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ABSTRACT

The potential (eco)toxicological hazard posed by engineered nanoparticles is a major scientific and soci-
etal concern since several industrial sectors (e.g. electronics, biomedicine, and cosmetics) are exploiting
the innovative properties of nanostructures resulting in their large-scale production. Many consumer
products contain nanomaterials and, given their complex life-cycle, it is essential to anticipate their
(eco)toxicological properties in a fast and inexpensive way in order to mitigate adverse effects on human
health and the environment. In this context, the application of the structure-toxicity paradigm to nano-
materials represents a promising approach. Indeed, according to this paradigm, it is possible to predict
toxicological effects induced by chemicals on the basis of their structural similarity with chemicals for
which toxicological endpoints have been previously measured. These structure-toxicity relationships
can be quantitative or qualitative in nature and they can predict toxicological effects directly from the
physicochemical properties of the entities (e.g. nanoparticles) of interest. Therefore, this approach can aid
in prioritizing resources in toxicological investigations while reducing the ethical and monetary costs that
are related to animal testing. The purpose of this review is to provide a summary of recent key advances
in the field of QSAR modelling of nanomaterial toxicity, to identify the major gaps in research required
to accelerate the use of quantitative structure-activity relationship (QSAR) methods, and to provide a
roadmap for future research needed to achieve QSAR models useful for regulatory purposes.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

complement and reduce animal testing is a high priority (Clark
et al,, 2011).

Nanomaterials have different and useful properties compared
to bulk materials, and their commercial applications are growing
rapidly. However, nanomaterials properties may also pose risks to
health or the environment, and regulatory agencies are urgently
seeking ways of assessing these risks (Hansen et al., 2008; Morris
et al., 2011; Pumera, 2011; Cattaneo et al., 2010). Toxicological
characterization of the immense number of structural combina-
tions that can be engineered would be extremely demanding (if
not impossible) in terms of time, costs and experimental facilities,
and so the adoption of in silico toxicology methods as a way to
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In this context, the application of the structure-toxicity
paradigm to nanoparticles appears as a logical adaptation of QSAR
modelling concepts as applied to chemicals. Indeed, the encoding of
existing knowledge into computational models that formalize the
relationships between molecular structure and toxicological effects
has been successfully applied in the pharmaceutical field and in
regulatory toxicology (Mombelli and Ringeissen, 2009; Bassan and
Worth, 2007). QSAR or QSTR (quantitative structure-activity (or
toxicity) relationship) models can predict continuous (e.g. lethal
doses) or categorical (e.g. genotoxic vs. non-genotoxic) endpoints
and they canreduce the need for, or extent of, animal testing. More-
over, the rationalization of knowledge provided by these models
offers to all the stakeholders affected by toxicological regulations a
common conceptual framework upon which informed discussions
could take place.
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Despite inherent difficulties related to the toxicological charac-
terization of nanomaterials, toxicological studies are beginning to
highlight the role that the structure of nanoparticles has in trigger-
ing and modulating adverse effects (Shvedova et al., 2010; Rivera
Giletal.,2010; Maynard etal.,2011).Size has been proven to play an
important role not only for biodistribution of nanomaterials (Choi
et al., 2010) but also for their toxicity (e.g. Pan et al., 2007). Fur-
thermore, as can be intuitively expected, shape has a function in
mediating toxicological responses. For instance, carbon nanotubes
that remain as isolated long fibres are more inflammogenic in the
outer regions of the lung than nanotubes that form tightly bundled
aggregates with non-fibrous shapes (Osmond-McLeod et al., 2011).
Another structural characteristic that does not have a wholly unex-
pected role in producing toxicological effects is the high surface
area of nanomaterials that dramatically increases the areas of con-
tact between nanoscale entities and biological environments. The
impact of this property on toxicity has been analyzed by Monteiller
and co-authors (2007) who showed that surface area is a key fac-
tor in determining pro-inflammatory effects on epithelial cells in
vitro. These authors identified a clear and significant relationship
between pro-inflammatory effects and surface area for a variety
of nanoparticle types and, according to their analysis, as surface
area dose increases above 1 cm?/cm?, dose response relationships
collapse almost onto a common trend (Monteiller et al., 2007). Sim-
ilarly, the functional properties imparted by a high surface area
have also been put into use in the pharmaceutical field in order to
enable nanoparticles to interact with receptors over a larger cell
surface area while improving the nanoparticle binding affinity and
selectivity (Wang and Dormidontova, 2010).

