bi). [ NB: ti and ti are function of x∣Gi

and the corresponding x∣Gi
will

always be clear from the context]. We then consider the gluing Gi+gi of (Gi, ai, bi) with the trivial
strip (gi, ai, bi). For any 0 ≤ ti ≤ 1, we extend the point x on V (gi) as follows: x(w

1
i ) = x(Bi)− ti,

x(wi) = 1+ ti − x(Ai)− x(Bi), x(w
2
i ) = x(Ai)− ti (the choice of ti will be clear from the context).

Lemma 11. A point x∣Gi
lies in STAB(Gi, ti, Ai, Bi) if and only if x∣Gi+gi lies in STAB(Gi+gi).

Proof. Necessity: Let xs, s = 1, ..., S be the stable sets of Gi and ¸1, ..., ¸S ≥ 0, such that
∑

s ¸s = 1
, x∣Gi

=
∑

s ¸sx
s and

∑
s:xs(Ai)=1&xs(Bi)=1 ¸s = ti. We deduce that

∑
s:xs(Ai)=1&xs(Bi)=0 ¸s =

x(Ai)− ti,
∑

s:xs(Bi)=1&xs(Ai)=0 ¸s = x(Bi)− ti and
∑

s:xs(Ai)=0&xs(Bi)=0 ¸s = 1+ ti−x(Ai)−x(Bi).
Now we simply extend each stable set xs on gi picking wi if x

s(Ai) = 0 and xs(Bi) = 0, picking
w1
i if xs(Ai) = 0 and xs(Bi) = 1, picking w2

i if xs(Ai) = 1 and xs(Bi) = 0 and picking none if
xs(Ai) = 1 and xs(Bi) = 1. Then x∣Gi+gi =

∑
s ¸sx

s
∣Gi+gi

, proving that x∣Gi+gi ∈ STAB(Gi + gi).

Sufficiency: If x∣Gi+gi ∈ STAB(Gi+gi), then let xs, s = 1, ..., S be the stable sets of Gi+gi and
¸1, ..., ¸S ≥ 0, such that

∑
s ¸s = 1 and x∣Gi+gi =

∑
s ¸sx

s. We use the restriction of xs to Gi to
prove that x∣Gi

lies in STAB(Gi, ti, Ai, Bi). Hence we need to prove that ± =
∑

s:xs(Ai)=1&xs(Bi)=1 ¸s

is equal to ti. Since the stable sets xs intersecting Ai or Bi cannot pick w, there are at most
1−(x(Ai)−ti)−(x(Bi)−ti)−ti = 1+±−x(Ai)−x(Bi) picking w but since exactly 1+ti−x(Ai)−x(Bi)
are picking w, it follows that ± ≥ ti. Vice-versa, the stable sets picking w,w1 or w2 cannot intersect
both Ai and Bi, thus ± ≤ 1− (x(Ai)− ti)− (x(Bi)− ti)− (1 + ti − x(Ai)− x(Bi)) = ti.
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It follows that ti and ti are the minimum and maximum values of ti for which x∣Gi+gi lies in
STAB(Gi + gi). We now replace each strip (Gi, ai, bi) with the generalized trivial strip (g∗i , ai, bi)
and let H be the composition of the strips (g∗i , ai, bi) with respect to G0, Á. Let us denote f :
[0, 1]2k 7→ ℝ∣V (H)∣ the function mapping y = f(ti, ti, i = 1, .., k) as follows: for each i, y(ui) := x(Ai),

y(vi) := x(Bi), y(wi) := 1 + ti − x(Ai)− x(Bi), y(w
1
i ) := x(Bi)− ti+ti

2 and y(w2
i ) := x(Ai)− ti+ti

2 .
The next definition is crucial with respect to STAB(G).

Definition 12. We say that x∣Gi
’s are compatible if and only if y ∈ STAB(H).

Lemma 13. A point x ∈ ℝ∣V (G)∣ lies in STAB(G) if and only if x∣Gi
∈ STAB(Gi) for all i and

x∣Gi
’s are compatible with respect to the composition.

Proof. We assume that x∣Gi
∈ STAB(Gi) for all i, otherwise x ∕∈ STAB(G). Thus intervals [ti, ti]

are non empty. We iterate on the number of strips (in any order). We consider strip (Gi, ai, bi) for
some i. Note that G can be expressed as the gluing of (Gi, ai, bi) with some strip (Ḡi, ūi, v̄i). We
extend x on ūi, v̄i by setting xūi := x(Ai) and xv̄i := x(Bi).

Claim. x can be expressed as a convex combination of stable sets of G if and only if there exists ti
such that x∣Gi

∈ STAB(Gi, ti, Ai, Bi) and x∣(Ḡi,ūi,v̄i)
∈ STAB((Ḡi, ūi, v̄i), ti, ūi, v̄i).

Necessity. Let xs, s = 1, ..., S be the stable sets of G and ¸1, ..., ¸S ≥ 0, such that
∑

s ¸s =
1 , x =

∑
s ¸sx

s. Let ti :=
∑

s:xs(Ai)=1&xs(Bi)=1 ¸s. Then x∣Gi
=

∑
s ¸sx

s
∣Gi

and thus x∣Gi
∈

STAB(Gi, ti, Ai, Bi). Extend xs on ūi and v̄i by setting xs(ūi) := xs(Ai) and xs(v̄i) := xs(Bi),
then x∣(Ḡi,ūi,v̄i)

=
∑

s ¸sx
s
∣(Ḡi,ūi,v̄i)

and thus x∣(Ḡi,ūi,v̄i)
∈ STAB((Ḡi, ūi, v̄i), ti, ūi, v̄i).

