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Abstract
In this paper, a refined set of statistical techniques is developed and then applied to the problem of deriving the
scaling law for the threshold power to access the H-mode of confinement in tokamaks. This statistical methodology
is applied to the 2010 version of the ITPA International Global Threshold Data Base v6b(IGDBTHv6b). To increase
the engineering and operative relevance of the results, only macroscopic physical quantities, measured in the vast
majority of experiments, have been considered as candidate variables in the models. Different principled methods,
such as agglomerative hierarchical variables clustering, without assumption about the functional form of the scaling,
and nonlinear regression, are implemented to select the best subset of candidate independent variables and to
improve the regression model accuracy. Two independent model selection criteria, based on the classical (Akaike
information criterion) and Bayesian formalism (Bayesian information criterion), are then used to identify the most
efficient scaling law from candidate models. The results derived from the full multi-machine database confirm the
results of previous analysis but emphasize the importance of shaping quantities, elongation and triangularity. On the
other hand, the scaling laws for the different machines and at different currents are different from each other at the
level of confidence well above 95%, suggesting caution in the use of the global scaling laws for both interpretation
and extrapolation purposes.

(Some figures may appear in colour only in the online journal)

1. Introduction: scaling laws and regime transitions
in tokamaks

Scaling laws are a central tool in physics, engineering, biology
and finance and have been extensively used since the beginning
of modern science in association with multivariate regression
techniques, mainly for interpretation and extrapolation
purposes of complex problems starting from experimental
evidence. In recent times, this approach has been used
to understand phase transitions, to interpret the correlation
functions near critical points and the resulting relations among
the exponents that occur in those functions [1, 2]. Regime
transitions, sudden changes from one confinement type to
another, are very common even in thermonuclear plasmas. In
the ASDEX machine it was discovered in 1982 that, when
the input power was increased sufficiently, the plasmas tended
to transit spontaneously to an enhanced confinement mode
called the high confinement or H-mode [3]. L–H transitions
are experimentally observed to occur when the heating power

applied to the plasma exceeds a critical value, which is now
known as the threshold power for H-mode access (PThresh) [4].
The H-mode is typically reached transiting first through a low-
confinement regime the so-called L-mode. The transition to
the H-mode can be considered a sort of phase transition and is
routinely achieved [4] in the vast majority of tokamaks. The
main physical difference of the H-mode confinement regime,
with respect to the L-mode, is a steep transport barrier at
the plasma edge, known as an edge transport barrier (ETB).
Once the correct L-mode conditions are met, the transition
from L- to H-mode occurs with the spontaneous formation of
an ETB. When the ETB is starting to develop, the confinement
at the edge of the plasma improves, which consequentially
sustains the further growth of the H-mode pedestal. With
regard to the time scales, the formation of an ETB occurs
on a typical time scale of 1 ms, as can be seen by its effects
on particle transport. Since the ETB increases significantly
the overall confinement properties of the plasma, a lot of
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experimental efforts have been devoted to identifying the
scaling law expressions which govern the access to the H-
mode. A series of theoretical models exist, which try to
interpret the onset of an ETB as the interplay between plasma
instabilities and various stabilizing factors. These models
consider a wide range of different physical phenomena and
provide some testable criteria for the onset of the H-mode in
terms of measurable plasma parameters [5]. These criteria
are expressed in terms of a critical electron temperature Tec,
which is considered to be the relevant order parameter, to use
a language typical of phase transitions and auto-organization
studies. On the other hand, even the best theoretical models
have not been able to properly predict the access to the H-mode.
Moreover, from an engineering and an operational point of
view, the PThresh represents a more useful parameter than the
electron temperature in the design of new machines. Therefore
various empirical models are available to determine the power
threshold between the L- and H-mode of confinement [6].
Various studies have focused on collecting and assembling
measurements of PThresh from multiple machines into a single
database and extracting an empirical scaling law. These scaling
laws are expressed in the form of power-law monomials [6]:

Y = f (Xn, βp) = β0X
β1
1 X

β2
2 X

β3
3 . . . X

βp

n , (1)

where Y represent the dependent variable (PThresh), Xn the set
of n candidate physical quantities and βp the set of P + 1
unknown coefficients. This is the functional form of the
scaling laws which will be considered in this paper. Power-law
relations are attractive in many fields of science for theoretical
reasons, but mainly because they are widely used as a rough
assessment of complex multivariate problems. Although
various physical quantities are believed to have a potential
influence on the L to H transition, it is also widely accepted,
for practical purposes, that the PThresh mainly depends on
the plasma line integrated density (ne20), the strength of
the torodial field (Bt) and the plasma surface area (S) (all
quantities are generally known with a precision of between
±1% and ±10%). On the other hand, the plasma shape,
described by the two main macroscopic quantities elongation
(k) and triangularity (δ), has also a quite significant impact
on confinement and its influence has therefore also to be
considered. In general, therefore the scaling laws considered
in this paper are of the form