The difference in electrostatic potential between the stationary
layer of fluid surrounding the nanoparticles and the bulk fluid (zeta
potential) is another important physicochemical property that has
proven to be critical in modulating cytotoxicity effects of nanopar-
ticles (Sayes and Ivanov, 2010). For instance, it is proposed that
nanoparticle cytotoxicity could be modulated by controlling the
electrostatic interaction between nanoparticles and cellular targets
(Feris et al., 2010; Mura et al,, 2011).

Perhaps less intuitive, but experimentally proven, is the find-
ing that oxidized carbon nanotubes have an increased toxicological
potential with respect to their pristine counterparts because of
an enhanced dispersion in the experimental medium and of a
higher negative charge introduced by oxygenated functionalities
(Pietroiusti et al., 2011). The effect that structure has on toxicity
becomes even more complex if we consider that essential biologi-
cal functions such as cellular uptake can be influenced by the nature
of the surface coating on nanomaterials that may be purposely
introduced (such as silica or dextran (Kunzmann et al., 2011)) or
modified by the biological environment through adsorption of pro-
teins and other biomolecules (Monopoli et al., 2011).

The few examples reported above highlight the fact that
structure-toxicity data are potentially multivariate in nature.
Therefore, the extraction of meaningful relationships between
nanostructures and toxicological properties to yield predictive
QNTR (quantitative nanostructure-toxicity relationship) models
requires specific techniques. Firstly, chemical or structural prop-
erties of nanomaterials are represented by mathematical objects
called descriptors, many of which can be calculated rather than
measured. Examples of descriptors suitable for nanomaterials
include particle size, shape and surface area, ionization poten-
tials of metals, heats of formation of metal oxide clusters (Puzyn
et al, 2011), zeta potentials, and physicochemical properties
(e.g. lipophilicity, hydrogen bond donor or acceptor strength) of
molecules attached to nanoparticles surfaces. Secondly, using addi-
tional mathematical techniques, subsets of descriptors are chosen
that are most likely to relate to the biological property (e.g. cell
apoptosis, metabolism, or signalling pathway modulation) being

modelled. Statistical modelling (e.g. regression models) or machine
learning methods, often employing neural networks, generate a
mathematical model linking the descriptors to the biological activ-
ity (Mombelli and Ringeissen, 2009; Burden and Winkler, 1999; Le
et al,, 2012).

Finally, the model’s robustness and ability to predict properties
of new materials is assessed by statistical cross-validation tech-
niques, or by predicting properties of materials in a test set not
used to develop the model (Fig. 1 and see Le et al., 2012). Although
QSAR approaches have only recently been used to predict biolog-
ical effects of nanomaterials, they have shown encouraging initial
results as reported in Table 1 (see also Burello and Worth, 2011;
Fourches et al., 2011; Puzyn et al., 2009; Epa et al., 2012a,b).

These pioneering studies suggested that binary classification
models based on size, relaxivities, and zeta potential can be used
to predict the effect that nanoparticles, characterized by differ-
ent core compositions and surface attachments, have on cellular
physiology (Fourches et al., 2010). However, subsequent studies
have shown that some of these properties, particularly relaxivities,
may simply generate correlative rather than causative relation-
ships. Interestingly Fourches et al. (2010) also pointed out that
the cellular uptake of nanoparticles possessing the same metal
core but different organic molecules on their surface can be pre-
dicted by taking into account the chemical structure of the coating
molecules.

