
Review Article

CO metabolism, sensing, and
signaling

Francesca Gullotta,1,2 Alessandra di Masi,3 Massimo Coletta,1,2 and Paolo Ascenzi3*
1Department of Experimental Medicine and Biochemical Sciences, University of Roma ‘‘Tor Vergata,’’ Via Montpellier 1,
I-00133 Roma, Italy
2Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Piazza Umberto I 1, I-70126
Bari, Italy
3Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Viale Marconi 446,
I-00146 Roma, Italy

Abstract.
CO is a colorless and odorless gas produced by the

incomplete combustion of hydrocarbons, both of natural and

anthropogenic origin. Several microorganisms, including

aerobic and anaerobic bacteria and anaerobic archaea, use

exogenous CO as a source of carbon and energy for growth.

On the other hand, eukaryotic organisms use endogenous CO,

produced during heme degradation, as a neurotransmitter and

as a signal molecule. CO sensors act as signal transducers by

coupling a ‘‘regulatory’’ heme-binding domain to a

‘‘functional’’ signal transmitter. Although high CO

concentrations inhibit generally heme-protein actions, low CO

levels can influence several signaling pathways, including

those regulated by soluble guanylate cyclase and/or mitogen-

activated protein kinases. This review summarizes recent

insights into CO metabolism, sensing, and signaling.
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1. Introduction

CO is a colorless and odorless toxic gas produced by the

incomplete combustion of hydrocarbons, both of natural and

anthropogenic origin. Most of the CO is produced in the

atmosphere by reactions of: (i) hydroxyl radicals with meth-

ane and other hydrocarbons, (ii) alkenes with ozone, and

(iii) isoprene and terpenes with hydroxyl radicals and ozone.
Other natural sources of CO include plants and oceans, vol-
canic activity, and forest fires. The most noticeable human
activities responsible for CO production are transportation,
stationary source fuel combustion, industrial processes,
solid waste disposal, and burning of forest and agricultural
materials [1].
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Endogenous CO production depends mainly on heme
degradation catalyzed by heme oxygenase (HO), both in pro-
karyotic and eukaryotic organisms [2–6]. Therefore, despite
its toxicity [1,7,8], CO plays a key role in several metabolic
processes and in diverse signal transduction pathways in
bacteria, archaea, and eukaryotes [9–11].

In both prokaryotes and eukaryotes, the major molecu-
lar targets of CO are heme-proteins [12,13], which display
diverse biological functions including sensing and transpor-
tation of diatomic gases, catalysis, and electron transfer
[11,13–15]. A number of signaling effects of CO depend on
the modulation of soluble guanylate cyclase (sGC) and/or
activation of mitogen-activated protein kinases (MAPKs). In
fact, CO is critical in both physiological (e.g., memory and
neurotransmission) and pathophysiological (e.g., stress
response to pathogens and ischemia) conditions [12,16–21].

Here, recent insights into CO metabolism, sensing, and
signaling are reviewed.

2. CO metabolism

2.1. CO and prokaryotic organisms
Several microorganisms, including aerobic and anaerobic bac-
teria and anaerobic archaea, use CO as a source of carbon
and energy for growth [10,11,22]. CO-metabolizing bacteria,
spanning multiple phylogenetic lineages, include aerobic car-
boxydotrophic and carboxydovores bacteria (the latter being
unable to grow in the presence of elevated CO concentra-
tions) [9], and obligate anaerobic CO oxidizers (e.g., aceto-
genic bacteria, hydrogenogenic bacteria, phototrophic purple
nonsulfur bacteria, and sulfate-reducing bacteria) [11]. These
bacteria are globally distributed in soils and oceans, and
include pathogens, plant symbionts, and biogeochemically
important lineages [9]. In addition, hydrogenogenic, methano-
genic, and both sulfate and sulfur reducing anaerobic archaea
are able to metabolize CO [10,11]. Archaeal aerobic CO oxidiz-
ers have not been identified so far [9]. Remarkably, microbial
CO metabolism helps to maintain environmental CO below
toxic levels, by removing about 108 tons of CO from the lower
atmosphere of the earth every year [23].

CO oxidation by aerobes and anaerobes differs mecha-
nistically [9–11]. Any known CO-dependent energy metabo-
lism depends on the CO-dehydrogenase (CODH) [9,10], an
enzyme containing iron and either molybdenum (in aerobes)
or nickel (in anaerobes) in its active site [10]. CODH, widely
distributed among physiologically and phylogenetically
diverse lineages of bacteria and archaea [24], is classified ei-
ther according to its metal/cofactor content (i.e., Mo- and
Ni-containing CODH) or according to its metabolic role
(reflected by its subunit composition) and catalytic activity
(i.e., monofunctional and bifunctional CODHs) [10,11].

Monofunctional CODHs are characterized by a catalytic
subunit (CooS), which encodes the CODH activity. These
enzymes produce electrons that can be transferred to a vari-
ety of electron shuttles, enabling the coupling of CO oxida-
tion to the reduction of H2O, metals, nicotinamide adenine
dinucleotide (NADP), sulfate, and so on. [11]. Thus, CODHs

catalyze the oxidation of CO to CO2 (and the reverse reac-
tion); CO2 is then fixed into cellular carbon by one of the
reductive CO2 fixation pathways (e.g., the Calvin–Benson–
Bassham (CBB) cycle, the reverse tricarboxylic acid cycle,
the 3-hydoxypropionate cycle, and the Wood–Ljungdahl
pathway) [23]. When coupled to acetyl-coenzyme A (-CoA)
synthase (ACS), CODH forms the bifunctional CODH (CODH/
ACS). In CODH/ACS, CODH catalyzes the reduction of CO2 to
CO, while ACS condenses CoA, a methyl group, and CO to
form acetyl-CoA [23]. The CODH/ACS complex is pivotal for
aceticlastic methanogenesis and acetogenesis in bacteria
and archaea to form acetyl-CoA from either CO2 or CO [23].

