AI P gﬁgﬁilif:al Physics

A

Spherical momentum distribution of the protons in hexagonal ice
from modeling of inelastic neutron scattering data

D. Flammini, A. Pietropaolo, R. Senesi, C. Andreani, F. McBride et al.

Citation: J. Chem. Phys. 136, 024504 (2012); doi: 10.1063/1.3675838
View online: http://dx.doi.org/10.1063/1.3675838

View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v136/i2
Published by the American Institute of Physics.

Related Articles

Adiabatic and non-adiabatic quantum dynamics calculation of O(1D) + D2 OD + D reaction
J. Chem. Phys. 135, 234301 (2011)

New ab initio coupled potential energy surfaces for the Br(2P3/2, 2P1/2) + H2 reaction
J. Chem. Phys. 135, 164311 (2011)

Reaction between graphene and hydrogen under oblique injection
J. Appl. Phys. 110, 084320 (2011)

An experimental and computational study of the reaction of ground-state sulfur atoms with carbon disulfide
J. Chem. Phys. 135, 144306 (2011)

The dissociative chemisorption of methane on Ni(100): Reaction path description of mode-selective chemistry
J. Chem. Phys. 135, 114701 (2011)

Additional information on J. Chem. Phys.

Journal Homepage: http://jcp.aip.org/

Journal Information: http://jcp.aip.org/about/about_the journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors

ADVERTISEMENT

Explore AIP’s new
open-access journal

AIP

Article-level metrics
now available

Join the conversation!
Submit Now Rate & comment on articles


http://jcp.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=D. Flammini&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=A. Pietropaolo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=R. Senesi&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=C. Andreani&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=F. McBride&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3675838?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v136/i2?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3668084?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3656242?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3651394?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3644773?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3634073?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 136, 024504 (2012)

Spherical momentum distribution of the protons in hexagonal
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The spherical momentum distribution of the protons in ice is extracted from a high resolution deep
inelastic neutron scattering experiment. Following a recent path integral Car-Parrinello molecular
dynamics study, data were successfully interpreted in terms of an anisotropic Gaussian model, with
a statistical accuracy comparable to that of the model independent scheme used previously, but pro-
viding more detailed information on the three dimensional potential energy surface experienced
by the proton. A recently proposed theoretical concept is also employed to directly calculate the
mean force from the experimental neutron Compton profile, and to evaluate the accuracy required
to unambiguously resolve and extract the effective proton potential from the experimental data.
© 2012 American Institute of Physics. [doi:10.1063/1.3675838]

. INTRODUCTION

Although liquid and solid phases of water are the focus
of a considerable number of experimental and theoretical
investigations because of their biological and technological
importance,’? several physical properties of water are not
well understood. Progress in this area requires an accurate
description of the proton motion in hydrogen bonded sys-
tems, something that has been difficult to measure directly.
Recently new experimental and simulation techniques have
been used to probe the quantum state of protons in water and
ice by examining the proton momentum distribution, n(p),
which is mainly determined by quantum effects.’ Experimen-
tally, n(p) can be directly measured by deep inelastic neutron
scattering (DINS),*© where neutrons probe proton dynamics
at high energy, #iw, and high momentum, #g, transfers. As
well as providing information on proton quantum dynamics,
DINS is also sensitive to the proton’s local environment, i.e.,
the potential of mean force experienced by the protons. In
recent years, several DINS experiments have addressed the
study of bulk water in stable liquid,7 solid,’ and supercooled
liquid'>'* phases and in confined geometry.'>~'3 In parallel,
novel simulation techniques have been employed to calculate
the n(p) using open path integral simulations'® implemented
with first principles molecular dynamics®® within the path
integral Car-Parrinello molecular dynamics (PICPMD)
framework.?! The path integral simulation has access to the
three dimensional n(p), and thus provides complementary in-
formation to the spherically averaged n(p) obtained via DINS
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from isotropic ice. The calculated n(p) in ice from Ref. 19
revealed good overall agreement but also some discrepancies
with previous DINS measurements on ice at T=269 K by
Reiter et al.® In particular, the calculated n(p) had more
weight at large momenta and a more extended tail than in the
experiment, indicating that in the simulation the proton was
spatially more localized and hence had a larger kinetic energy
than in the experiment. This is a somewhat surprising result,
given that the main physical approximation in the PICPMD
simulation is in the exchange-correlation functional and the
approximations commonly adopted for this functional are
expected to favor proton delocalization over localization.’
This paper reports new theoretical analysis and interpretation
of PICPMD simulations on ice at 269 K and a high resolution
DINS experiment on ice at 271 K. At these temperatures, n(p)
in ice is due almost entirely to zero point motion, providing
a sensitive probe of the proton’s local environment. We
stress that the DINS experiments give a direct access to the
zero-point kinetic energy of the proton, while the estimates of
the proton kinetic energy from a combination of optical and
inelastic neutron scattering results assume an harmonic ap-
proximation and decoupling between the degrees of freedom
of translation, rotation (libration), and internal vibrations.'®!!
In the case of hydrogen-bonded systems, these assumptions
are more appropriate for isolated molecules such as in the
dilute vapour phase, while in the condensed phases one
would expect the decoupling of degrees of freedom, as well
as a fully harmonic description not to hold anymore.'%!!
Indeed it was found, in Ref. 12, that the momentum
distribution in ice at 269 K was better described by a quasi-
harmonic than by a fully harmonic model, whereas in the