Therefore, the structural determinants of the biological
behaviour of nanoparticles can be found both at the core of
nanoparticles and at their surface. Because of all the possible
combinations and interdependencies that can exist between core
and surface compositions, it appears that the characterization
of nanoparticles by means of physicochemical descriptors is a
domain of research in itself that can benefit from a wide range of
scientific studies ranging from classical molecular dynamics simu-
lation to quantum chemical computations (Barnard, 2009; Liu and
Hopfinger, 2008). It has anyway to be pointed out that in some
cases, as the work by Burello and Worth (2011) and Puzyn et al.
(2011) showed, biological effects of nanoparticles can be explained
in a simple way by enthalpies of formation of gaseous cations and
orbital energies. These straightforward relationships show that a
reductionist analysis of the relationship between the structure of
nanoparticles and their biological behaviour is possible and pave
the way for systematic studies on the impact that nanostructures
have on biological systems (Epa et al., 2012b). Nevertheless, the
modelling of the behaviour of nanomaterials presents different
challenges compared to drugs and chemicals, as discussed in the
following paragraphs where we also point out research needs and
present a roadmap for the development of QNTR models as a basis
for regulatory decision making.

2. Defining the biologically relevant entity

Unlike chemicals, the surface properties of nanomaterials may
change in an environment-specific manner (Fig. 2). When taken up
by humans, a nano-bio interface (corona), consisting mainly of pro-
teins in the systemic circulation and of phospholipids in the lung, is
generated. Protein or phospholipid binding in biological fluid is not
a static process, being characterized by continuous association and
dissociation events that reach equilibrium whereupon continued
exchange does not affect the corona composition (Dell’Orco et al.,
2010; Monopoli et al., 2011). The composition of the protein corona
may be considered a fingerprint of a specific nanomaterial in a given
compartment. However, if the nanoparticle moves from one com-
partment to another (e.g. from the lung to blood), the corona may be
modified. Another dynamic process occurring in biological systems
is the exchange between the agglomerated and the dispersed forms
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Fig. 1. QSAR method. The bioactive form of nanoparticles for a given environment is converted into suitable molecular descriptors. In vivo or relevant in vitro data and
descriptors are used to train a neural network or to generate a statistical regression model. Once validated, the model can be used to predict properties of new nanomaterials,

or to elucidate biological mechanisms and processes.

of nanoparticles, which may change as the environment changes
and is currently poorly understood. In addition, potential dissolu-
tion of nanoparticles in certain environments may be modified by
the composition and surface coverage of its corona. Modelling and
prediction of the biological effects of nanomaterials requires a bet-
ter understanding of these dynamic processes through additional
experiments.

High throughput experimental methods can provide infor-
mation on corona composition through rapid measurements of
binding affinities of many potential corona components and
nanoparticle types, potentially many thousands of experiments
(Damoiseaux et al., 2011). Analysis of this large volume of experi-
mental data will provide a better understanding of the competitive
binding behaviour of nanoparticle corona components, and how
this leads to specific nanoparticle corona compositions. This will
allow the generation of QNTR models linking nanoparticle and
adsorbent properties to the resultant nanoparticle corona compo-
sition that can be used to predict corona formation more broadly.
The data can also parameterize and validate competitive binding
models that predict corona properties.

Table 1

A range of analytical techniques (Table 2) can be used to
investigate the interactions of nanoparticles with molecules in
their environments as described by Lynch and Dawson (2008).
For example, surface plasmon resonance (Tassa et al., 2010) has
recently been used to measure the affinity of proteins for nanopar-
ticles. Magnetically responsive nanosensor arrays (up to 100,000
sensors/cm?) have been employed to quantify protein-binding
interactions at sensitivities in the zeptomolar range (Gaster et al.,
2011). Fluorescence correlation spectroscopy has been used to
follow the kinetics of protein binding to nanoparticle surfaces
(Rocker et al., 2009). These types of studies are deepening our
quantitative understanding of the protein corona on nanoparticle
surfaces.

Recently, a biological surface adsorption index was developed to
predict the molecular interactions of nanoparticles with proteins. A
set of small molecule probes that mimic amino acid residues were
allowed to competitively adsorb onto a set of nanoparticles and the
adsorption coefficients for the probes were measured. By assum-
ing the adsorption was governed by five basic molecular forces, the
measured adsorption coefficients were used to develop descriptors

Early harvest: QNTR (quantitative nanostructure-toxicity relationship) modelling studies.