PThresh(MW) = β0a(m)β1R(m)β2S(m)β3δβ4kβ5Bt(T)β6ne20

× (1020 m−3)β7q
β8

95Ip(MA)β9 , (2)

where Ip is the plasma current, a the minor radius, R the major
radius and q95 the safety factor at 95% of the plasma radius. For
continuity with previous studies, the same physical quantities
and notation as in [6] are adopted. Over the last years,
significant efforts have been devoted in the fusion community
to the collection of a multi-machine database for the systematic
study of the power threshold to achieve the H-mode. The
results reported in this paper have been obtained using the
2010 version of the ITPA database (IGDBTHv6b), whose
variables and main characteristics are described in the official
website4 (see also section 2). The extraction of a scaling
law from such a database is quite a challenging statistical

4 http://efdasql.ipp.mpg.de/igd/

Figure 1. Distribution of the difference (�T in seconds) between
the L–H transition time and the time-slice considered in the
statistical methodology.

activity which implies first to identify the most representative
variables, second to perform adequate forms of regressions and
finally to select the best regression formula from the various
reasonable candidates. The main statistical tools, which have
been adapted and used to analyse the IGDBTHv6b database,
are described in detail in section 3. The results of the statistical
analysis are reported in section 4 for the entire database,
providing results in agreement with previous investigations but
showing the importance of shaping parameters, elongation and
triangularity. In section 5 the analysis has been particularized
for individual machines, whose data are best interpreted by
scaling laws which are statistically different from each other.
Different current regimes (Ip < 2.5 MA for low current and
Ip > 2.5 for high current regimes) would also indicate different
optimal scaling laws, as reported in section 6. Conclusions and
suggestions of further investigations are the subject of section 7
of the paper.

2. Overview of the database

The statistical analysis has been carried out using the 2010
version of the ITPA database (IGDBTHv6b) [6]. As in [6],
the SELEC2007 criteria has also been applied. Furthermore,
it has been decided to filter the database and keep only
the measurements taken very close to the time of the L–H
transition. Therefore only measurements in the interval of
50 ms before the L–H transition have been retained in order to
reduce the possible occurrence of undesired spurious events.
The distribution of the difference (�T in seconds), between
the L–H transition time and the time-slice (ts) when the data
are sampled, is shown in figure 1.

The times considered in this paper are mainly distributed
around 11 ± 9 ms before the transition. The database is
also cleaned from duplicate data and randomized. A graphic
overview of the operational space and considered tokamaks,
for the geometrical (a, R, S), shape (k, δ) and operative
(BT, ne20, Ip, q95) quantities versus PThresh with the same
dimensions of equation (2) is provided in figures 2, 3 and 4.

Only the PThresh dependence on geometrical quantities
is quite linear whereas ne20, Bt and shape quantities show a
strong nonlinear behaviour as do the operative quantities. The
final dataset includes 442 time slices from the main tokamaks.
The operational range covered by this set of discharges is

2
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Figure 2. Geometrical quantities versus experimental threshold power for the time slices considered in the statistical analysis.

Figure 3. Shape quantities versus experimental threshold power for the time slices considered in the statistical analysis.

1.29 < Bt[T] < 5.37, 0.20 < ne20[1020 m−3] < 1.19,
0.67 < R[m] < 2.92, 0.216 < a[m] < 1.03, 7.32 <

S[m2] < 174.10, 0.0696 < δ < 0.508, 1.56 < k <

2.04 2.51 < q95 < 6.78, 0.54 < Ip[MA] < 3.22 and
0.831 < PThresh[MW] < 6.466.

3. The statistical methodology

The identification of the best empirical scaling law from a
large multi-machine database can be conceptually divided
into three phases: (1) feature extraction: the selection of
the most appropriate macroscopic quantities available in the
database to describe the phenomenon without assumption
about the functional form of the scaling law, (2) regression
method: application of the regression analysis in order to
provide the best fit of the available data, (3) statistical
model selection: identification of the most performing model
among the candidate ones. Therefore, first an appropriate
set of criteria for choosing between the contending subsets

of independent variables is to be devised. Then the most
appropriate regression techniques have to be deployed. Finally,
statistically sound indicators have to be defined to determine
the model, which best interpret the experimental evidence.
With regard to the first aspect, the approach adopted is the
one of agglomerative hierarchical clustering and correlation
analysis (see section 3.1). For the studied database, the
most appropriate regression method proves to be nonlinear
regression (see section 3.2). The identification of the best
model will be attacked with the use of two widely accepted
model selection criteria: the Akaike information criterion
(AIC) [7] and the Bayesian information criterion (BIC) [8]
(see section 3.3).