© 2012 American Institute of Physics
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supercooled liquid at 271 K the large excess of the proton
mean Kkinetic energy was interpreted, in Ref. 13, in terms
of a very substantial anharmonicity of the potential energy
surface.

Here we used refined DINS measurements, using
resonance-detector (RD) and foil-cycling techniques
(FCT),?>** providing remarkable improvements, with re-
spect to existing measurements on bulk ice,® in both energy
resolution (32% narrowing of FWHM), counting statistics,
(1% error at the center of the overall neutron Compton profile
(NCP) and of 15% at 1/15 of the peak height, respectively),
and a much better separation between proton and heavy
atoms peaks in the sample and the container. The latter
eliminates any possible spurious distortion due to inaccurate
subtraction of the O, Al contributions.?’> The uncertainty
in the determined mean kinetic energy, (Eg), 11% in the
previous measurements,’ is ~2% in the present case. More-
over, the current resolution line shape has a finite variance,
allowing us also to carry out non parametric determinations
of (Ek) as outlined below. DINS data were analyzed within
the impulse approximation (IA),”® i.e., a neutron-single
atom scattering process with conservation of momentum and
kinetic energy. The recoil energy is fiw, = #%g*/2M, where
M is the proton mass, and ¢q is the wave vector transfer. The
dynamical structure factor for an isotropic system is related

to n(p) by
fig? . M
S(q. ) = f n(p)s (w S ﬂ) dp =~ a0,

where y = %(a)— 2—3;),26 Jia(y) is the longitudi-
nal n(p), or neutron Compton profile, and (Eg)
= % 2 YV Ta(ydy = % o2. For an isotropic system
o0

Jia(y) = 2ﬂﬁ/ pn(p)dp . @

7yl
Within the TA framework, Jj4(y) is symmetric and centred at
y = 0 and related to n(p) via:3

1 |:dJIA(y):| . 3)
fiy=p

"= ey | dy

Four independent schemes, two non-parametric, and two
parametric (fitting), were used in the analysis of the exper-
imental data, in order to access (Ek), n(p), and the proton
mean force, using specifically developed methods. The results
obtained show a complete consistency between the four inde-
pendent schemes used in the analysis, assessing the reliability
of the experimental data and the robustness of the physical in-
terpretation, unprecedented for DINS experiments. These al-
low us to successfully extract the dominant features of the
microscopic directional momentum distribution from an ex-
periment on a macroscopically isotropic sample.