2.2. CO and eukaryotic organisms
Although nonenzymatic heme metabolism occurs in vivo,

about 80% of the CO present in the human body is pro-

duced during hemoglobin (Hb) degradation [2]. The heme

oxidative degradation is catalyzed by HO in concert with

both the microsomal-reduced nicotinamide adenine dinucleo-

tide phosphate (NADPH) cytochrome p450 reductase (CPR;

NADPH-CPR) and the NAD(P)H biliverdin reductase (BVR). In

mammals, HO, NADPH-CPR, and NAD(P)H-BVR form a com-

plex on the endoplasmic reticulum (ER) [2]. HO breaks the

a-methene carbon bond of the porphyrin ring of the heme

using NADPH and O2 in a reaction that releases equimolar

amounts of biliverdin (BV), CO, and iron [2,25–27]. BV is rap-

idly reduced by the BVR to bilirubin, a powerful endogenous

antioxidant [25], which undergoes further modification(s)

before eventual secretion in urine and feces [28,29], iron

being recycled for the synthesis of metal centers [30].
Endogenous CO is removed from the body mainly by

expiration and oxidation. Indeed, CO binds to Hb forming
carbonylated Hb (HbCO) and is subsequently transported
and exhaled through the lung, by rapid diffusion across the
alveolar-capillary membrane. This process is influenced by
the alveolar gas volume, ventilation, and Hb concentration
[12]. Although CO displays a very high affinity for Hb, O2 can
compete with CO for the heme-Fe-atom binding [31]. More-
over, CO can be slowly oxidized to CO2 by mitochondrial
cytochrome c oxidase (COX) [32].

The major site of heme breakdown, and therefore the
major organ for the production of endogenous CO, is the
liver; remarkably, also the spleen, the brain, and the erythro-
poietic system are additional important catabolic generators
of CO [1,33]. Although most heme is derived from senescing
red blood cells and ineffective erythropoiesis, about 20% of
the total amount of endogenous CO comes from the degrada-
tion of non-Hb heme-proteins, such as catalase, cytochromes,
myoglobin (Mb), and peroxidases [32]. All of these sources
result in a normal blood HbCO saturation of 0.3–1% [34].

HOs from different organisms display essentially the
same catalytic mechanism [4], even if there are considerable
variations in the number of HO isoforms [6]. Although plants
can express multiple HO isoforms, most bacteria, fungi, and
animals contain only one isoform [5]. However, in most mam-
malian cells, three HO isoforms have been identified [2,3].
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Although HO-1 and HO-2 isoforms are mostly recognized for
their role in the heme oxidation and in the production of CO
and BV, the biological function of HO-3 is still unclear [35–
37]. The distribution of HO isoforms is largely linked to the
specific biological actions of CO in different organs and tis-
sues [2,3,12].

HO-1, also known as the heat shock protein 32 [38],
represents the inducible isoform expressed under physiolog-
ical conditions and at high concentrations in the spleen and
in the liver, where it contributes to heme metabolism follow-
ing erythrocyte breakdown [17]. Besides its role in heme
degradation, HO-1 can exert cytoprotective functions (i.e.,
anti-apoptotic, anti-inflammatory, and anti-proliferative)
[20,26,39]. Indeed, by itself or by its enzymatic products,
HO-1 acts in tissue homeostasis suppressing oxidative stress
and maintaining cellular integrity [20,26]. When expressed
under various pathological conditions, HO-1 metabolizes
large amounts of heme, thus producing high CO levels that
in turn can influence various biological events [40]. HO-1 is
primarily expressed by high levels of free heme, by a variety
of stressful stimuli (e.g., heat shock, heavy metals, hypoxia,
hyperoxia, gaseous nitrogen monoxide (NO), NO-donors, oxi-
dative stress, sodium arsenite, and various cytokines), as
well as by growth factors, hormones, disease states, dietary
antioxidants, (including various classes of natural products),
and drugs [12,20,26,30,41,42]. Furthermore, HO-1 expression
is upregulated by exogenous CO [43–45]. The induction of
HO-1 is regulated predominantly at the transcriptional level
by several cellular transcription factors, such as the nuclear
factor-erythroid 2-p45-related factor-2 (Nrf2))
[12,26,39,41,42], which is activated by multiple mechanisms
and various signaling pathways, including MAPKs
[12,26,41,46]. Remarkably, negative regulators of HO-1
expression, including scavengers of reactive oxygen species
(ROS), have been reported [27].

HO-2 is constitutively expressed in most tissues and
organs, activated by Ca2þ-calmodulin and phosphorylated by
casein kinase 2 [47]. HO-2 is a member of the glucocorti-
coid-regulated proteins family, which is specifically upregu-
lated by adrenal glucocorticoids, opioids, and estrogens [41].
HO-2 is localized in the endothelial layer of blood vessels
[48], in discrete population of neurons in the brain [49,50],
in many neurons of the myenteric plexus of the intestines
[51–53], and in the testes [17,54]. HO-2 appears to be
involved in neuronal communication through the action of
CO [6,21,55].