3.1. Feature extraction

The choice of predictive variables to include in the candidate
models is carried out by an agglomerative hierarchical
clustering [9], which identifies groups of variables that behave

3
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Figure 4. Operative quantities versus experimental threshold power for the time slices considered in the statistical analysis.

similarly or show similar characteristics in the dataset without
assumption about the functional form of the scaling law.
The objective is to reduce the number of variables in the
model, using only the most significant variable for each cluster.
Therefore the clustering is applied to the variables and not to
the observation vectors. The adopted procedure begins from
the evaluation of the original n×n distance matrix, D, (where
n is the number of variables) with all variables separate, each
forming its own cluster. The correlations method for distance
measures has been used. With the correlation method, the i, j

entry of the distance matrix is di,j = 1 − ρij where ρij is the
(Pearson product moment) correlation between variables i and
j . Thus, the correlation method will give distances between
0 and 1 for positive correlations, and between 1 and 2 for
negative correlations. At the beginning, when each variable
constitutes a cluster, the distance between clusters is simply
the inter-variables distance. In the first step, the two variables
closest together are joined if the similarity threshold level is
reached. The similarity, sij , between two clusters i and j , is
given by sij = 100(1 −dij /dmax), where dmax is the maximum
value in the original distance matrix D. The specific threshold
level of similarity of 95% has been used in this paper. This
value of the threshold is the one typically used in the literature,
in analogy to the 95% confidence usually adopted in statistical
treatments. Such a level of similarity seems appropriate also in
this application, since it has been checked that small variations,
of a few per cent, around this threshold do not change the results
appreciably.

A linkage rule is necessary for calculating inter-cluster
distances when there are multiple variables in a cluster. In the
next step, either a third variable joins the first two, or two other
variables join together into a different cluster. This process
will continue until all clusters are joined into one.

The linkage rule determines how the distance between two
clusters is defined. In this paper, Ward’s linkage has been used.
The objective of Ward’s linkage is to minimize the within-
cluster sum of squares. With this linkage method, the distance

between two clusters is the sum of squared deviations from
points to centroids. In detail, the formula for the distance
matrix, implementing Ward’s linkage, can be written as

dmj = (Nj + Nk)dkj + (Nj + Nl)dlj − Njdkl

Nj + Nm

, (3)

whereNj , Nk , Nl andNm are the number of variables in clusters
j , k, l and m. Relation (3) refers to the case of cluster k and l

being merged into cluster m. In Ward’s linkage, it is possible
for the distance between two clusters to be larger than dmax. If
this happens, the similarity is negative. The decision about the
final grouping is shown in a graphical way called a dendrogram
(see section 4). The dendrogram shows the manner in which
the clusters are formed and suggests which variables are to be
included in the candidate models. The candidate models are
formed considering only one variable in each cluster except
for the ne20 and Bt that are always retained in the candidate
models.

3.2. Regression techniques

The predicted H-mode PThresh is generally estimated by
ordinary least-squares (OLS) fitting of the power law via its
corresponding log-expression. The problem with this method
is that the transformation mainly ‘distorts’ the experimental
errors and this violates one of the basic assumptions of the OLS
technique [7]. Linearization procedures should be avoided
unless the errors are multiplicative log normally distributed
because they can otherwise give misleading results. This
comes from the fact that, whatever the experimental errors
on a dependent variable might be, the errors on the logarithm
of the dependent variable are different. Therefore, when the
transformed sum of squares is minimized, different results will
be obtained for both the parameter values and their calculated
standard deviations. Only with multiplicative errors that are
log normally distributed, this procedure gives unbiased and
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consistent parameter estimates. The validity of the statistical
model assumptions for the IGDBTH has been studied in
detail [10, 11], indicating that the assumptions of OLS are
weakly satisfied [11] and suggesting that an alternative fitting
technique would be more appropriate. As a consequence,
given the candidate laws from the feature extraction process,
a direct nonlinear regression technique has been carried out
because it is more suitable for extrapolation purposes, and
the multicollinearity between variables is mainly due to the
lack of data. Multicollinearity is present if two or more
independent variables in a model are highly linearly related.
Multicollinearity in linear regression causes problems in using
regression models to draw conclusions about the relationships
between independent and dependent variables. More details
and information about the type of nonlinear regression, used
in this paper, including many data examples, are given by
Bates and Watts [12]. Both linear and nonlinear regressions
minimize the sum of the squared residuals (SSE) to estimate the
parameters. However, they use very different approaches. For
linear regression, the numerical algorithm can mathematically
derive the minimum SSE by solving equations. However, for
nonlinear regression, there is no direct solution for minimizing
the SSE. Thus, an iterative algorithm estimates the parameters
by systematically adjusting their estimates to reduce the SSE.
The algorithm uses a starting value for each parameter to
calculate the initial SSE. In this paper, the starting values are
free to move from an interval centred in −100 to 100. At
each iteration, the algorithm adjusts the parameter estimates
in a manner that reduces the SSE compared with the previous
iteration. The iterations continue until the algorithm converges
on the minimum SSE. The Gauss–Newton method has been
used in order to determine the best parameter estimation. The
code achieves the convergence criteria in few iterations (10
iterations for the most complex case), using the Gauss–Newton
algorithm with the parameter range specified above. However,
fast and easy convergence, by itself, does not guarantee that a
model is the best among the candidate ones. Therefore, it is
crucial to perform a model selection process and examine the
plots of the residuals to ensure that the model adequately fits
the data.