Il. EXPERIMENT

The DINS experiment was performed at the time of flight
VESUVIO spectrometer (ISIS neutron source-UK)* in the
range 2.5 eV < #w, <30eV. Scattered neutrons were detected
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by 64 scintillators,?’ in the angular range 32.75° < ¥ < 72.5°,
for an integrated proton current /, = 3600 ©A h. The sample
was a 65 x 65 x 1 mm? slab of polycrystalline ice contained
in an Al holder, equipped with Rh/Fe thermometers. The sam-
ple was kept at a constant temperature, T=271.00 £ 0.01 K.
At each scattering angle the energy of the scattered neutrons,
E1, is selected by using the RD and FCT by Au analyzers (E;
= 4897 meV), providing a resolution in y-space of ~2 A~!
FWHM, and a complete removal of the sample-independent
background.?®

A. Data reduction

The Foil cycling technique provides the conversion of
neutrons with final energy E; into prompt-y photons that are
detected using cerium-doped yttrium aluminium perovskite
detectors.?’ Scattered neutrons are recorded as a function of
their time of flight from the source to the detectors, and the
kinematics of the scattering event is reconstructed accord-
ing to the expression ¢ = fy + % + % where f, is a fixed
electronic time delay, Ly and L; are the (known) incident
and scattering flight paths of the instrument, while vy and
vy are the initial and final neutron velocities, respectively.
Data reduction is carried out, using standard and ad hoc rou-
tines, to convert the observed count rate at each detector into
the experimental neutron Compton profiles, for each detec-
tor. A “difference spectrum” is calculated using the Foil Cy-
cling Technique. Each time of flight count rate spectrum, at a
fixed detector, is determined by the difference between two
“raw” time of flight spectra, one with the cycling foil be-
tween sample and detector, and one without the cycling foil
between the sample and detector, as shown, for example, in
Fig. 1. Data have been divided by the integrated counts mea-
sured from the incident neutron monitor. The signal is then
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FIG. 1. Time of flight DINS signal from the ice sample, for % ~ 53°. Red
continuous line is the raw “foil out” spectrum, black continuous line is the
raw “foil in” spectrum. Time of flight spectrum is reported as black markers
with error bars. Proton recoil peak is centred at t >~ 240 us, recoil peaks from
oxygen and aluminium from the container are centred at f 2~ 360 us.
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FIG. 2. Example of time of flight DINS experimental and simulated signals
for a detector located at ¥ ~ 66°. The continuous line is the experimental
spectrum (counting errors omitted); the red continuous line shows the MC
simulations, with all scattering orders included, and the dashed line is the MC
simulations with multiply scattered neutrons only, up to 5th order scattering.

corrected for sample-dependent y-background and multiple
scattering from sample plus container. In the latter case a sim-
ulated spectrum, containing single and multiple scattering,’’
is normalized to the area of the corresponding experimental
spectrum; the simulated multiple scattering spectrum is then
multiplied by the above normalization constant and subtracted
from the experimental spectrum. An example of the compar-
ison of experimental and simulated spectrum is reported in
Fig. 2. As a final step, time of flight spectra are subsequently
transformed to Neutron Compton profiles and normalized. A
detailed description of the VESUVIO routines can be found
in Refs. 22-25,29,30, and 31.

In order to derive the time of flight DINS proton signal
heavy masses peaks have been fitted and then subtracted off.
These peaks have been modeled using a sum of two Voigt
functions, which satisfactorily reproduce the time of flight
DINS signals from heavy atoms with Gaussian momentum
distribution functions. Parameters of the Voigt line shapes
have been refined, for each scattering angle, using a FORTRAN
routine.’? Time of flight DINS spectra, for each detector, have
been expressed in terms of the scaling variable (or longitudi-

nal momentum) y = %(a) — %)’ where M = 1.0079 amu, is

the proton mass, using the following equation:>’

Fi(y, q) = qCi(), “

BM
Eq®(Eo)
where Fi(y, g) is the fixed-angle experimental Compton pro-
file for the /th detector, Ej is the incident neutron energy,
®(Ey) is the incident neutron spectrum, Ci(¢) is the count-
rate at the /th detector, and B is a constant taking into account
the detector solid angle, the detector efficiency at E = E|, the
time-energy Jacobian, the free-atom neutron proton cross sec-
tion, the number of protons hit by the neutron beam.?

yIA]

FIG. 3. Example of normalized F;(y, ¢) (markers with error bars), for three
scattering angles. Two of the spectra are shifted upwards for clarity. For
the two highest angles, the artificially imposed F(y, ¢) = O are omitted for