Recently, the critical physiological role of the HO/CO
system has been highlighted by several lines of evidence: (i)
the description of the first and unique case of human HO-1
deficiency; (ii) the identification of human functional HO-1
polymorphisms; (iii) the production of knockout animal mod-
els by targeted deletion of HO-1 and HO-2 genes; (iv) the
production of transgenic animals overexpressing HO in a tis-
sue-specific manner; (v) the HO-1 and HO-2 genes knock-
down by RNA interference; and (vi) the modulation of HO ac-
tivity by pharmacological approaches (i.e., HO activators and
mimetics, porphyrin and nonporphyrin-based HO inhibitors)
[21,41,42,56]. Both the human case of HO-1 deficiency and

the HO-1 knockout mouse model provide clear evidence of a
role of HO-1 in the heme degradation, in the maintenance of
vascular and tissue iron homeostasis, and in the systemic
responses to stress [21,41,56]. Remarkably, the protective
role of HO-1 has been demonstrated by both preclinical stud-
ies using HO-1 knockout and by analysis of transgenic mice
models [42]. Even if few studies investigated the specific
HO-2 physiological roles, gene deletion in knockout mouse
models resulted to be associated with several pathophysio-
logical conditions [41]. Remarkably, all these studies suggest
that HO-1 and HO-2 play important physiological functions
independently from each other [41].

The HO-catalyzed CO production in vivo is modulated
by several amino acids [6]. Arginine regulates CO production
by upregulating HO-1 expression, likely through a NO-de-
pendent mechanism and by increasing HO-3 expression. Glu-
tamine induces HO-1 expression, revealing a cytoprotective
effect. Glutamate and alanine increase CO synthesis in multi-
ple cell types, stimulating the expression of both HO-1 and
HO-2 in endothelial cells and brain. Taurine chloramine and
taurine bromamine show anti-inflammatory properties by
enhancing HO-1 levels in macrophages, thus leading to the
inhibition of cyclooxygenase-2 expression and prostaglandin-
E2 production. Taurine chloramine also promotes HO-1
expression in human fibroblasts-like synoviocytes and sup-
presses the interleukin (IL)-1b-induced production of proin-
flammatory cytokines. Methionine increases HO-1 expression
and CO production in epithelial cells. N-acetyl-cysteine
reduces HO-1 expression at both mRNA and protein levels in
vascular smooth muscle cells, and injured brain protecting
cells from oxidative stress. Either cysteine or glutathione
may mediate a stimulatory effect of N-acetyl-cysteine on CO
production, via alteration of the cellular redox state. Some
peptides, produced by protein degradation in the intestinal
lumen (e.g., Met-Tyr and D-Arg-D-m-Tyr-Lys-Phe), are also
potent regulators of CO production, promoting the increase
of HO-1 levels [6].

CO can be also obtained by HO-independent heme
degradation. In fact, hydrogen peroxide and ascorbic acid
catalyze the cleavage of the heme methylene bridges fol-
lowed by the elimination of a methene-bridge carbon atom
as CO. Moreover, the self-inactivation of the cytochrome
p450 leads to the breakage of the bond between the heme
and the apo-enzyme leading to heme degradation and CO
biosynthesis [12].

Remarkably, heme-independent sources for CO produc-
tion have been reported [12,57,58]. Indeed, minor sources of
CO include the auto- and enzymatic-oxidation of flavonoids,
halomethanes, and phenols, the photo-oxidation of organic
compounds, and the peroxidation of membrane lipids
[12,58]. The reduction of cytochrome b5 is also accompanied
by CO production [57].

Endogenous CO levels can be influenced by either path-
ophysiological conditions or chemicals inducing red blood
cells destruction, hemoprotein breakdown, and HO-1 activity
[58]. In women, the endogenous CO production doubles dur-
ing the progesterone phase (0.62 mL/h vs. 0.32 mL/h in
estrogen phase), and increases during pregnancy (0.92 mL/h)
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due to contributions from fetal endogenous CO production
(0.036 mL/h) and altered Hb metabolism [58]. Enhanced en-
dogenous CO production is also caused by the increase in
HbCO concentration with altitude, and by a number of differ-
ent pathological conditions, including hemolytic, inflamma-
tory, and oxidative diseases [58]. The administration of drugs,
such as allyl-containing compounds (acetamides and barbitu-
rates), contraceptives, diphenylhydantoin, nicotinic acid, phe-
nobarbital, progesterone, and statins induce CO formation.
Carbon disulfide and sulfur-containing chemicals (e.g., para-
thion and phenylthiourea) also induce CO production, facili-
tating the heme degradation of cytochrome p450 [58]. The
metabolic degradation of dihalomethanes by cytochrome
p450 also increases the CO synthesis, leading to very high
levels of HbCO (>10%), which can be further enhanced by
prior exposure to hydrocarbons or ethanol [58]. Finally, addi-
tional sources of nonheme CO are thought to be intestinal
bacteria, under pathophysiological conditions [15].

3. CO sensing

Heme-based sensor proteins are key regulators of cellular
responses to changes in CO, H2S, NO, and O2 levels. Heme-
proteins act as signal transducers by coupling a ‘‘regulatory’’
heme-binding site to a ‘‘functional’’ signal transmitter region.
Four different types of heme-binding modules are known: (i)
the heme-binding period circadian protein (P)-aryl hydrocar-
bon receptor nuclear translocator protein (A)-single-minded
protein (S) (PAS) domain, (ii) the globin-coupled sensor
(GCS), (iii) the bacterial transcription factor CO oxidation ac-
tivator (CooA), and (iv) the heme-NO-binding (HNOB) do-
main. The transmitters coupled to such heme-binding
domains include cyclase, histidine protein kinases, cyclic
nucleotide phosphodiesterases, chemotaxis methyl-carrier
protein receptors, and transcription factors of the basic
helix-loop-helix (bHLH) and the helix-turn-helix classes [14,15].