3.3. Model selection

Two well established and independent model selection
criteria, based on the concept of information entropy (Akaike
information criterion, AIC) and Bayesian formalism (Bayesian
information criterion, BIC), are then used for model selection
in order to identify the most efficient scaling law from
candidate models. The AIC developed by Hirotsugu Akaike
under the name of ‘an information criterion’ in 1971, is a
measure of the goodness of fit of an estimated statistical model.
The AIC is an operational way of trading off the complexity
of an estimated model against how well the model fits the data
and can be written as

AIC = 2P + N × ln

(
RSS

N

)
, (4)

where RSS is the residual sum of squares of the model, N

the number of observations, or equivalently, the sample size
and P the number of free parameters to be estimated. Given

any number of candidate models, the model with the lower
value of AIC is the one to be chosen. Increasing the number
of free parameters to be estimated improves the goodness of
fit, regardless of the number of free parameters in the data
generating process. Hence AIC not only rewards goodness of
fit but also includes a penalty that is an increasing function of
the number of estimated parameters. The AIC methodology
attempts to find the model that best explains the data with a
minimum of free parameters.

The BIC criterion can be formulated as (under the
assumption that the model errors or disturbances are normally
distributed)

BIC = N · ln

(
RSS

N

)
+ P × ln(N). (5)

Given any two estimated models, the model with the lower
value of BIC is the one to be preferred. The BIC is an increasing
function of RSS and an increasing function of P . That is,
unexplained variation in the dependent variable and the number
of explanatory variables increases the value of BIC. The BIC
penalizes free parameters more strongly than the AIC does.
These two indicators implement a form of ‘Occam Razor’ by
penalizing models with a higher number of parameters. It is
important to keep in mind that the BIC and AIC can be used to
compare estimated models only when the dataset is identical
for all estimates being compared.

4. Results for the full multi-machines database

Starting with the process of variable selection, the dendrogram,
corresponding to the whole database used in this paper, is
shown in figure 5.

It is worth noticing that the dendrogram groups the
variables in a way, which is very coherent with the expectation
from the design of the machines and the everyday operation of
the experiments. The geometrical quantities (a, R and S) are
grouped together (blue coloured cluster), reflecting the fact
that they are strongly correlated (at the level of the design
of the machines). Given the very strong relation between
these quantities, only one of them is to be used in the scaling
laws. The clustering also shows that both shaping parameters
(k, δ) are grouped together, revealing the practice of trying to
increase the plasma confinement by raising both these shaping
quantities. Also the safety factor q95, which is operatively
normally linked to the plasma shape, is indeed shown to be
strongly correlated with k and δ. Bt and Ip are in contrast
quite independent variables, reflecting the relative freedom
of the operator to determine their values in the experiments.
On the other hand, ne20 seems to be highly correlated with
the magnetic field. This is spurious correlation due to the
way many machines are operated and it is clear that the best
regressions are obtained if the density is retained in the scaling
laws. The analysis of the dendrogram summarizes visually the
similarity between the variables and provides clear indications
about the good candidate scaling laws to be considered in the
regression analysis. Choosing only one of the variables in each
cluster, the remaining candidate scaling laws are summarized
in table 1. In this table, the most recent scaling laws available
in the literature (Scal2008) and their extension, considering

5
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Figure 5. Dendrogram used for variable selection in the full multi-machine database.

Table 1. Candidate scaling laws provided by dendrogram analysis
for the full multi-machine database.

Model Equation

NLM-1 PTh = β0a
β1δβ4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

NLM-2 PTh = β0S
β3δβ4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

NLM-3 PTh = β0R
β2δβ4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

NLM-4 PTh = β0δ
β4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

Scal2008 PTh = β0S
β3B

β6
t n

β7
e20

ICFDT2011 PTh = β0S
β3δβ4kβ5B

β6
t n

β7
e20

NLM-5 PTh = β0S
β3δβ4B

β6
t n

β7
e20

NLM-7 PTh = β0S
β3kβ5B

β6
t n

β7
e20

NLM-9 PTh = β0S
β3B

β6
t n

β7
e20q

β8
95

NLM-11 PTh = β0S
β3kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

NLM-13 PTh = β0S
β3kβ5B

β6
t n

β7
e20q

β8
95

also the shape quantities [13] proposed by the authors of this
paper, are included.

The obtained coefficients (the multiplying constant and
the various exponents for the independent variables) of the
scaling laws are shown in table 2.