Y > Ymax-

Fixed-angle histograms of Fj(y, ¢) have been binned in
the range —30 A~' <y <30 A~', with a bin width of 0.3 A~".
In the case of scattering angles above about 50° due to kine-
matics the upper limit of y, y,,,y, is lower than 30 A-! corre-
sponding to upper values® of ¢ ~ 600 A~!. For y > yuar, We
set Fy(y, g) = 0, with an associate error of 104, i.e., approxi-
mately a factor of 2 x 10° larger than the average magnitude
of the experimental error bars on the F;(y, q) spectra. This is
carried out in order to obtain the same range and bin width
for all data in the —30 A~! to 30 A~! range. This procedure
guarantees that in the subsequent line shape analysis these ar-
tificially added points (with zero value, Fi(y, g) = 0) carry a
negligible weight in the fitting.

The experimental F;(y, g) have been normalized to unit
area, following the zero-order sum rule for the dynamical in-
coherent structure factor.>* An example of normalized spec-
tra is shown in Fig. 3: error bars of the experimental Comp-
ton profiles are of comparable magnitudes at high |y|, being
slightly larger on the positive side. As discussed previously
for high positive y values, data are more affected by noise at
short time of flights. Figure 4 shows how the different F;(y,
q) functions scale to collapse into a single detector averaged
Compton profile.

B. Data analysis

The experimental Compton profiles and the F(y) were
analyzed to determine the line shape of the momentum dis-
tribution, (Ex), and the mean force, respectively. This has
been accomplished through two non-parametric and two para-
metric methods which rely on the following representation of
Fi(y, q), namely:3

Fi(y,q)=[J1a)+ ALy, 9)]1 ® Ri(y, q), 5
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Scaling of Neutron Compton Profiles
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FIG. 4. Fi(y, q) (markers with omitted error bars) from all detectors. The plot
shows the collapse of the profiles at different angles, demostrating that the
scattering regime reached in the present experiment is well described within
the TA. For the highest angles, the artificially imposed F;(y, ¢) = 0 are omitted
fory > Ymax-

where Jj4(y) is the longitudinal momentum distribution,
AJi(y, q) are the g-dependent deviations from the IA (final
state effects), and R;(y, ¢) is the fixed-angle instrumental res-
olution function R;(y, g). The R;(y, g) functions have been de-
termined using a standard procedure successfully employed
for DINS experiments in a variety of systems:*> the modified
DINSMS Monte Carlo code®! has been used to simulate the
scattering of a polycrystalline Pb sample, which is currently
used as a resolution calibration standard on VESUVIO.?
DINS scattering from lead is dominated by the spectrome-
ter’s resolution, therefore a comparison between simulated
and measured scattering from Pb provides an assessment of
the reliability of the code to describe the spectrometer’s re-
sponse. A simulation of DINS scattering spectra in the IA is
carried out for a fictitious sample with mass=1.0079 amu
and momentum distribution width o = 0.001 10\’1, 1.€., assum-
ing a scattering sample with infinitely narrow momentum dis-
tribution. The latter provides time of flight simulations of the
spectrometer’s response. The spectra are then transformed in
proton’s momentum space to obtain R;(y, g) for each /th de-
tector.

The angle-averaged Fi(y, q), F(y), is derived by cal-
culating a simple average over the different detectors. This
quantity, shown in Fig. 5, provides a graphical representa-
tion of the overall quality of the data. The Jj4(y) line shape
as well as n(p) and (Ek) are calculated from the F(y, g)
spectra as follows: The (Ek) value is obtained by numeri-
cal integration of F(y)y?; a full analysis of the DINS line
shape via simultaneous fitting of the individual F;(y, ¢q) spec-
tra with (a) a model-independent line shape, and (b) a three
dimensional anisotropic Gaussian line shape derived from a
quasi-harmonic model as suggested by a recent analysis of
the PICPMD simulations for hexagonal ice.'?> As outlined in
Ref. 36, the numerical integration of F(y)y? provides a first-
order estimate of o2 and (Ex), by subtracting the variance of