The best known CO-sensors is CooA, a homodimeric
heme-containing protein, which regulates the CO oxidation
system in the photosynthetic bacterium Rodospirillum
rubrum [59–62], and the mammalian neuronal (N) period cir-
cadian protein (Per)-aryl hydrocarbon receptor nuclear trans-
locator protein (Arnt) -single-minded protein (Sim) protein 2
(NPAS2), a member of the bHLH family of transcription fac-
tors expressed in the forebrain, which is a CO-dependent
regulator of the circadian rhythm [59,60,63].

CooA represents the prototypic CO sensor present in a
wide variety of bacteria [64]. In the purple nonsulfur bacte-
rium R. rubrum, in the presence of CO, CooA promotes the
transcription of genes involved in CO oxidation [61,62]. Both
chains of CooA contain a N-terminal sensory domain and a
C-terminal DNA-binding domain, connected by the long C-he-
lix [65]. The inactive ‘‘off state’’ of CooA has the His and Pro
residues as the two axial ligands of the heme-Fe2þ-atom. In
contrast, in the ‘‘on state,’’ which is active in DNA binding,
the Pro residue is replaced by CO [61,62]. In addition to CO
binding, the active on state of CooA has two major structural
differences from the off state: (i) the repositioning of the

long C-helices at the dimer interface and (ii) the concomitant
reorientation of the hinge region between the DNA- and
effector-binding domains within each monomer [61].

CooA acts also as a redox sensor [61]; indeed, CO is
able to bind only the reduced form of CooA, this causing a
protein conformational change(s) necessary for DNA binding
and thereby for CooA-dependent gene transcription [60].
Recent studies suggest that changes in the heme ligation al-
ter the structure stability of the heme domain and of the
dimer interface, without altering the stability of the DNA-
binding domain [66].

The mammalian NPAS2, together with its binding part-
ner brain and muscle aryl hydrocarbon receptor nuclear
translocator-like protein 1 (BMAL1), a bHLH transcription fac-
tor, binds DNA as an obligatory heterodimer [63,67]. The
transcriptional activity of the NPAS2-BMAL1 heterodimer is
modulated by CO and by the cellular redox balance (i.e., the
NADPH/NADP molar ratio) [59,63]. The NPAS2 monomer con-
tains two hemes located in the PAS domains (named PAS-A
and PAS-B) and representing the CO-binding sites; both
hemes are six-coordinated in the ‘‘resting state’’ [60,63].
Remarkably, CO binding to the heme-PAS domains, leading
to the ‘‘inactive state,’’ inhibits the DNA binding activity of
holo-PAS2 and leads to the formation of inactive BMAL1
homodimers instead of active NPAS2-BMAL1 heterodimers
[63]. In vivo, this results in the negative modulation of the
day–night cycle [67]. A model of the pathway involves light-
induction of heme and iron homeostasis-related transcripts
including heme oxygenase 2 (HMOX2) and cytochrome p450
oxidoreductase. HO-2 thus generates CO as a signal, the re-
dox state of the cell being influenced by the NADPH/NADP
molar ratio [68]. Inhibition of membrane NADPH oxidase by
CO, and the subsequent downregulation of the O2

�� produc-
tion, has been implicated in the anti-proliferative and anti-
inflammatory effects of CO [42].

Recently, the pseudo-cytochrome p450 cystathionine b-
synthase (CBS), a H2S-producing enzyme, has been postu-
lated to be a CO-specific sensor [69]. Notably, CBS plays a
key role in cysteine metabolism, and its malfunction leads to
homocysteinuria [15,69,70]. Human CBS is a multimeric pro-
tein composed of subunits containing a pyridoxal 50-phos-
phate (PLP) cofactor at its active site, catalyzing the synthe-
sis of cystathionine from homocysteine and serine [71,72].
Mammalian enzymes also contain a heme group, whose re-
moval low down but do not eliminate human CBS activity
[69]. However, the heme may play a regulatory role in modu-
lating the CBS activity [69]. In fact, the hexa-coordinated car-
bonylated derivative of CBS is inactive, whereas the penta-
coordinated nitrosylated form does not affect the CBS
action(s) [73]. Moreover, CBS inhibition by CO requires the
ferrous form of the heme-Fe2þ-atom, indeed CO does not
bind to the ferric form, which retains the enzymatic activity
[69]. Thus, the heme-Fe2þ-atom redox state also regulates
human CBS activity and the inhibitory role of CO [69]. CO
binding to human CBS is an anti-cooperative process charac-
terized by a slow and possibly multistep tautomeric shift of
PLP from the ketoenamine to the enolimine form associated
with the loss of CBS activity. The affinity of CO for CBS is in
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the physiologically relevant micromolar range, this indicating
that endogenous CO may act as an inhibitor of human CBS
[69]. The CO-induced inhibition of human CBS is a delayed
response, the inactivation rate being modulated by pH and
buffer concentration. The delayed response could protect
against the transient increase of CO level, while lowering of
pH would sensitize CBS to CO inhibition [69].

CBS has been also reported to act as a CO-responsive
regulator of bile excretion in rats [73]. In fact, CO inhibits
H2S production thereby modulating biliary HCO3

� excretion
via H2S-sensitive ion channels, by shutting down the CBS ac-
tivity. The heme-based regulation of the CBS activity may
also control H2S production in other tissues such as the
brain, where H2S acts as a neuromodulator [74–76].