Also the equivalent linear models are reported in table 3.
In this way, it can be verified that the AIC and BIC criteria
manage to properly identify the nonlinear models as the most
appropriate ones (confirming the consideration of section 3.2).
The score assigned to the various scaling laws by these
model selection criteria are reported in the previous table
(the red colour has been used to indicate the best models).
A strict evaluation on the basis of AIC and BIC parameters
would indicate quite clearly that the best scaling law is the
nonlinear one number 11 (NLM-11). This law reads (with
95% confidence interval for the parameters):

PThresh = 0.0680.074
0.063S

1.0.351.050
1.020K−1.152−1.084

−1.220B
0.7640.787

0.741
t n

0.7650.775
0.754

e20

× q
−0.051−0.031

−0.072

95 I
−0.034−0.012

−0.056
p . (6)

A simpler scaling law, involving seven instead of six
measurements, has also quite good performance in terms both

of BIC and AIC scores. For the reader’s convenience this
alternative is reported in the following:

PThresh = 0.0670.073
0.061S

1.0411.058
1.024δ0.0040.011

−0.002k−1.135−1.063
−1.207B

0.7780.808
0.748

t

× n
0.7640.774

0.754
e20 q

−0.064−0.037
−0.092

95 I
−0.049−0.018

−0.080
p . (7)

The superior performance of the scaling law NLM-11,
identified by the statistical indicators BIC, is due to a lower
number of free unknown parameters included in the model. A
simple inspection of the residuals indeed shows that equation
NLM-11 provides a very similar pattern of residuals, i.e.
provides the same information, compared with NLM-2, as can
be seen in figure 6.

A comparison between the selected model, NLM-11, and
the most used version of the scaling law, Scal2008, is shown
in figure 7.

Inspection of figure 7 reveals immediately that the
distribution of the residuals is narrower, more symmetric and
better catered with respect to zero for the scaling law NML-11.
This equation therefore interprets significantly better than the
main alternatives the available data. A comparison between
the selected model, NLM-11, and the most used version of the
scaling law [6]

Pth = 0.049S0.717±0.035B0.803±0.032
t n0.941±0.019

e20 (8)

is shown in figure 8. The PThresh predicted by this NLM-11
model for ITER (Bt = 5.37(T) ne20 = 1 (1020 m−3) S = 678
(m2) k = 1, 86 q95 = 3 Ip = 15 (MA)) is 88 MW.

Coming to a more physical interpretation of the derived
equations, the NLM-11 scaling law shows a very strong
dependence of the power threshold on the shape of the plasma.
Indeed, the effect of elongation k has one of the highest
exponents. This is in agreement with MHD theory, since
the increased shaping of the plasma is indeed expected to
improve stability and confinement. Another interesting remark
relates to the effects of the plasma current and q95. Both these
quantities are retained in the scaling law NLM-11 with a very
low exponent. On the other hand, their effect is quite important.
The distribution of the residuals is significantly affected, if
these two quantities are not included in the regression, as can

6
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Table 2. BIC and AIC values and coefficient for nonlinear regression models. The last row gives the estimated threshold power for a device
of the ITER class: the parameters used to evaluate this power are: Ip = 15 MA, Bt = 5 T, ne0 = 1020, a = 2 m, S = 678, R = 6.2 m,
δ = 0.5, k = 1.86, q95 = 3.5.

Candidate models (nonlinear regression models)
Mod.
sel.criterion NLM-1 NLM-2 NLM-3 NLM-4 Scal2008 ICFDT2011 NLM-5 NLM-7 NLM-9 NLM-11 NLM-13

BIC −2106 −2793 −2457 −1241 −1888 −2783 −1971 −2784 −1993 −2797 −2794
AIC −2138 −2826 −2489 −1270 −1905 −2807 −1991 −2805 −2014 −2826 −2819
Parameter Coefficients
Constant 9.349 0.067 0.809 7.863 0.034 0.072 0.027 0.074 0.050 0.068 0.077
a 2.01 — — — — — — — — — —
R — — 1.66 — — — — — — — —
S — 1.041 — — 0.987 1.023 1.023 1.02 0.953 1.035 1.014
δ −0.06 0.004 0.002 −0.221 — −0.004 −0.057 — — — —
k −0.62 −1.135 −0.278 −3.89 — −1.247 — −1.266 — −1.152 −1.223
Bt 0.797 0.778 0.406 −0.734 0.868 0.728 0.838 0.728 0.861 0.764 0.733
ne20 0.775 0.764 0.726 0.753 0.678 0.774 0.674 0.776 0.652 0.765 0.768
q95 −0.116 −0.064 0.291 1.047 — — — — −0.191 −0.051 −0.03
Ip −0.034 −0.049 0.346 1.692 — — — — — −0.034 —
PThresh (MW) 81.89 88.32 97.71 73.69 91.10 89.17 90.49 88.57 86.00 88.25 88.82

Table 3. AIC an BIC value and coefficient for the equivalent linear regression models. The last row gives the estimated threshold power for
a device of the ITER class: the parameters used to evaluate this power are: Ip = 15 MA, Bt = 5 T, ne0 = 1020, a = 2 m, S = 678,
R = 6.2 m, δ = 0.5, k = 1.86, q95 = 3.5.