J. Chem. Phys. 136, 024504 (2012)
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FIG. 5. Experimental Neutron Compton Profile for ice at T = 271 K aver-
aged over the whole set of the scattering angles (F(y) = <F(y, g) > ;) (blue
dots with error bars). The angle-averaged best fit is reported as a black con-
tinuous line for the M1 model. If final-state effects are not accounted for, the
correspondingangle-averaged best fit is reported as a red dashed line (see text
for details). The fits’ residuals are also reported.

the angle-averaged resolution (o2 = 0.98 A~2), yelding o>
=27.04+27A2 Systematic uncertainties, due to the limited
range of integration, and residual differences between angle-
averaged and constant-g representations of F(y) (Ref. 33) are
evaluated to be ~ 0.3 A~2. Therefore 0 = 5.2 + 0.3 A~! ,and
(Ex) = 169 £ 19 meV. This can be used as a constraint for o
in fitting the F;(y, ¢) data set.

In the following, non-parametric methods of analysis of
F(y) will be used to derive (E), from direct integration of the
second central moment of F(y), or from the mean force f{x).

The two parametric methods of analysis involved the fit-
ting of the Fi(y, q) spectra with either model-independent
functions or multivariate Gaussians corresponding to a quasi-
harmonic picture of the effective proton potential. The two
methods, which we call M1 and M2, respectively, correspond
to two different fitting procedures not available on the instru-
ment program suite. For M1, the model-independent form for
Jia () is>*

-2
i 00
e 22

an y
Jra(y) = ﬁ 1+ X_; WHZH (E) ) (6)

where Hj, are the Hermite polynomials and a, the corre-
sponding coefficients. The n(p) is expressed in terms of a
Gaussian times a series of Laguerre polynomials, L,l/ 2(%),
with coefficients (—1)"a,. Equation (6) has the most general
form, but may not facilitate interpretation of the data as it does
not allow one to separate the effects of anharmonicity from
those of anisotropy. In particular, in the case of ice, PICPMD
simulations show that, within statistical errors, the momentum
distribution of each individual proton is well approximated
by a multivariate gaussian distribution with three distinct fre-
quencies w, ,, .. These are associated to local principal axes
that depend on the crystalline orientation of the molecule to
which the proton belongs.'? This constitutes an anisotropic
quasi-harmonic model in which the main effects of
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anharmonicity are subsumed in the effective frequencies w;.
Experiments access the total momentum distribution, i.e., the
superposition of the distributions of all the protons in the sam-
ple. In polycrystalline samples a spherically averaged distri-
bution originates in this way

1 2 pon
8n30.0,0y 207 207 2oy o
(N

Here (...)q denotes spherical average and the variances
ol,,. are related to the principal frequencies by o}
= M#w; /2 coth Bfiw; /2. The w; frequencies are not directly
reflected in Eq. (6). From PICPMD one obtains: w,= 2639
+ 60 cm™!, w,= 1164 + 25 cm™!, wy,= 775 £ 20 cm~1.12
There is a clear connection between these frequencies and
the vibrational spectrum of ice. The latter includes four main
features: a stretching band centered at ~3200 cm~', a bend-
ing band centered at x1650 cm~!, a broad libration band
centered at ~900 cm~!, and a band of network modes be-
low ~400 cm~'.37 Careful analysis of the PICPMD data
shows that w;, ®,, and w, consist mainly of weighted aver-
ages of stretching, librational, and a mix of bending and li-
brational frequencies, respectively, with redshifts due to ad-
ditional network mode contributions and softening caused
by anharmonicity.!> The PICPMD simulations suggest that
we should use Eq. (7) to fit the experimental distribution.
In this model, labeled M2, 0,0y, and o are treated as free
parameters.