Sufficiency. Let xs, s = 1, ..., S1 be the stable sets of Gi and ¸1, ..., ¸S1 ≥ 0, such that
∑

s ¸s = 1
, x∣Gi

=
∑

s ¸sx
s. Let ys, s = 1, ..., S2 be the stable sets of (Ḡi, ūi, v̄i) and ¹1, ..., ¹S2 ≥ 0, such

that
∑

s ¹s = 1 , x(∣Ḡi,ūi,v̄i)
=

∑
s ¹sy

s. Consider indices X ⊆ {1, ..., S1} of the stable sets {xs, s =
1, .., S1} that satisfy xs(Ai) = 0 and xs(Bi) = 1 and indices Y ⊆ {1, ..., S2} of the stable sets in
{ys, s = 1, .., S2} that satisfy ys(ūi) = 0 and ys(v̄i) = 1. For each s ∈ X, t ∈ Y , xs∪yt∖{v̄i} are stable
sets in G. We are looking for multipliers °s,t ≥ 0 for each of those stables sets such that

∑
t °s,t = ¹t

for all t ∈ Y and
∑

s °s,t = ¸s for all s ∈ X. This can be modeled as a flow problem whose feasibility
is guaranteed by

∑
t ¹t = x(Bi)− ti = x(v̄i)− ti =

∑
s ¸s. Similarly we recombine stable sets with

xs(Ai) = ys(ūi) = 1 and xs(Bi) = ys(v̄i) = 1; stable sets such that xs(Ai) = ys(ūi) = 0 and
xs(Bi) = ys(v̄i) = 1; stable sets such that xs(Ai) = xs(Bi) = ys(ūi) = ys(v̄i) = 0. It is easy to
check that the corresponding convex combination generate x.

We let Ḡi + g∗i be the gluing of (Ḡi, ūi, v̄i) with (g∗i , ai, bi). Note that this graph is isomorphic
to (Ḡi, ūi, v̄i) + gi, where we identified vertices ūi, v̄i of the latter with vertices ui, vi of the former.
Let us extend x on g∗i by setting x(ui) := x(Ai), x(vi) := x(Bi), x(wi) := 1 + ti − x(Ai) − x(Bi),
x(w1

i ) := x(Bi) − ti and x(w2
i ) := x(Ai) − ti. From Lemma 11 and from what argued above, we

know that x ∈ STAB(G) if and only if ∃ti ∈ [ti, ti] such that x∣Ḡi+g∗i
∈ STAB(Ḡi + g∗i ). Let us

now consider the point (x∣Ḡi
, y∣g∗i ).

Claim. ∃ti ∈ [ti, ti] such that x∣Ḡi+g∗i
∈ STAB(Ḡi + g∗i ) if (x∣Ḡi

, yg∗i ) ∈ STAB(Ḡi + g∗i ).

Necessity. If x∣Ḡi+g∗i
∈ STAB(Ḡi + g∗i ), then redistributing ti − ti of the stable sets picking wi

into
ti−ti
2 picking w1

i and
ti−ti
2 picking w2

i and then removing w1
i from ti − ti stable set picking w1

and w2 from ti − ti stable set picking w2, we get the feasibility of (x∣Ḡi
, yg∗i ).

Sufficiency. Goes along the same line as sufficiency for Lemma 11
We iterate this argument starting from G and substituting one strip at a time with (g∗i , ai, bi).

Let Hi the graph obtained at the i−th step: by the previous arguments, x ∈ STAB(G) if and
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only if z ∈ STAB(Hi), where z = x(v) for all v ∈ Gi+1, Gi+2, . . . , Gk, and z = yg∗j (v) for all
v ∈ g∗1, . . . , g

★
i . At the end of the procedure we obtain the required statement.

Note that the compatibility of x∣Gi
’s only relies on the intervals [ti, ti] (which are only function

of Gi and x∣Gi) and on the composition. Thus, if we substitute Gi with any other strip G′
i and

if we consider the graph G′ obtained from the composition with respect to (G0, Á) and a point
x′ ∈ ℝ∣V (G′)∣ such that [t′i, t̄

′
i] are the set of feasible t′i’s for x′∣G′

i
with [t′i, t̄

′
i] = [ti, ti], then x′ is a

convex combination of stable sets of G′ if and only if x is a convex combination of stable sets of G.
Therefore, H somehow encapsulates the “structure” of the composition.

We now understand that all we need to assert the compatibility of different x∣Gi
are the intervals

[ti, ti] and the feasibility of y for STAB(H). Thus if we can compute efficiently those intervals, we
can also assert easily if a point x lies in STAB(G) or not.