4. CO signaling

The primary molecular target of CO is the heme-iron center
of heme-proteins, including catalase, cyclooxygenase, cyto-
chrome c, COX, cytochrome p450, prostaglandin endoperox-
ide synthase, sGC, Hb, Mb, NADPH oxidase, nitric oxide syn-
thase (NOS), NPAS2, peroxidases, prostaglandin H synthase,
and tryptophan dioxygenase [12] (Fig. 1). High CO concentra-
tions cause hypoxemia by competitive binding to the O2-
binding sites of Hb, the CO affinity being approximately
200–250 higher than that of O2 [7,12]. On the contrary, low

CO levels can influence several signaling pathways, including
those regulated by sGC and/or MAPKs [16–20] (Fig. 1).

sGC, the physiological NO receptor, catalyzes the con-
version of guanosine-50-triphosphate (GTP) to the secondary
messenger guanosine-3,5-cyclic monophosphate (cGMP),
which in turn plays a pivotal role in several physiological
processes including vasodilatation and neuronal signal trans-
duction [77–84] (Fig. 1). Vertebrate sGC is a cytosolic hetero-
dimeric heme-protein composed of a1 and b1 subunits. sGC
consists of: (i) a sensory N-terminal domain termed heme-
NO/O2 (H-NOX) involved in heme binding, (ii) a PAS domain,
(iii) a linker coiled-coil (CC) helix, and (iv) a C-terminal
catalytic domain [85–87]. In addition to NO, sGC is slightly
activated by CO [88]. Remarkably, CO and exogenous com-
pounds such as 3-(50-hydroxymethyl-20-furyl)-1-benzylinda-
zole (YC-1) and 3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-
fluorobenzyl)-1H-pyradazolo[3,4-b]pyridine (BAY 41-2272)
synergistically activate sGC to levels approximately similar to
those induced by NO [88,89]. Such sGC induction leads to
the increase of the cGMP level and to the activation of the
cGMP-dependent protein kinase (PKG) phospho-transferase
activity, thus affecting several cellular functions based on
ion channel, phosphodiesterase, and protein kinase actions
[77, 80, 90–95].

Both CO and the downstream effects on cGMP forma-
tion have been implicated in a number of neuronal signaling
processes, including olfactory neurotransmission [20] (Fig.
1). Furthermore, by activating sGC, CO has been implicated

Fig. 1. Schematic representation of CO molecular targets, signaling pathways, and major protective effects against
tissue injury (;, decreased expression; :, increased expression). The systemic and metabolic toxicity effects of CO are
highlighted. For details, see the text. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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in the regulation of the vessel tone, in the inhibition of pla-
telet aggregation, and in the inhibition of smooth muscle
cell proliferation [96]. It has been hypothesized that CO may
be a modulator of cGMP levels by interfering with the sGC/
NO signaling system in the brain. Finally, it has been sug-
gested that the neuronal NOS (nNOS)/NO system is not
functional in the absence of HO-2, CO itself being sufficient
to restore the physiological effects of NO [12,96].

The MAPK pathways, playing a key role in signal trans-
duction pathways activated in response to oxidative stress
and inflammation [97], are important downstream targets of
CO [17,19,20] (Fig. 1). Indeed, MAPKs constitute hierarchic
phosphorylation cascades responsible for transducing
inflammatory signals from the cell surface to the nucleus,
which may result in cellular activation and production of
cytokines that in turn amplify inflammation [98]. The anti-
inflammatory activity of CO has been shown to involve the
downregulation of pro-inflammatory cytokines, such as tu-
mor necrosis factor-a (TNFa), IL-1b, and IL-6 together with
the increase of the anti-inflammatory cytokine IL-10, via the
p38 MAPK and c-Jun N-terminal kinase (JNK)-MAPK pathways
[99,100]. In particular, the p38 MAPK signaling pathway has
also been implicated in the antiapoptotic and antiprolifera-
tive effects of CO [18,20,97,99,101–103] (Fig. 1).

The interaction of CO with ion channels (in particular
with the Kþ channels) constitutes an important mechanism
underlying the biological effect(s) of CO (Fig. 1). The super-
family of Kþ channels is composed of voltage-dependent
(KV), ATP-sensitive (KATP), and Ca2þ-activated KCa channels.
Big-conductance KCa channels (BKCa) and Ca2þ-spark acti-
vated transient KCa have been demonstrated to be activated
by CO [12]. The role of BKCa channels in the vascular tone
regulation, in the determination of the action potential dura-
tion and frequency, and in the neurotransmitter release has
been reported [104]. Consistent with this functional role, no-
table phenotypes such as hypertension, erectile dysfunction,
and urinary incontinence have been associated with the inhi-
bition or down regulation of the BKCa channel activity
[105,106]. Conversely, the upregulation of the channel func-
tion in specific cell types may offer protection against some
of the aforementioned disorders [107–110]. The BKCa channel
activity is subjected to modulation by a wide spectrum of
biologically relevant factors such as Ser/Thr/Tyr phosphoryl-
ation, Cys/Met oxidation, steroid hormones, and diatomic
gases (O2, NO, and CO) [111–114]. The PKG-dependent activa-
tion of the Naþ/Ca2þ exchanger by CO has been proposed
[12]: this may increase the submembrane Ca2þ concentration
in the vicinity of the BKCa channels with their consequential
opening [115]. An activated cGMP pathway may be permis-
sive for BKCa channels activation by CO [12]. In addition to
the PKG-dependent mechanism, it has been suggested that
CO directly stimulates BKCa channels, implicating that the
channels themselves are gas sensors [116]. CO, adminis-
trated as a gas or as CO-releasing molecules (CORMs) [117],
increases the probability of channel opening [118–120] even
in cell-free membrane patches [112,114,121], thus suggesting
the possibility that CO modulates the channel directly or
indirectly through entities intimately associated with the

channel proteins, possibly in the same macromolecular com-
plex [116].