For finite g, the deviation from the IA can be accounted
for by adding corrections,’ to first order in 1/g. In both M1
and M2 the underlying model for AJ;(y, q) is based on the
original framework proposed by Sears.**

For finite ¢ the experimental Compton profile is g-
dependent and the following approximation is used:

3

9
J(y,q) = (1 - A3(q)a_y3) Jria(y) = J(y) + AJ(y, g).
(®)

Here the leading form of Jj4(y) is assumed to have a simple
Gaussian shape, and introducing x = ﬁ we have

O a0 = Ity (2 ©)
8y3 1A\Y) = IAyo323/2 3 «/Ecr ,

where Hs(x) = 8x* — 12x. Since A3(g) = ‘L we obtain,
for an isotropic harmonic potential

2
AT = 2 Meo? 1 (0 (10)
V4 _\/2710 12%%2g 0323/2 : V20 '
M2o?

The g-independent factor, Wﬁ’ in AJ(y, q) defines a
positive parameter, cl

2
et Ay < ) ) (11)

— —Hy—=).

V2no g V20

This term is asymmetric and induces a modulation in Jj(y).

The dependence on g and on the scattering angle can be appre-
ciated in Fig. 3, where the apparent centroid of F;(y, ¢) at the

AJ(y,q) =

Spherical momentum distribution of the protons in hexagonal ice
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FIG. 6. Experimental Neutron Compton Profile, F(y, ¢), at a scattering angle
¥ = 33° for ice at T = 271 K (blue dots with error bars). The best fit using
M1 with the inclusion of FSE is reported as a black continuous line, while
if FSE are not included in M1 the best fit is shown as a red dashed line. The
fits’ residuals are also reported.

lowest scattering angle is shifted to slightly negative y values,
as well as in Fig. 5, where the average over all detectors shows
the “average” shift of the centroids due the FSE.** Neglect of
final state effects results in poorer fits with larger residuals,
with typical asymmetric shape. In addition, if the final-state
effects are not accounted for in the fitting, the kinetic energy
derived, for example from M1, is reduced by approximately
5 meV. Figure 6 shows the modulation induced by FSE on a
low angle detector spectrum.

Both M1 and M2 procedures rely on the minimization of

(F" (i a0) — Fiin )’

2 9
€l

=% (12)

where F/" (yi, ;) = [J1a(y) + AJi(yi, )] ® Ri(yi, qi)-
Here J;4(v;) + AJi(yi, g;) is described by either M1 or M2 line
shapes, the index / represents the detector index, the index i
represent the y value at the ith bin, and 612,1‘ is the error for
each data point. The double sum over / and over i reflects the
relevant properties:

Jia(y) is unique for all detectors; AJ;(y, q) varies across
detectors due to the different ¢ values accessed,® but cl is
independent of ¢ and is unique for all detectors; R;(y, g) varies
across detectors, but is a known function from the calibration
procedures.

Based on the above physical assumptions, we have
carried out the fitting, using M1 and M2, minimizing the
above global chi square for all detectors simultaneously, to
provide unique values (detector-independent) of o, ap, cl,
0, 0y, 0,. We consider the global fitting to be preferred to
the fitting of individual detectors. The latter is generally used
on VESUVIO to extract oy, ay, cl;, etc., whose averages
give the parameters o, ay, cl, ... However, the global fit has
its basis on the invariance of Jj4(y) and cl across different
detectors, while the individual fitting follows the approach of
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Experimental Neutron Compton Profiles

o

Fi(y,q) [A]

yIAT]

FIG. 7. Fi(y, q) (markers with error bars), for three scattering angles, to-
gether with best fits using M1. Two of the spectra are shifted upwards for
clarity. For the two highest angles, the artificially imposed F(y, g) = 0 are
omitted for y > yyax.

finding / “statistically independent” momentum distributions
to be subsequently averaged. However it has to be stressed
that, since the chi square for individual detectors is weighted
by the error bar, and the latter is poorly correlated with the
noise present at high positive y, the results from individual
detectors may be affected by the noise, since the latter is not
accounted for by the chi square. On the other hand the global
fitting provides a more efficient way for noise cancellation.
The fit with the M1 model has been carried out using a
FORTRAN code which makes use of the MINUIT chi square
minimization routine,? while the fit with the M2 model has
been carried out using a MATLAB code. Examples of the
quality of fits for the M1 model are reported in Fig. 7.

The fit carried out using MI1, yielded o = 4.99
+ 0.03 A~', g = 0.10 = 0.01 and @,., = 0, cl = 0.36
£ 0.02 and (Ex) = 156 £ 2 meV.