Suppose that we have a linear description of STAB(Gi + gi) in some extended space, i.e.
STAB(Gi + gi) = {z ∈ R∣V (Gi+gi)∣ : ∃³ ∈ Rm such that Ciz + Di³ ≤ fi} (possibly m = 0 and
not necessarily compact). Substituting z with x∣Gi+gi , we have that x∣Gi+gi ∈ STAB(Gi + gi) if
and only if ∃³ : Ci

∣Gi
x∣Gi

+ Ci
∣gix∣gi + Di³ ≤ fi. Observe that since x∣gi is an affine function of

ti and x∣Ai
, x∣Bi

, we have a linear system of inequalities in x∣Gi
, ti and ³ and thus the bounds

on ti can be expressed as affine functions of xGi and ³ i.e we can rewrite the system in the form:
{(x∣Gi

, ³, ti) : ºjix∣Gi
+ ¹j

i
³ + ½j

i
≤ ti for j = 1, ..., Ji; ti ≤ º̄ji x∣Gi

+ ¹̄j
i ³ + ½̄ji for j = 1, ..., J̄i ;

Mix∣Gi
+Ni³ ≤ ¯i}. Note that {ºjix∣Gi

+¹j
i
³+½j

i
≤ º̄ki x∣Gi

+ ¹̄k
i ³+ ½̄ki for j = 1, ..., Ji, k = 1, ..., J̄i ;

Mix∣Gi
+Ni³ ≤ ¯i} is the projection of the ti variable (using Fourier-Motzkin procedure) and thus

it defines a extended representation of STAB(Gi) (x∣Gi
is in STAB(Gi) if and only if there exists

ti such that x∣Gi+gi ∈ STAB(Gi + gi)). The following result is thus a straightforward corollary of
Lemma 13.

Corollary 14. A point x lies in STAB(G) iff there exist 0 ≤ t−i ≤ t+i ≤ 1 and ³ ∈ Rm such that

∙ (i) (a) ºjix∣Gi
+ ¹j

i
³ + ½j

i
≤ t−i for all i, for all j = 1, ..., Ji

∙ (i) (b) t+i ≤ º̄ji x∣Gi
+ ¹̄j

i ³ + ½̄ji for all i, for all j = 1, ..., J̄i

∙ (i) (c) t−i ≤ t+i for all i

∙ (ii) x∣Gi
∈ STAB(Gi) for all i

∙ (iii) y = f(t−i , t
+
i , i = 1, .., k) ∈ STAB(H)

Observe now that H is a line graph and thus a complete description of STAB(H) is available.
Also f(t−i , t

+
i , i = 1, .., k) is an affine function of t−i , t

+
i , i = 1, .., k, thus the system above is a linear

extended formulation of STAB(G) (we can plug in Mix∣Gi
+Ni³ ≤ ¯i instead of x ∈ STAB(Gi)).

Corollary 15. The system defined in Corollary 14 is a linear extended formulation for STAB(G).

Remark. A similar notion of compatibility was used by Chudnovsky and Seymour (see [27]). They
define [ti, ti] for the gluing of 2 strips and then use two different gadgets to assert the compatibility
(paths of length 2 and 3 with suitable weights). The compatibility of the composition of many strips
is then derived by induction. While this was enough for their purposes, this inductive argument
does not scale polynomially to provide a polynomial time separation procedure as we are going to
describe now. We want to stress however on the fact that our result was inspired from theirs.
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3 Separation and projection

Based on the extended formulation provided in Corollary 15, we are now going to define a simple
polynomial time separation procedure for STAB(G) that involves only linear programming and a
separation procedure for the matching polytope. We will assume for the separation procedure that,
for each i, the linear extended description of STAB(Gi + gi) we used in the previous section is a
compact one (i.e. it has a polynomial number of variables and constraints).

Remark. We can relax this to a separation procedure for STAB(Gi + gi) but we defer this result
to the journal version of this paper.

The separation procedure

Given a point x∗ ∈ R∣V (G)∣, we first check feasibility of x∗∣Gi
∈ STAB(Gi) for all i = 1, ..., k through

the compact systems. If for some i, x∗∣Gi
∕∈ STAB(Gi), we generate a separating hyperplane through

the dual of the compact system representing STAB(Gi+gi) (see for instance [3]). Else we compute
for each i = 1, ..., k the values ti, ti corresponding to x∗, that we denote by ti

∗, ti
∗
. Those values can

be computed through the minimization or maximization of ti over the compact representation of
STAB(Gi+gi) and thus we get ti

∗ and ti
∗
via linear programming. We also use linear programming

duality to get certificates of optimality for ti
∗ and ti

∗
i.e. multipliers ¹i

∗ and ¹̄i
∗. Using ¹i

∗ and ¹̄i
∗

we can generate two valid inequalities for STAB(Gi+gi) : the first one of the form c1x∣Gi
+ ±1 ≤ ti

tight at (x∗∣Gi
, ti

∗) and a second one of the form ti ≤ c2x∣Gi
+ ±2 tight at (x∗∣Gi

, ti
∗
).

Now, by Lemma 13, we know that we only have to check if y = f(ti
∗, ti

∗
, i = 1, .., k) ∈

STAB(H) = MATCH(RH). We check feasibility of y via a separation procedure for match-
ing, e.g. [22]. If y is feasible then x ∈ STAB(G) and if not, we use the violated inequality from
matching to generate a violated inequality in the original space by substituting ti

∗ and ti
∗
with

c1x∣Gi
+ ±1 and c2x∣Gi

+ ±2 respectively.

The inequality we generate through this procedure is clearly violated by x∗. In order to prove that
our separation procedure is well defined, we need to prove that the corresponding inequality is valid
for STAB(G). The rest of this section is dedicated to this, and to prove that all the inequalities
we need for STAB(G) are obtained by such a substitution. This will prove the following:

Lemma 16. We can separate over STAB(G) in polynomial time using only linear programming
and an algorithm for separating over the matching polytope if we have a compact representation of
STAB(Gi + gi) for each i.

In order to prove the result, we need to understand how we can generate the facets of STAB(G).
We will study this by projecting the extended formulation from Corollary 14 using Fourier-Motzkin
procedure. Since the purpose now is not tractability but feasibility, we will assume for this purpose
that we have a representation of STAB(Gi + gi) in the original space i.e. ³ = 0 in Corollary 14.
We have to understand the form of the different inequalities involving t−i and t+i to understand how
they will be composed in the Fourier-Motzkin procedure.