CO is able to inhibit O2 consumption by inhibiting the
mitochondrial COX, the terminal electron acceptor of the
electron transport chain (ETC; Fig. 1). COX does represents a
target and a central mediator of mitochondrial respiration,
not only through its natural ligand (i.e., O2) but also through
the binding of CO, NO, and H2S. COX possesses four redox-
active metal centers, all of which can be targeted by gases.
Indeed, CO, similarly to NO and H2S, can bind to the iron
center of the COX prosthetic heme, thus inhibiting O2 bind-
ing [15]. The inhibition of COX by CO suppresses oxidative
phosphorylation (OXPHOS) and reduces ATP production
[15,122]. OXPHOS downregulation alters the redox state of
the ETC and produces ROS. Note that ROS may act as signal-
ing molecules controlling cell functions, a process known as
mitochondrial redox signaling (MRS). Furthermore, CO upre-
gulates superoxide dismutase 2 (SOD2) expression, thus
promoting the conversion of O2 into the signaling molecule
H2O2 and further inducing MRS [15] (Fig. 1).

As cell functions depend mostly on mitochondrial
OXPHOS, cells increase their number of mitochondria as a
function of their cellular energy demands. Mitochondrial bio-
genesis is a complex process involving the coordinated
expression of both mitochondrial and nuclear genes. The
CO-induced mitochondrial biogenesis is dependent on MRS
[15]. Recently, endogenously produced CO, induced by trans-
fection of the HO-1 gene, has been reported to induce mito-
chondrial biogenesis in rat myocardium [123]. HO-1/CO-
induced mitochondrial biogenesis requires both H2O2 and
sGC activity (Fig. 1). The production of H2O2 derives from
mitochondria and requires the activity of the Akt/protein
kinase B (PKB) pathway for the activation of the transcrip-
tional activator peroxisome proliferator-activated receptor-c
(PPAR-c) coactivator-1a (PGC-1a) and the transcriptional fac-
tor nuclear respiratory factor-1 and -2 (NRF-1 and NRF-2,
respectively). NRFs are the transcriptional factors that con-
trol almost all the proteins involved in OXPHOS in mitochon-
dria. Moreover, PGC1-a and NRFs are responsible for the
transcription of the transcription factor A mitochondrial
(Tfam) protein, a molecule controlling mitochondrial DNA
replication and transcription of mitochondria-encoded genes
[15]. Remarkably, CO-induced mitochondrial biogenesis
accompanies the HO-1 and SOD2 upregulation [124], this
suggesting the involvement of mitochondrial oxidative stress
[15] (Fig. 1).

Remarkably, CO also inhibits cytochrome p450 and
NADPH oxidase cytochrome b558 activity, these heme-proteins
being involved in free radical production, oxidative stress, and
oxidative stress-induced apoptosis [125,126] (Fig. 1).

Additional candidates that function as downstream tar-
get molecules of CO signaling include the tumor suppressor
protein caveolin-1 (cav-1), the anti-inflammatory nuclear reg-
ulator early growth response transcription factor-1 (Egr-1),
the hypoxia-inducible factor 1 (HIF1a), the 70-kD heat shock
protein (Hsp70), the interferon regulatory factor (IRF), the
nuclear factor j-light-chain-enhancer of activated B cells (NF-
jB), the NOS/NO system, the phosphatidylinositol-3-kinase

6 BioFactors



(PI3K)-Akt, PPAR-c, and the signal transducers and activators
of transcription (STAT) [20,21,42,127–137] (Fig. 1).

Notably, the upregulation of cav-1 expression has been
observed in senescent cells, as well as in mice, rats, and
humans [138]. Collectively, the interaction between cav-1
expression and p38 MAPK activity may control a variety of
key biological programs, such as cell proliferation, differen-
tiation, and senescence [131,138,139] (Fig. 1). Because trace
amounts of exogenous CO treatment can cause upregulation
of cav-1 expression and p38 MAPK activation, it has been
speculated that CO modulates cell growth or differentiation.
Indeed, CO inhibits the vascular smooth muscle cells prolif-
eration and neointima formation during balloon injury in
rats, by modulating the sGC-cGMP/p38 MAPK/cav-1 signal-
ing pathways [20,131].

As mentioned above, many of the cytoprotective effects
of CO depend on the activation of p38 MAPK [99,140].
Remarkably, several MAPKs, including p38 MAPK, may play
a functional role in the initiation and propagation of the ven-
tilator-induced lung injury (VILI) [141]. Mechanical ventilation
at a moderate tidal volume causes a significant and time-de-
pendent inflammatory response, reflected both by the infil-
tration of macrophages and neutrophils into the airways and
by an increased production of cytokines and chemokines
(i.e., IL-1b, MIP-1b, and MCP-1) [142,143]. These proinflam-
matory mediators have been described not only to attract
neutrophils into the lung [144] but also to severely exacer-
bate VILI [145]. CO exerts major anti-inflammatory effects by
downregulating the production of cytokines in response to
proinflammatory stimuli in macrophage cell culture, and by
reducing the infiltration of macrophages and neutrophils into
the lung [99]. Furthermore, the antiinflammatory effects of
CO during ventilation are mediated via induction of PPAR-c,
thus preventing the upregulation of the proinflammatory
transcriptional regulator Egr-1. Indeed, Egr-1, a zinc-finger
transcription factor, represents an important transcriptional
regulator that coordinates proinflammatory responses in var-
ious cell types, including macrophages [146]. In response to
activation by ischemic stress, Egr-1 propagates deleterious
responses leading to injury, by controlling the expression of
critical genes involved in the regulation of inflammation,
coagulation, and vascular permeability [146]. Thus, inhaled
CO at low concentrations may represent a promising future
therapeutic option for the reduction of VILI [147]. Whether
these and other protective effects of CO application
observed in animal models of lung injury can be extrapo-
lated to the treatment of patients is the subject of ongoing
clinical trials (www.clinicaltrials.gov) [147].