In the case of the spherically averaged multivariate Gaus-
sian, M2, there is, however, a difficulty, since optimization
gives nearly degenerate o, and o, values leaving the error
bars on the effective frequencies poorly defined. This reflects
the presence of one too many fitting parameters for the infor-
mation content of the (spherically averaged) data set. Indeed
the difficulty would disappear by adopting a model with only
two distinct parameters (o ; and 6; = 0, = 0, in the transverse
direction) as done in a previous study,® but this would not be
an accurate representation of the physics. Rather than follow-
ing this approach, in the M2 model we retain three distinct o;
and eliminate the degeneracy by adding a weighting term in
the least square fit of the experimental Compton profiles, to
minimize the deviation of the fitted o; from their PICPMD
counterparts (see below for details). The magnitude of the
weighting term reflects the assumed physical ranges for the
o; or , equivalently, the ;.

If 02,02, 02 are treated as unconstrained free parame-

Z

ters, minimizing x2 in Eq. (12) yields, given the accuracy of
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the current data, nearly degenerate o, and o,. However, o
and o, should be distinct from each other, as they reflect dis-
tinct averaged information on the bending and the libration
frequencies of the vibrational spectrum. Such anisotropic be-
havior in the spherical momentum distribution is largely sup-
pressed by the spherical averaging operation. Thus to obtain
distinct o and o, values from the spherically averaged mo-
mentum distribution, a significantly higher resolution would
be needed than currently available with state-of-the-art fa-
cilities and instrumentation. While it should be possible to
achieve the required resolution in the future, at present the
only way to acquire directional information from experiments
on macroscopically isotropic samples such as polycrystalline
ice, is to use prior knowledge on the distribution in the fit-
ting procedure. In this respect, PICPMD simulations are a re-
liable source of theoretical knowledge, since (i) they predict
momentum distributions in good agreement with experiment
and (ii) they are a parameter-free approach in which the only
physical approximation is associated to the adopted electronic
density functional.

As shown in Ref. 12, the PICPMD data for the mo-
mentum distribution are accurately reproduced by a quasi-
harmonic model with principal frequencies wf’= 2639

Z

+60cm™!, 0P '=1164 £25cm™!, wP'=775+20cm . In

the M2 model, axz, o2, azz are used as fitting variables. From
the relation
2 Mﬁa)l ﬂhwi

; th ——, 13
0; > co > (13)

the PICPMD principal frequencies correspond to (02)"!
=394 A2, (0)P! = 17.5A72, (62)"! = 12.0A72. Assum-
ing that the deviation of the actual o from (¢?)"! follows
a Gaussian probability distribution with standard deviation
Ac?, one has

o P17

P(of) e @7 . (14)

Aal.z reflects the uncertainty of 0[2, which depends on the
likelihood interval suggested by physics and the experimen-
tal resolution. In our fit we take Aaxz = 1.5, AJ}? =1.2, Aazz
= 3.0. These values correspond to the following 70% confi-
dence intervals for the principal frequencies wy:

wy € [1059, 1265]em™", w, € [681, 861]cm™",
w, € [2430,2830]cm ™. (15)

The assumed distribution for o (14) is used as prior in-
formation in the maximum likelihood method,*® yielding a
modified objective function to be minimized

o2 0% 02) = 3y, 040~ Fityi. )’
X2y Tz - 1

v bi-E"F

k=x,y,z

We obtain in this way o, = 2797+ 95 cm™!, o,
= 1233+ 110 cm™!, w, = 922 & 81 cm™!, where the rel-
atively large error bars reflect the estimates for the physical
range made in the fit.
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FIG. 8. Experimental radial momentum distribution for ice at 271 K obtained
using model M1 (blue solid line), M2 (black dots) and PICPMD for ice at
269 K (red dashed line) with error bars. Errors on the radial momentum dis-
tribution, for both M1 and M2, are very small : they are determined from the
parameters’ covariance matrix calculated by the fitting codes.

lll. DISCUSSION AND CONCLUSIONS

The two parametric methods, M1 and M2, yielded the
experimental proton momentum distribution of ice. In Fig. 8
we report the radial momentum distributions, 47 p?n(p), from
M1, M2 and PICPMD, respectively. The M2 model fits the ex-
perimental data just as well as the M1 model, confirming that
the added bias does not worsen in any way the quality of the
fit. The blueshifts of the “experimental” frequencies relative
to their PICPMD counterparts suggest that the experimental
n(p) should be slightly more spread out than its theoretical
counterpart, an outcome that is entirely borne out by the plot
of the PICPMD radial distribution reported in Fig. 8.