Let us first study the inequality coming from the matching polytope STAB(H). We focus on
the facet that are neither non negativity inequalities nor clique inequalities because it is easy to
check that the cliques of g∗i and the non negativity inequalities in g∗i are also contained in the clique
and non negativity constraints associated with Gi + gi or correspond to the inequality t−i ≤ t+i .
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Thus they are already in the system (i) and we treat them without loss of generality as such (i.e.
not as facets of the matching polytope of H).

To show that our separation procedure is well defined, it is enough to prove that the facets of
the matching polytope of H at y = f(t−i , t

+
i , i = 1, .., k) involving the variables t−i or t+i are of the

form
∑

i l
−
i t

−
i + l+i t

+
i ≤ r with l−i > 0 and l+i = 0 or l−i = 0 and l+i < 0. Indeed in this case, we

can remove the variables t−i and t+i one at a time using Fourier-Motzkin elimination procedure.
Indeed observe that in that case, the inequalities generated by the Fourier-Motzkin procedure while
removing t−i come from combining inequalities [in corollary 14] from (i) (a) and from (iii) of the
form t−i ≤ ... or from (i) (a) and (i)(c) t−i ≤ t+i . Observe that the combination with the later one
will not bring much since this will introduce new inequalities ... ≤ t+i that can only be removed later
on using the upper bound on t+i (but then as already observed earlier, those inequalities are valid
for STAB(Gi)). Thus, while removing t−i we are only interested in combining inequalities from (i)
of the form ... ≤ t−i with inequalities from (iii) of the form t−i ≤ .... This precisely correspond to
substituting t−i the lhs of (i) into (iii). We can argue similarly for t+i . [NB: The constraints 0 ≤ t−i
and t+i ≤ 1 are already in (i) and are treated as such].

The following lemma proves that apart from the clique of g∗i and G0, all the facets of the
STAB(H) are of the desired form. We postpone its proof to the appendix.

Lemma 17. Let
∑

v avyv ≤ bv be a facet of STAB(H) that is neither a non negativity inequality
nor a clique inequality of H and let i ∈ [k] be such that not all aui , avi , awi , aw1

i
aw2

i
are equal to 0.

Then aui = avi = awi = ¸ > 0 and either aw1
i
= aw2

i
= 0 or aw1

i
= aw2

i
= ¸.

The Fourier-Motzkin procedure gives us already a way to characterize all the valid inequalities
we need for STAB(G) i.e. we need to substitute the value of t−i by c1x∣Gi

+±1 and t+i by c2x∣Gi
+±2

into the facet inequalities of the matching polytope of H, for all c1x∣Gi
+±1 ≤ ti and ti ≤ c2x∣Gi

+±2
facets of STAB(Gi+ gi). But we will now analyze precisely the kind of inequalities we get through
this procedure to derive a sharper characterization of STAB(G). From now on, we assume that
we have a description of all facets of STAB(Gi + gi) for all i.

Let us focus on a facets of STAB(H) that are neither non-negativity nor clique inequalities. It
follows from matching theory that these facets correspond to odd set inequalities, therefore they
are rank. The corresponding (rank) inequality reads from Lemma 17:

(1)
∑

i∈ℐ
(yui + yvi + ywi + ¸i(yw1

i
+ yw2

i
)) ≤ r

with ℐ ⊆ {1, ..., k} and ¸i ∈ {0, 1}. Let us now consider a facet of the graph Gi + gi that is
neither a non-negativity nor a clique inequality. The proof of Lemma 17 can be trivially extended
to STAB(Gi + gi) to show that all such facets will have the same coefficient °i on all vertices of gi
or only wi will be in the support of the facet. It follows that the facet reads:

(2) ¯ix∣Gi
+ °i(xwi + ¹i(xw1

i
+ xw2

i
)) ≤ ½i

with ¯i ∈ ℝ∣V (Gi)∣, °i ≥ 0 and ¹i ∈ {0, 1}. Observe that in the extended formulation, if ¸i = 0,
yui + yvi + ywi + ¸i(yw1

i
+ yw2

i
) reads 1 + t−i and if ¸i = 1, yui + yvi + ywi + ¸i(yw1

i
+ yw2

i
) reads

1 − t+i + x(Ai) + x(Bi). Similarly if ¹i = 1, (xwi + ¹i(xw1
i
+ xw2

i
)) reads 1 − t−i and if ¹i = 0,

(xwi + ¹i(xw1
i
+ xw2

i
)) reads 1 + t+i − x(Ai) − x(Bi). Therefore in the Fourier-Motzkin procedure,

when removing t−i and t+i , we will only combine inequalities for which ¸i +¹i = 1. Thus, from (1),
we will generate all inequalities of the form
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(3)
∑

i∈ℐ

¯i
°i
x∣Gi

≤ r +
∑

i∈ℐ
(
½i
°i

− 2)

where for all i ∈ ℐ, an inequality (2) such that ¸i + ¹i = 1 is substitute.
Let ℱ = {K1,K2, ...,K2n+1} an odd set of cliques of G. Let T ⊆ V be the set of vertices which

are covered by at least two cliques of ℱ . The inequality
∑

v∈T x(v) ≤ n is a valid inequality for
STAB(G) and an inequality of this type is called an Edmonds’ inequality. As we shall prove in
the next Lemma, the procedure we have defined gives a complete characterization of STAB(G)
from combining the facets of all STAB(Gi + gi)’s and Edmonds’ inequalities for a collection of
auxiliary graphs. Even though the procedure described above to combine those facets is derived
from Fourier-Motzkin elimination, the way we have stated it only relies on the “pure” form of the
inequalities (1) for STAB(H), for some auxiliary graph H, and (2) for STAB(Gi+ gi)’s. It is thus
worth recalling it in this term: from any facet of type (1) of STAB(H) and any facets of type (2)
of each STAB(Gi + gi)) such that ¸i + ¹i = 1, we can combine a valid inequality (3) and doing it
for all suitable auxiliary graphs yield the complete characterization.