Interestingly, the upregulation of stress proteins such
as HO-1 and Hsp70 has been shown to limit inflammatory
responses in many models [148–150]. Moreover, CO treat-
ment in vivo has been shown to induce HO-1 in the liver
[129] and Hsp70 in the lung [130]. The upregulation of heat
shock factor-1 and Hsp70 expression by CO has been pro-
posed to mediate CO-dependent anti-inflammatory effects in
a murine endotoxemia model. Both HO-1 and Hsp70 are up-
regulated in lung tissue in response to mechanical ventila-
tion, and the application of CO during mechanical ventilation

prevents the induction of both genes [147]. These data are
consistent with the role of HO-1 or Hsp70 as inducible stress
proteins that are upregulated as a consequence of systemic
stress and inflammatory tissue injury [26]. Therefore, it has
been suggested that both HO-1 and Hsp70 are markers of
cellular or organ injury, whose expression is precluded by
anti-inflammatory protection afforded by exogenous CO
treatment [147].

The HO-1/CO system acts as an antioxidant, protects
endothelial cells (EC) from apoptosis, regulates the vascular
tone, attenuates inflammatory response in the vessel wall,
and participates in angiogenesis and vasculogenesis.
Remarkably, the oxidative stress leads to EC and vascular
smooth muscle cell (VSMC) dysfunction, leading to the
increase of the vessel tone, of the cell growth, and of the
gene expression. These conditions are responsible for the
creation of a prothrombotic/proinflammatory environment
[151] (Fig. 2). Therefore, EC integrity and activity occupy a
central position in the pathogenesis of cardiovascular dis-
eases, and cardiovascular disease risk conditions converge
in the contribution to oxidative stress. Subsequent forma-
tion, progression, and obstruction of atherosclerotic plaque
may result in myocardial infarction, stroke, and cardiovascu-
lar death. The HO-1/CO system efficiently acts to recover the
damaged tissues in IR injury, hypertension, and atheroscle-
rosis, mainly by improving endothelial precursor cell (EPC)/
EC functions and inhibiting proliferation of smooth muscle
cells (SMC) [151] (Fig. 2). HO-1 has been demonstrated to
stimulate cell cycle progression and proliferation in vascular
endothelium, mainly by stimulating the synthesis of the vas-
cular endothelial growth factor (VEGF) from vascular cells.
HO-1 expression can protect EPC from oxidative injury and
stimulate their homing to injured regions for promoting
angiogenesis, such a positive feedback being relevant in EPC
function. Additionally, HO-1 can directly affect cell viability
by blocking programmed cell death [151] (Fig. 2).

CO has been also shown to regulate cell cycle, indeed
it decreases proliferation of VSMC, of airway SMC, and of
pancreatic stellate cells, while it increases proliferation of EC
[152]. Indeed, CO may specifically contribute to the re-endo-
thelialization of the vessel wall at sites of vascular injury
inducing the production of angiogenic mediators [e.g., VEGF,
IL-8, and stromal cell derived factor-1 (SDF-1)] and decreas-
ing the levels of the anti-angiogenic mediators [e.g., VEGF
receptor 1 and soluble endoglin (sEng)]. These events pro-
mote EC proliferation, migration, and the antiapoptotic
response [151] (Fig. 2). Remarkably, BV is also able to stimu-
late the induction of proangiogenic factors in human kerati-
nocytes cells (e.g., VEGF and IL-8), whereas Fe2þ antago-
nizes the antiangiogenic effects of the high molecular weight
kininogen (HKa) [151] (Fig. 2).

HO-1 and CO contribute to the neo-vascularization and
to the cardiac regeneration after myocardial infarction. In
particular, CO promotes cardiac regeneration by increasing
the accumulation of c-kitþstem/progenitor cells into the
infarct area; moreover, it promotes both vasculogenesis and
formation of new cardiomyocytes by increasing the expres-
sion of HIF1a, SDF-1a and VEGF-B in the infarct area. In
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contrast, HO-1 induces angiogenesis presumably by a CO-in-
dependent mechanism, as HO-1 increases the expression of
SDF-1a only. Thus, modulation of the HO-1/CO axis may provide a
novel tool for the repair of cardiac injury [152] (Fig. 2).

However, CO does not always exert cytoprotective ac-
tivity. The protective or detrimental effects of CO may
depend on several factors, including the type of cells, the
concentration of CO produced or administered, and the tis-
sue-specific signaling transduction pathway(s) that may be
involved in its biological activity [151,153]. The exposure to
low concentrations of CO enhances apoptosis in porcine
granulosa cells and SMC, both in vitro and in vivo [41]. Expo-
sure to CO also increases Fas/CD95-induced cell death in
Jurkat T cells, which correlates with CO-induced upregulation
of the proapoptotic protein Fas-associated protein with death
domain (FADD), as well as the activation of caspase-8, -9,
and -3, while simultaneously downregulating the antiapop-
totic protein BCL-2. Therefore, in contrast to other studies
showing the antiapoptotic effects of CO, Fas/CD95-induced
cell death in Jurkat T cells is augmented by exposure to CO
partially occurring via inhibition in the activation of the
extracellular signal-regulated kinase (ERK) MAPK [154]. Fur-
thermore, CO has been demonstrated to reverse established
pulmonary arterial hypertension in vivo, an incurable dis-
ease characterized by a progressive increase in pulmonary
vascular resistance, leading to heart failure [134]. This occurs
in part suppressing growth and increasing apoptosis of the
smooth muscle cells of the pulmonary artery. The ability of

CO to exert its remodeling effects requires the expression
and function of eNOS/NOS3. Indeed, NO acts in part as the
effector molecule to induce cell death of pulmonary artery smooth
muscle cells while preserving the endothelial cells [134] (Fig. 2).