Candidate models (linear regression models)

Mod. SCAL 2008 ICFDT2011
sel.criterion LM-1 LM-2 LM-3 LM-4 (linear) (linear) LM-5 LM-7 LM-9 LM-11 LM-13

BIC −1872 −2700 −2396 −1159 −1772 −2763 −1810 −2755 −1954 −2716 −2759
AIC −1904 −2732 −2429 −1187 −1788 −2788 −1830 −2776 −1975 −2744 −2784
Parameter Coefficients
Constant 7.983 0.050 0.903 5.073 0.040 0.065 0.035 0.070 0.052 0.053 0.073
a 2.510 — — — — — — — — — —
R — — 1.666 — — — — — — — —
S — 1.078 — — 0.957 1.017 0.961 1.019 0.942 1.063 1.011
δ −0.020 0.006 0.0005 −0.287 — −0.016 −0.045 — — — —
k 0.695 −0.797 −0.575 −3.916 — −1.09 — −1.154 — −0.845 −1.078
Bt 1.239 0.871 0.369 −0.739 0.806 0.750 0.831 0.737 0.829 0.847 0.748
ne20 0.752 0.748 0.744 0.677 0.667 0.762 0.646 0.775 0.64 0.748 0.76
q95 −0.518 0.141 0.36 1.239 — — — — 0.171 −0.118 −0.051
Ip −0.486 0.123 0.358 1.666 −0.096
PThresh (MW) 86.46 241.08 96.13 55.89 79.42 89.29 76.74 90.59 117.42 90.20 90.54

be seen in figure 9 (scaling laws NLM-7 and NLM-13). Indeed,
in the table inserted in the figure, it can be seen how, even if
the standard deviations of the three scaling laws are not terribly
different, the mean of the residual distribution is much closer
to zero for the scaling law NLM-11.

To summarize, the method of selecting the more
significant variables based on dendrograms provides quite
good results which are systematically confirmed by analysis
of the residuals. The statistical analysis also indicates
consistently that nonlinear regression should be used, since
the results obtained with the traditional log scaling are not
statistically significant. In terms of interpretation of the
selected scaling law, the results for the entire database indicate
that the dependence from the main quantities Bt , ne20 and S

confirms the results of previous analyses [6]. The exponents
agree within the error bars with the most established version
of the scaling law [6]. On the other hand, the present analysis
reveals a very strong dependence of the results on the plasma
shaping and in particular on the plasma elongation. Current
and q95 have a much weaker but nonetheless non-negligible
effect of the quality of the fit.

5. Results for individual machines

One can first of all try to verify the quality of the previously
derived scaling law NLM-11 by analysing the residual
distribution of each machine, for which enough data were
available to provide a sufficient statistical basis of the
conclusions. These machines are JET, AUG and DIII-D.
Since each individual machine typically operates at the same
minor and major radii, the dependence from the plasma
geometry has been eliminated in the regressions discussed
in the following. This is of course a perfectly legitimate
step since, if the general scaling law already derived was
perfect, the contribution of the individual machines should
be recovered by fixing their dimensional parameters. The
statistical analysis of the database, in any case, confirms that
these two quantities do not change over a sufficient interval
to provide good regressors. To shed light on the behaviour of
the individual machines, the same approach used to analyse
the whole database has also been followed to investigate the
scaling laws for the various individual machines. Therefore
the analysis of the dendrograms, the nonlinear regression and
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Figure 6. Histogram of the residuals for the two competing relations NLM-11 and NLM2.

Figure 7. Comparison between the proposed scaling law and the most used version of the scaling law available.

Figure 8. Comparison between the proposed scaling law and thescaling from equation (8).

the evaluation of the residual distributions have been repeated
for the individual machines. The dendrograms for the three
machines investigated are reported in figure 10.

The dendrograms are very similar between JET and
DIII-D, apart from some not very relevant minor variations.

They basically confirm the coherence of the database of
these two machines and the agreement of the analysis results
with the expectations based on the design and operation of
the machines. It is indeed interesting to note that, once
the dependence on the plasmas surface is eliminated, the

8
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Figure 9. Histogram of the residuals for scaling law NLM-11 without Ip and q95.

Figure 10. Dendrograms for the machines investigated: JET, DIID and AUG.

correlation between the toroidal field and the plasma current
becomes even more significant than for the entire database.
AUG, on the other hand, seems to have significantly different
characteristics already at the level of the database. In any
case, the final selection of the combination of variables, to
apply regression analysis to, follows the same method used for
the entire database. Again the analysis of the dendrograms,
the nonlinear regression and the evaluation of the residual
distributions have been repeated for the individual machines.
Only one of the strongly correlated variables is selected for
each individual regression. The main set of scaling laws tested
is reported in table 4.

The scores of the AIC and BIC criteria for the various
candidate models are reported in table 5.