Lemma 18. STAB(G) can be described by non negativity and clique inequalities, inequalities
describing STAB(Gi), for all i, and inequalities obtained as follows: 1) Consider any partition of [k]
into ℐ1, ℐ2 and define the graph ℋ(ℐ1, ℐ2) that is the composition of (Gi[Ai∪Bi], ai, bi) for all i ∈ ℐ1
and (g∗i , ai, bi) for all i ∈ ℐ2. ℋ(ℐ1, ℐ2) admits only Edmonds inequalities as facets; 2) Consider any
facet of STAB(ℋ(ℐ1, ℐ2)) of the form

∑
i∈ℐ1 °ix∣Ai∪Bi

+
∑

i∈ℐ2(yui + yvi + ywi +¸i(yw1
i
+ yw2

i
)) ≤ r

and apply the procedure explained above to the strips in ℐ1.
Proof. Sketch. ℋ(ℐ1, ℐ2) admits only Edmonds inequalities as facets because (Gi[{ai, bi} ∪ Ai ∪
Bi], ai, bi) is a “special” fuzzy linear interval strip and one can show that the inequalities are obtained
by lifting matching inequalities to Edmonds’ inequalities. We skip the technical details. We have
proved that using Fourier-Motzkin with non negativity and non clique facets of STAB(Gi+gi), we
get all inequalities of the form (2). We need to show now what we would get from substituting the
clique inequalities and non negativity constraint in STAB(Gi + gi). Those inequalities correspond
to : t−i ≥ 0, t+i ≤ x(Ai), X(Bi), t

−
i ≥ X(Ai) +X(Bi) − 1. The inequality we would get are valid

inequalities involving only x∣Ai∪Bi
for strip i. And thus they would be generated by the procedure

when i ∈ ℐ1 for some ℐ1.
Corollary 19. The characterization of STAB(G) reduces to characterizing STAB(Gi + gi) for
each i. In particular, if STAB(Gi + gi) is rank-perfect, then STAB(G) his rank-perfect.

The last result shows an alternative proof that the facets of STAB(G), when G is the compo-
sition of fuzzy linear interval strips, are either non negativity, or clique, or Edmonds’ inequalities.

4 Application to SSP of claw-free graphs

We now apply our previous (general) results to where they originated from: stable sets in claw-free
graphs. In the following, we assume the reader to be familiar with the topic, and therefore some
arguments are just sketched. We start with a decomposition theorem by Chudnovsky and Seymour.

Theorem 20. [7] For every claw-free graph G with ®(G) ≥ 4, if G does not admit a 1-join and
there is no homogeneous pair of cliques in G, then either G is a circular interval graph, or G is a
composition of linear interval strips, XX-strips, and antihat strips.

We will also use another decomposition theorem, less detailed, but algorithmic.
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Theorem 21. [16] Every claw-free graph G with ®(G) ≥ 4, is either a distance claw-free graph, or
the composition of distance simplicial strips and 5-wheel strips. Moreover, in time O(n4) we can
recognize whether G belongs to the former or the latter class, and, in case, find the strips in the
decomposition (as well as the graph G0).

XX-strips and antihat strips are defined later. A 5-wheel strip is a strip (Gi, ai, bi) with an
induced 5-wheel and stability number at most three. A distance simplicial graph [16] is a connected
graph such that there exists v with ®(Nj(v)) = 1 for each j. A distance claw-free [24] graph is a
connected graph such that, for every v and every j, ®(Nj(v)) ≤ 2.

Extended formulations. The technique developed in Sections 1 and 2 can be applied to obtain
two extended formulations for the stable set polytope of claw-free graphs. We suppose in the
following that ®(G) ≥ 4, otherwise STAB(G) can be expressed as the projection of the convex hull
of the O(n3) stable sets of G. If the graph is distance claw-free, then we can use a compact extended
formulation due to Pulleyblank and Shepherd [24]. It is easy to see that, if (G, a, b) is a distance
simplicial strip, then both G and G+g are distance claw-free graphs. In order to apply Theorem 4,
we need a complete description of the stable set polytope of each strip (possibly in some extended
space). STAB(Gi) admits a compact extended formulation both if (Gi, ai, bi) is distance simplicial
or if (Gi, ai, bi) is a 5−wheel strip (since it has stability number at most 3). In order to apply
Corollary 15, we conversely need for each strip a complete description of the stable set of Gi + g
(again possibly extended). If Gi is distance simplicial, then again we can use the compact extended
formulations for the stable set of a distance claw-free graph; if it is a 5−wheel strip, we express
STAB(G) as the convex hull of O(n4) stable sets. Thus in both case we can obtain an extended
formulation for the stable set polytope of claw-free graphs, where the only non-compact system is
the one describing the matching polyhedron. Thus, not surprisingly, a compact formulation for the
matching polytope would imply a compact one for the stable set polytope of claw-free graphs.