CO may increase the formation of ROS and pro-inflam-
matory molecules producing noxious effects in certain
organs (e.g., the brain). Indeed, it has been shown that CO
increases the formation of pro-inflammatory prostaglandins
by activating COX in rat hypothalamic explants and in pri-
mary culture of rat hypothalamic astrocytes, suggesting that
CO stimulates pro-inflammatory responses at least in the
brain. Moreover, CO has been shown to reduce cellular lev-
els of antioxidants (e.g., glutathione) by increasing mito-
chondrial ROS formation through the CO binding to the cyto-
chrome a3 residing in complex IV, indicating that CO may
cause oxidative tissue damages [151].

Overactivation of the HO/CO system may have detrimen-
tal effects to normal homeostasis and, in particular, HO-1 may
contribute to tissue injury under certain unfavorable circum-
stances. In particular, an excessive upregulation of HO and an
increase of its end products (i.e., free iron, BV, and CO) may
have a pro-oxidant, pro-apoptotic, pro-inflammatory, and pro-
proliferative effects. The excessive activation of the mamma-
lian HO/CO system may therefore be associated with several
clinical conditions, as well as exacerbate the virulence and
pathogenic effects of certain microbial infections [41] (Fig. 2).

In some tissues and under certain conditions, HO activ-
ity can be considered to be detrimental in the development

Fig. 2. Schematic representation of the ‘‘pro’’ and ‘‘anti’’ physiologic effects of the HO-1/CO system. Remarkably,
overexpression of the HO-1/CO system may be responsible of several pathological conditions, such as cancer (;,
decreased expression; :, increased expression). For details, see the text. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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and progression of cancer [41]. In fact, it has been specu-
lated that the cytoprotective effects of HO in cancer cells
may facilitate the evasion of oxidative stress, promoting re-
sistance to several therapies and increasing tumor survival,
growth, invasiveness, and metastasis [41,155]. Remarkably,
upregulation of HO-1 expression has been reported in sev-
eral tumors, including adenocarcinoma, cerebral glioblas-
toma and astrocytoma, chronic myeloid leukemia, hepatoma,
lymphosarcoma, malignant vertical growth melanoma, oligo-
dendroglioma, oral squamous cell carcinoma, prostate can-
cer, and renal cell carcinoma [41,155] (Fig. 2).

The adverse affects due to HO activation are strictly
associated with the release of free ferrous iron (which is a
pro-oxidant that induces oxidative stress and tissue injury),
BV and CO (whose increased cellular levels may promote or
exacerbate pathological conditions, depending on the tissue
involved and circumstances). Many diseases, including he-
molytic, inflammatory, and oxidative conditions, have been
linked to abnormal CO metabolism and functions [58,156]
(Fig. 2).

Chronic overexpression of HO-1, and the attendant lib-
eration of intracellular free iron and CO, may contribute to
the aberrant patterns of brain iron deposition and mitochon-
drial insufficiency described in age-related neurodegenera-
tive disorders such as Alzheimer’s and Parkinson’s diseases
[41] (Fig. 2).

5. Conclusions and perspectives

Exogenous CO is poisonous to humans, impairing the O2 car-
rying capacity of Hb [1,7,8,12]. However, eukaryotic organ-
isms use endogenous CO, produced during heme degrada-
tion by the highly conserved HO enzymes [2–4,12,26,27], as
a neurotransmitter and as a physiological signal molecule
[12,21,152]. Moreover, diverse microorganisms, including aer-
obic and anaerobic bacteria and anaerobic archaea, use ex-
ogenous CO as a source of carbon and energy for growth
[10,11,22]. Overall, the HO-dependent endogenous CO pro-
duction in almost all the three domains of life (i.e., archea,
bacteria, and eukaryotes) seems to support the CO key role
in many biological processes [10,11,22].

In the last years, progresses have been done in the
comprehension of the HO/CO system. Endogenous CO has
been recently demonstrated to act as a cytoprotective and
homeostatic molecule with important signaling roles in both
physiological and pathological conditions. Indeed, account-
ing for the antiapoptotic, anti-inflammatory, antioxidant, anti-
proliferative, and vasodilator effects of HO-1 and HO-1 end-
products in vitro, CO delivery may impact on several patho-
physiological conditions [12,20,21,26,157]. To date, it is
openly debated how CO exposure modulates the cell molec-
ular machinery in order to induce an homeostatic response
after a stress stimulus [21]. Remarkably, CO interacts with
several cellular hemoprotein targets, although the functional
significance of such interactions is still unclear [11–13,15].
Remarkably, CO, delivered either as a gas or from CORMs,
displays therapeutic potential in inflammation, sepsis, lung

injury, cardiovascular diseases, transplantation, and cancer,
this is supported by preclinical evidences, in large and small
animal models [157,158]. The technology is now focused in
bringing CO to clinical applications in the form of inhaled
gaseous therapy or through the use of potentially parenteral
and orally active CORMs (www.clinicaltrial.gov). However,
considerable work is yet needed to correlate these exoge-
nous effects with those generated endogenously [157,158].

Finally, the interplay between CO and other gases,
such as O2, NO, and H2S, appears pivotal in several patho-
physiological conditions, including: (i) mitochondrial respira-
tion; (ii) vasodilatation, angiogenesis, and vascular remodel-
ing; (iii) inflammation; and (iv) oxidative and nitrosative
stress [15,122,159]. However, molecular mechanisms of gas
actions are difficult to be established in detail. Indeed, (i)
heme-proteins, playing a pivotal role in gas-generation, -sig-
nal transduction, and -interaction, provide binding sites
where gases can interrelate; (ii) gas-producing, -sensing,
and -action sites are often in physical proximity, lowering
down the free-gas concentration; and (iii) the free and
bound gas concentrations are difficult to be determined
[15,27,39,159,160].
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