Candidate scaling laws for the individual machines. For the
reader’s convenience, the best scaling laws for each machine,
as selected by the AIC and BIC criteria, are reported in the
following together with the 95% confidence intervals for the
parameters. It is worth mentioning that the classification of the
various regression formulae, as provided by the AIC and BIC
criteria, is confirmed by a detailed analysis of the residuals.
The residuals of the three scaling laws JET-4, AUG-1 and
DIII-D-4 are clearly better centred around zero and narrower

9
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Table 4. Scaling laws considered for the various machines on the
basis of the dendrogram analysis.

Model Equation

JET-1 PTh = β0δ
β4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

JET-2 PTh = β0δ
β4B

β6
t n

β7
e20q

β8
95

JET-3 PTh = β0k
β5B

β6
t n

β7
e20q

β8
95

JET-4 PTh = β0k
β5B

β6
t n

β7
e20q

β8
95 I

β9
p

DIII-D-1 PTh = β0δ
β4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

DIII-D-2 PTh = β0δ
β4kβ5B

β6
t n

β7
e20

DIII-D-3 PTh = β0k
β5B

β6
t n

β7
e20q

β8
95

DIII-D-4 PTh = β0k
β5B

β6
t n

β7
e20q

β8
95 I

β9
p

AUG-1 PTh = β0δ
β4kβ5B

β6
t n

β7
e20q

β8
95 I

β9
p

AUG-2 PTh = β0δ
β4B

β6
t n

β7
e20

AUG-3 PTh = β0B
β6
t n

β7
e20q

β8
95

AUG-4 PTh = β0k
β5B

β6
t n

β7
e20q

β8
95 I

β9
p

than those of the other scaling laws. Moreover, in the case
of JET and DIII-D, the scaling laws selected are the most
parsimonious because they use two variables less than the
next ones in the classification obtained with the AIC and BIC
criteria:

PThresh(JET − 4) = 6.7058.419
5.342k

−0.215−0.021
−0.408B

0.3760.501
0.250

t n
0.7440.764

0.723
e20

× q
−0.1240.095

−0.344

95 I
0.5240.655

0.394
p , (9)

PThresh(DIIID − 4) = 2.2592.436
2.096k

−0.766−0.620
−0.913B

0.3410.440
0.243

t n
0.7570.771

0.743
e20

× q
0.4190.521

0.317
95 I

0.3910.488
0.294

p , (10)

PThresh(AUG − 1) = 1.8761.936
1.818δ

−0.011−0.006
−0.016k−0.313−0.255

−0.371

× B
0.5860.615

0.557
t n

0.7460.752
0.741

e20 q
0.1530.181

0.124
95 I

0.1400.169
0.110

p . (11)

The obtained results are particularly interesting and deserve
some comments. The analysis of the dendrograms indicates
that almost the same variables are the most relevant for all the
three machines (except triangularity in the case of DIII-D as
discussed later). On the other hand, the scaling laws for the
various machines are indeed different from each other with a
probability typically well in excess of 95%. Basically the only
exponent, which is not statistically different for the various
machines, is the one of the density, whose dependence is well
established around 0.75. Even the dependence on the magnetic
field is statistically different at least for AUG. All the other
exponents differ outside the 95% confidence intervals and the
one of q95 has even a different sign for JET-4 with respect to
the other machines. Moreover, the best scaling law for AUG
presents even an additional variable, triangularity, with respect
to the other machines. Its exponent is low but significant (on the
basis of the residual analysis and the model selection criteria)
and consistently negative. It is worth mentioning that the same
differences between machines remain even if a different set of
regressors is arbitrarily chosen. So the converge on statistically
different scaling laws is not so much an effect of the application
of the AIC and BIC criteria but more an output of the nonlinear
regression analysis (which is an absolutely well established
technique).

6. Analysis at different plasma currents

The significant differences found between the scaling
laws obtained for the individual machines are statistically
significant, as discussed in detail in the last section. On the
other hand, the application of regression to derive scaling
laws for the power threshold to access the H-mode has a
main practical aspect, to help planning of experiments and
design machines. Therefore it is appropriate to investigate how
extrapolations based on the derived scaling laws perform. In
particular, given the fact that the plasma current is one of the
main design parameters, of both experiments and machines,
it has been decided to investigate how a general scaling law
obtained at low plasma currents, using the contribution of all
the machines, is effective in describing the behaviour at higher
currents. To this end, the analysis performed for the entire
database, and described in sections 3 and 4, has been repeated
adding the condition for the plasma current to be below 2.5 MA.
The dendrogram of the variables is identical to the one shown
in figure 5. The best scaling law, according again to the score
of the AIC and BIC criteria is

PThresh(Ip< 25 MA) = 0.0420.044
0.040S

1.1271.136
1.118δ0.0230.026

0.020k−0.728−0.691
−0.766

× B
0.9370.952

0.923
t n

0.7500.754
0.745

e20 q
−0.207−0.193

−0.221

95 I
−0.189−0.173

−0.205
p . (12)

The distribution of the residuals is of quite good quality
as can be seen in the left graph of figure 11.