Polynomial time separation Let G(V,E) be claw-free and fix x ∈ ℝ∣V ∣. We assume that
®(G) ≥ 4. Otherwise we again express STAB(G) as the convex hull of O(n3) stable sets and
generate a separating hyperplane, if any, through the dual of the resulting compact system. From
Theorem 21 we check in polynomial time whetherG is a distance claw-free graph, or the composition
of distance claw-free strips and 5-wheel strips. In the former case, we use the compact extended
formulation of STAB(G) mentioned above. In the latter case, we rely on Lemma 16. We therefore
just need an algorithm for separating over the matching polytope [22] and for each strip (Gi, ai, bi)
a compact representation of STAB(Gi + gi), when Gi is either a distance simplicial graph, or a
graph with an induced 5-wheel and ®(Gi) ≤ 3. Both cases have already been considered above.

Polyhedral characterization when ®(G) ≥ 4, no homogenous pairs and no 1-join. Let
G(V,E) be claw-free with ®(G) ≥ 4, no homogenous pairs and no 1-join. From Theorem 20, G
is either a circular interval graph, or the a composition of linear interval strips, XX-strips, and
antihat strips. In the former case, a linear description of STAB(G) is given in [12]. In the latter
case, we rely on Lemma 18. We therefore just need a linear representation of STAB(G+ g), when
G is either a linear interval strip, or a XX-strip, or an antihat strip. The composition of a linear
interval strip with the trivial strip g is a circular interval graph, and has been considered above.

Let (G, a, b) be the XX strip. Since a XX strip has a bounded number of vertices (up to 13), we
derived a computer based description of STAB(G+ g). Details, as well as the definition of the XX
strip are in the Appendix. Let (G, a, b) be an antihat strip. In this case, ®(G+g) ≤ 3. Thus, we use
the well known result [6] asserting that each facet inducing inequality of STAB(G), G claw-free,
can be described by a system of roots (affinely independent stable sets tight for the inequality)
S1, . . . , Sn such that ∣Si∣ ∈ {p, p+ 1} for some p. Since a complete description of STAB(G), when
®(G) ≤ 2, has been given by Cook (see [18]) and Shepherd [26] and this can be trivially extended
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to describe the facets described by a system of roots of size 1 and 2 in claw-free graphs (see the
arguments in the alternative proof by [18]), the problem of describing STAB(G + g) reduces to
characterizing the facets described by a system of roots are of size either two or three. Detail on
the analysis of those facets, as well as the definition of the antihat strip, are in the Appendix.

We close with a couple of remarks. We recently became aware that a linear description of
STAB(G), for G claw-free with ®(G) ≥ 4, no homogenous pairs and no 1-join, has also been
obtained by Galluccio, Gentile and Ventura [14].

Chudnovsky and Seymour recently proved another much more detailed decomposition theorem
for a general claw-free graph G [8]. Building upon this theorem and Lemma 18, a characterization
of STAB(G) would follow from a linear representation of STAB(Gi+gi), for each strip Gi involved
in the decomposition and a description of all other building bricks (such as fuzzy circular interval
graphs). So far we have been able to derive this characterization for all strips in the decomposition
that have ® ≥ 4. Recalling again that all facets described by a system of roots of size 1 and
2 can be derived from Cook (see [18]), thus the problem of providing a complete description for
STAB(G) for any claw-free graph reduces to that of describing the facet inducing inequalities that
can described by a system of roots of size either two or three. In general, this can be quite difficult
(e.g. it can have arbitrary many coefficient, see [23]). However for the class of claw-free graphs with
® ≥ 4, the strips with ® ≤ 3 seems to be friendlier from the polyhedral point of view and we are
ruling out the different cases one by one. Our main remaining issue concerns a strip that resembles
– but, unfortunately, is not exactly! – an antihat strip. However we strongly believe that ruling
out each remaining cases is more a question of finding the right technical statements to prove that
the inequalities are in a class we already know than discovering new fundamentals properties.
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5 Appendix

5.1 Proof of Lemma 17

Proof. for ease of notation, we denote u = ui, v = vi, .... Let K1 be the clique u ∪ (n(u) ∖ V (g∗i )),
K2 the clique {u,w,w1}, K3 the clique {w,w1, w2}, K4 the clique {v, w,w2} and K5 the clique
v∪ (n(v)∖V (g∗i )). We will repeatedly use the following fact: since the facet is not a clique, for each
clique K, there must exist a root of the facet missing K.

Assume first that aw1 , aw2 ∕= 0. K2 is missed implies that aw1 ≤ aw2 (the root missing K2 has
to pick w2 otherwise we can add w1 to the root an violate the facet but then we can swap w1 and
w2) and similarly aw ≤ aw2 . Vice versa, K4 is missed implies that aw1 ≥ aw2 . Therefore both
values are equal to say ¸ > 0. w is in a root of the facets (otherwise the inequality is xw ≥ 0).
Thus aw ≥ aw1 , aw2 = ¸ (again by swapping w with w1 or w2). We know at the current stage
that aw = aw1 = aw2 = ¸. By similar arguments, K3 is missed implies that au ≥ aw1 = ¸ and
av ≥ aw2 = ¸ (the roots that miss K3 pick u and v otherwise we can add w1 or w2). Now finally,
the root missing K1 must pick w or w1 otherwise we add u to the root and we violate the inequality
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(we already now that au ≥ ¸ > 0). Thus au ≤ ¸ because otherwise, swapping the vertex in {w,w1}
with u would yield a stable set violating the inequality. Similarly, av ≤ ¸. And the result follows.