Interestingly, the comparison between PICPMD and the
present more accurate experiment reverses the trend observed
in the comparison with the previous experiment of Ref. 8: the
proton is now more localized in the experiment than in the cal-
culation, consistent with the delocalization error of common
density functional theory approximations.’ The effect can be
quantified in terms of (Ek), which is 156 £ 2 meV with the
M1 fit and 154 4+ 2 meV with the M2 fit, as opposed to 143
£ 2 meV in PICPMD. The relative insensitivity of the spheri-
cal momentum distribution to the anisotropy of a system char-
acterized by three distinct quasi-harmonic frequencies con-
firms a recent theoretical study,39 in which a more sensitive
quantity named mean force was proposed. For a macroscopi-
cally isotropic system, the latter is a function of the radial dis-
placement x. The mean force is f(x) = (—logn(x)) — %
Here n(x) is the spherical end-to-end distribution, i.e., the
Fourier transform of n(p) (Eq. (7)), while the second term
is the free particle contribution which is independent of the
environment; f(x) can be directly related to the experimental
Jra(y) data obtained after correcting the NCP data F(y) for
final state effects AJ(y, ¢). The corresponding expression is*

Mx Jo dy ysin(xy /) J1a(y)
Bt ﬁfooo dy COS(X)’/h)J_IA(}’).
The mean forces extracted from Ji4(y) Eq. (17), from M2,
and from PICPMD data are plotted in Fig. 9. The three mean
forces have good correspondence, and f(x) extracted from the
“raw” experimental data is particularly close to that of the

flx) = a7

Spherical momentum distribution of the protons in hexagonal ice
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FIG. 9. Mean force, with error bars, calculated directly from the experimen-
tal asymptotic Compton profile, J7 4(y) (blue solid line), M2 (black dots), and
PICPMD data (red dashed line).

M2 model, indicating that the quantum state of the proton in
ice is well represented by quasi-harmonic anisotropic motion.
Notice that the error bars of f{x) increase systematically with
the displacement x, reflecting a progressively larger statisti-
cal uncertainty as the tail of the end-to-end distribution is ap-
proached; f(x) is related to the derivative of the Fourier trans-
form of the NCP, and therefore, at large x, becomes sensitive
to its highest frequency components, i.e., to the noise. The ef-
fect becomes so pronounced in the “raw” f{x) that we truncate
the plot at 0.35 A. The (Eg) estimated, in a fourth, non para-
metric way, from the “raw” f(x) is 156 £ 9 meV. The error
bar of this estimate is larger than that from M1 or M2, since
the “raw” mean force constitutes a model independent, non-
parametric approach. To accurately resolve the anisotropic
frequencies without resorting to a model dependent approach,
the counting statistics in the experiment, i.e., the uncertainty
of the “raw” f(x) should be comparable to that of the M2
model in Fig. 9. This work illustrates how the theoretical and
experimental determination of the momentum distribution in
a benchmark system like polycrystalline ice can directly ac-
cess the physical mechanisms describing the proton quantum
state. We have successfully extracted the dominant features
of the microscopic directional momentum distribution from
an experiment on a macroscopically isotropic sample. More-
over, we have measured with high precision the non-trivial
quantum excess kinetic energy, an observable that can be used
as a quantitative benchmark for electronic density functionals
employed in the description of hydrogen bonded systems in
“ab initio” numerical simulations. An accurate measurement
of the kinetic energy is in fact the most direct experimental
probe of the localization/delocalization of the proton, and can
contribute to the development of better theoretical descrip-
tions of water and hydrogen bonded systems in general. This
study can be further used to investigate the role of nuclear
quantum effects in a variety of hydrogen bonded systems.
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