The same scaling law has been applied to the discharges
with plasma current higher than 2.5 MA. The fitting properties
of this equation unfortunately extrapolate quite poorly to
higher currents. This can be seen in the right graph of figure 11.
The distribution of the residuals is clearly of inferior quality.
To confirm the discrepancy of the results obtained at high
and low currents, the same thorough analysis of the database,
as described in section 3, has been performed also for the
discharges at current higher than 2.5 MA. Again the analysis
of the dendrograms, nonlinear regression, the scoring with
the AIC and BIC criteria and the evaluation of the residual
distributions have been repeated. The scaling law best fitting
the experimental data is now found to be

PThresh(Ip> 25 MA) = 0.0240.105
0.005S

1.2871.626
0.949k−1.608−1.163

−2.054

× B
0.7440.844

0.645
t n

0.7750.790
0.759

e20 q
0.2930.459

0.128
95 I

−0.400−0.174
−0.627

p . (13)

This scaling law is clearly different from the general
one, except for the established dependence on the density.
Particularly different are the exponents of the shaping
parameters and q95. But there is also no statistical agreement
even on the toroidal field and plasma current dependences.
The extrapolation capabilities of the derived scaling law can
therefore be considered quite limited. It is worth mentioning
that scaling laws obtained with linear regression extrapolate
even worse than the ones obtained with nonlinear regression.
This is expected from statistical considerations but has been
clearly confirmed in practice in our application.

7. Conclusions

A new approach to identify the scaling law for the power
threshold to access the H-mode has been described in detail.
The method is based on the combination of various established
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Table 5. Scaling laws and AIC and BIC scores for the individual machines (in different colours the best candidate models for each machine).

JET-1 JET-2 JET-3 JET-4 AUG-1 AUG-2 AUG-3 AUG-4 DIII-D-1 DIII-D-2 DIII-D-3 DIII-D-4

BIC −239 −191 −201 −240 −2537 −2374 −2418 −2518 −681 −639 −638 −685
AIC −250 −199 −209 −250 −2563 −2388 −2433 −2544 −698 −651 −651 −699

Figure 11. Histogram of the residuals for the best scaling law obtained at low current regimes (Ip < 2.5 MA) applied to discharges at higher
current regimes.

statistical tools, so the conclusions are to be considered quite
robust in statistical terms. The inspection of the dendrograms,
based on Ward’s linkage, has proved to provide quite reliable
results. Indeed, the most relevant variables are consistently
identified also for individual machines and at different current
levels. A statistical analysis indicates quite clearly that
nonlinear regression is the only appropriate tool to be applied
to the database and this is confirmed by the inspection of the
residual distribution functions. The selection of the various
candidate models has been based on the AIC and BIC criteria
and again confirmed by the analysis of the residuals. The
main results of previous studies have been reproduced. The
main novelty of this part of the investigation is the relevance
of the shape quantities, elongation and triangularity, and of q95,
which emerges quite clearly. Including these quantities has a
quite relevant effect on the obtained scaling laws and the quality
of the fit. The same approach applied to the main individual
machines (JET, DIII-D and AUG) reveals some unexpected
results. Apart from the exponent of the density, which remains
quite stable around 0.75 (figure 12), practically all the scaling
laws for the single machines have different dependences on the
regressor with a statistical confidence higher than 95%, as can
be appreciated visually from figure 13.

This suggests treating with great caution the overall
scaling laws derived from the whole database. Since the
individual experiments seem to obey different laws, it cannot
be excluded that the physics of the transition to the H-mode
is different in different machines. In that case, of course, the
entire approach of multi-machine scaling should be revisited.
Another possible alternative is of course the fact the set of
macroscopic variables chosen could not be optimal and that
other, mesoscopic or microscopic, quantities could play a
relevant role in the transition. The impact of missing variables

Figure 12. Exponents of the density for the proposed scaling law,
with the 95% confidence interval.

could be different in different devices, resulting in different
scaling laws if they are ignored.

In any case, the results reported in this paper are more
aimed at describing a methodology than at providing a
definitive answer to this physics question. In order to clarify
this point and determine to what extent the physics of the L to H
transition is the same on different machines, a more thorough
investigation is required and in particular a specific database
should be built for this purpose. The delicate interpretation
of the obtained scaling laws is stressed by the analysis at
different currents. The scaling law obtained from the entire
database at plasma currents below 2.5 MA does not extrapolate
very well to higher currents. The number of high current
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Figure 13. Exponents of k, q95, Bt and Ip for the proposed scaling laws, with the 95% confidence interval.

discharges in the database is not huge but on the other hand
the extrapolation is over a very small range. Therefore the
extrapolation capability of scaling laws obtained from multi-
machine databases remains a point to be further assessed.
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