Let us assume now that wlog aw1 = 0. Then because there is a root missing K4, aw2 = 0 too.
Moreover the facet is also a facet of the support graph i.e. G[V (G) ∖ {w1, w2}]. We are now going
to argue on the support graph. Suppose au > 0. There must exists a root missing K1 but then it
has to take w (otherwise we add u). Thus aw ≥ au. Similarly aw ≥ av. There is a root missing edge
{u,w}, otherwise it is a clique inequality : this root picks v otherwise we can add w and violate the
inequality. But this implies that aw ≤ av (by swapping v, w). Similarly aw = au and the results
follows. We are left to check the case where au = 0. But then since there must exist a root missing
edge (w, v), aw = 0 (otherwise you either add w to the root if it does not take u or just swap u and
v if it does). K5 is missed by some root, thus either w is in this root and then swapping w and v
implies that av = 0 or w is not in but then we can add v and thus again av = 0 : both cases yield
contradiction with av, au, aw, aw1 , aw2 not all 0.

5.2 XX-strip

Consider the graph G(V,E) with V = {v1, . . . , v13} and the following adjacencies: v1 − ⋅ ⋅ ⋅ − v6 is
a hole in G of length 6. v7 is adjacent to v1, v2; v8 is adjacent to v4, v5; v9 is adjacent to v6, v1 v2,
v3; v10 is adjacent to v3, v4, v5, v6, v9; v11 is adjacent to v3, v4, v6, v1, v9, v10; v12 is adjacent to v2,
v3, v5, v6, v9, v10; and v13 is adjacent to v1, v2, v4, v5, v7, v8. Let X ⊆ {v11, v12, v13}; then the strip
(G ∖ X; v7, v8) is an XX-strip. We derived a computer based description of STAB(G + g) using
Komei Fukuda’s CCD. Inequalities are listed below (variables corresponding to vertices wi, w

i
1, w

i
2

of the trivial strip are denoted respectively by x14, x15, and x16).

x1 + x4 + x11 + x13 + x14 + x15 + x16 ≤ 2 (1)
x2 + x3 + x4 + x13 + x14 + x15 + x16 ≤ 2 (2)
x2 + x5 + x12 + x13 + x14 + x15 + x16 ≤ 2 (3)

x1 + x2 + x4 + x5 + x9 + x10 + x13 + x14 ≤ 2 (4)
x1 + x5 + x6 + x13 + x14 + x15 + x16 ≤ 2 (5)

x1 + x4 + x5 + x6 + x9 + x10 + x11 + x13 + x14 ≤ 2 (6)
x1 + x2 + x5 + x6 + x9 + x10 + x12 + x13 + x14 ≤ 2 (7)
x2 + x3 + x4 + x5 + x9 + x10 + x12 + x13 + x14 ≤ 2 (8)
x1 + x2 + x3 + x4 + x9 + x10 + x11 + x13 + x14 ≤ 2 (9)

x1 + x2 + x3 + x6 + 2x9 + x10 + x11 + x12 ≤ 2 (10)
x3 + x4 + x5 + x6 + x9 + 2x10 + x11 + x12 ≤ 2 (11)

x1 + x2 + x3 + x4 + x5 + x6 + 2x9 + 2x10 + x11 + x12 + x13 + x14 ≤ 3 (12)
x1 + x2 + x3 + x4 + x5 + x6 + x9 + x10 + x11 + x12 + x13 + x14 + x15 + x16 ≤ 3 (13)

Note that (1, 2, 3, 4, 5) are Edmonds’s inequality with support a circular interval graph, (6, 7, 8, 9)
are Edmonds’s inequality with support a fuzzy circular interval graph, (10, 11) are lifted 5-wheel
inequalities, (12) is the gear inequality (see [13]), where (13) has a full support.

5.3 Antihat-strip

Let n ≥ 0. Let A = {0, a1, . . . , an}; B = {b0, b1, . . . bn} and C = {c1, . . . , cn} be three cliques,
pairwise disjoint. Let J be the graph with vertex set A∪B ∪C and with adjacency as follows: for
0 ≤ i ≤ j ≤ n, let ai, bj be adjacent if and only if i = j > 0, and for 1 ≤ i ≤ n and 0 ≤ j ≤ n let ci
be adjacent to aj , bj if and only if i ∕= j ∕= 0. Let X ⊂ (A ∪B ∪ C) with a0, b0 /∈ X; then the strip
(G ∖X; a0, b0) is called an antihat strip.
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We say that a graph G(V,E) is a 3−clique if A,B,C, {a, b} is a partition of V , where a, b /∈
A ∪ B ∪ C, A, B, C are cliques, N(a) = A, and N(b) = B, and ®(G ∖ {a, b}) ≤ 2. One can easily
check that if (G, a, b) is an antihat strip, then G is a three clique. In the following, we give a linear
description of STAB(G+ g), when G is a 3-clique. We need a few preliminaries.

Definition 22. A graph G is a combination of odd antiholes if G can be built up from odd antiholes
by iterating sequential lifting and complete join operations, i.e.,

∙ G is a lifting of H1 ×H2 × . . .×Hq;

∙ for each j = 1, . . . , q, Hj is either an odd antihole or a combination of odd antiholes.

As it was shown by Cook (see [18]) and Shepherd [26], one can characterize all facets of STAB(G)
if ®(G) = 2:

Theorem 23. The facets of the stable set polytope of a graph G = (V,E) with ®(G) = 2 are trivial
constraints and inequalities

2
∑

v∈P
xv +

∑

v∈Q
xv ≤ 2 (5)

for each pair (P,Q) such that P is a clique, Q is a combination of odd antiholes, P is totally joined
to Q, and P and Q are maximal with respect to these properties.

We will build upon on the following result of Galluccio and Sassano to characterize the facets
of claw-free graphs described by a system of n roots of size 1 and 2.

Lemma 24. [15] Let G(V,E) be a graph with ®(G) = 2. If x(Q) ≤ 2 is facet-defining for STAB(G),
then Q = V and G is a combination of odd anti-hole.

Corollary 25. Let G(V,E) be a claw-free graph, and ¸x ≤ ¸0 define a facet F of STAB(G) that
can be described by a system of roots of size 1 or 2, with at least a root of size 1 and a root of size
2. Then ¸x ≤ ¸0 is of the form (5).

Proof. Let ¸x ≤ ¸0 be a facet-defining inequality of STAB(G) which satisfies the hypothesis of the
statement. This implies that there exists at least a vertex w such that ¸w = ¸0 and a vertex w′ such
that ¸w′ < ¸0, and note that w is complete to all other vertices of the support S of the inequality.
Denote by P all vertices v with ¸v = ¸w and by Q the other vertices in the support (note that Q is
non-empty, since it contains w′). It follows that P is a clique, and it is complete to Q . Moreover,
since G is claw-free, ®(Q) ≤ 2. Then

∑
v∈Q ¸vxv ≤ ¸0 is facet-defining for STAB(G′) for G′ = G[Q]

with ®(G′) = 2 and all of its root have size 2, i.e. it is a multiple of
∑

v∈Q xv ≤ 2. From Lemma
24, Q is a composition of odd antiholes. Thus the inequality 2

∑
i∈P xi +

∑
i∈Q xi ≤ 2 is valid for

STAB(G) and tight for all roots, i.e. is a multiple of ¸x ≤ ¸0.

Lemma 26. Let G be a 3−clique graph. Then STAB(G+ g) is completely defined by the following
inequalities:

(i) Trivial and clique inequalities.

(ii) 2
∑

v∈P xv +
∑

v∈Q xv ≤ 2 for each pair (P,Q) such that P is a clique, Q is a combination
of odd antiholes, P is totally joined to Q, and P and Q are maximal with respect to these
properties.

(iii)
∑

v∈Ā∪B̄∪C̄∪{c,d,e} xv ≤ 2 for all Ā ⊆ A, B̄ ⊆ B and C̄ ⊆ C such that: C̄ is complete to Ā∪ B̄;

Ā, B̄, C̄ are maximal with this property.
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Proof. Let G be a 3−clique graph, and recall ®(G + g) ≤ 3 holds. Fix a facet-defining inequality
¸x ≤ ¸0 that is not a trivial inequality and consider the subgraph Ḡ of G+g induced by the support
S of this inequality. We already observed (cfr. Section 4) that ¸x ≤ ¸0 belongs to at least one of
the sets S{1}, S{1,2}, S{2}, S{2,3}, S{3}, where for each K ⊂ [3], SK is the set of facets described by
a system of n roots whose size belong to K.

For K = {1} (resp. K = {2}), n roots lie on the hyperplane
∑

v∈S xv = 1 (resp
∑

v∈S xv = 2).
Thus, there is no stable set of size 3 in Ḡ, since it would violate the inequality. Then by Theorem 23
all facet defining inequalities are of the kind (i) or (ii). To settle the case K = {3}, note that each
stable set of size 3 in G takes a vertex from C. Thus, this facet correspond to the clique inequality
x(C) ≤ 1. We are left with the case the facet belong to S{1,2} ∖ (S{1}∪S{2}) or S{2,3} ∖ (S{2}∪S{3}).
The facet of S{1,2} ∖ (S{1} ∪ S{2}) correspond to facets (ii) because of Corollary 25. Thus we are
left with the case of n affinely independent root of size 2 and 3. We already argued (cfr. Section 3)
that one of the following happens: either no vertex in {w,w1, w2} belongs to the support, or only
w belong to the support, or they all belong to the support and have the same coefficient. If one of
the first two cases holds, then ®(Ḡ) ≤ 2, contradicting the existence of a root of size 3. Thus, let
{w,w1, w2} be in the support and have the same coefficient. Let C1 be the subset of C ∩ S that is
complete to S∩ (A∪B), and C2 = (C ∩S)∖C1. We shall prove that the facet-defining inequality is
a positive multiple of

∑
v∈S∖C2

xv ≤ 2. Note indeed that this inequality is valid and tight for each
stable set of size 3 in G + g (since they all pick a vertex from C2), it is valid for all stable sets of
size 2, and tight for the subset of those that do not take a vertex in C2. Thus we are left to show
that stable sets {u, v} with u ∈ C2 are not roots of the facet. Note that either v ∈ A, or v ∈ B, or
v ∈ {w,w1, w2}. If v ∈ A (resp. B) I can add d (resp. w) to the stable set and increase ¸x; thus,
this stable set cannot be a root. So we can assume v ∈ {w,w1, w2}, and since ¸w = ¸w1 = ¸w2 , if
(u, v) is a root, so are (u,w1), (u,w2). Since each vertex of C2 has a non-adjacent in S ∩ (A ∪B),
we can assume w.l.o.g. that (u, a) /∈ E for some a ∈ A ∩ S. Thus {u, a, w2} is a feasible stable set
that violates the inequality, i.e. a contradiction.
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