Reference Results

Toropov et al. (2010)

Modelled toxicity of nanoscale (metal) oxides towards E. coli bacteria using SMILES-based optimal descriptors (available at

http://www.caesar-project.eu/posters/SETAC2009/Toropov_-nanooxides_setac_1.pdf)

Fourches et al. (2010)

Generated QNTR models predicting the results of in vitro cell-based assays for nanoparticles with (i) different metal cores and (ii)

similar cores but different surface modifiers. In the first case a QNTR model could be obtained as a function of experimental
descriptors (size, relaxivities, and zeta potential) whereas in the second case a model was derived as a function of the structure of the
organic molecule attached to the surface of nanoparticles.

Puzyn et al. (2011)

Modelled bacterial toxicity of metal oxide nanoparticles as a linear function of the enthalpy of formation of a gaseous cation having

the same oxidation state as in the metal oxide structure.

Burello and Worth (2011)
taking into account their band energy.
Fourches et al. (2011)

Demonstrated that the oxidative stress potential of oxide nanoparticles with a diameter larger than 20-30 nm can be predicted by

Using a dataset of carbon nanotubes decorated with a series of congeneric organic molecules, modelled acute toxicity as a function of

the structure of the organic molecules in the surface coatings.

Liu et al. (2011)

Using cytotoxicity data, developed a QNTR model based on the atomization energy of the metal oxide, period of the nanoparticle

metal, and nanoparticle primary size, in addition to nanoparticle volume fraction (in solution).

Epaetal. (2012b)

Generated quantitative and predictive QNTR models from in vitro cell-based assays for nanoparticles with (i) different metal cores and

(ii) similar cores but different surface modifiers. They generated robust and predictive quantitative models of smooth muscle
apoptosis induced by metal iron oxide nanoparticles (MION), and cellular uptake of surface modified nanoparticles.
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Fig. 2. Effects of different environments on pristine nanoparticles. Pristine nanoparticles become coated with a variety of molecules and ions in the body or in the natural

environment to generate the biologically relevant entity.

that represent the relative contributions of each of the forces,
which, in turn, could be used in an in silico model to predict the
adsorption of small molecules to other nanomaterials (Xia et al.,
2010).

In a follow-up study, the authors determined the surface adsorp-
tion forces of 16 different nanomaterials (Xia et al.,,2011). When the
five-dimensional information of the nanodescriptors was reduced
to two dimensions, the 16 nanomaterials were classified into
distinct clusters according their surface adsorption properties. This
is the first success in quantitative characterization of the surface
adsorption forces of nanomaterials in biological conditions, and
could open a quantitative avenue in predictive nanomedicine
development, risk assessment, and safety evaluation of
nanomaterials.

Another promising computational approach for predicting the
formation of protein corona, biodistribution and bioavailability
of nanoparticles is provided by the Hansen solubility parameters
(Hansen, 2007) that have been applied to the prediction of the
solubility and dispersability of carbon nanotubes in order to select
the most appropriate solvents to use (Detriche et al., 2008).

Table 2

Although defining the biologically relevant entity of nanoma-
terials in the natural environment they occupy is a challenge,
the colloidal stability, agglomeration and dissolution properties
of metal-containing nanoparticles in simple systems are relatively
well understood. Ecotoxicity of chemicals and particles are both
affected by abiotic factors like pH, salinity, water hardness, tem-
perature, and naturally occurring organic matter. For example,
environmental ions are effective at shielding surface charges of
nanoparticles, in turn affecting agglomeration properties. Other
factors such as pH and water hardness can influence size, shape,
surface properties, solubility, and, ultimately, biological effects of
nanoparticle agglomerates and aggregates. However, there have
been relatively few (but an increasing number of) studies on
how these factors influence the environmental toxicology of engi-
neered nanoparticles (Handy et al., 2008; Klaine et al., 2008; Batley
et al., 2012; Peng et al., 2011). There has been also an increasing
focus on the ability of nanoparticles to adsorb and desorb toxic
metals such as lead and arsenic, largely for environmental remedi-
ation purposes, but also providing an additional source of data on

Methods suitable for measuring interactions of nanoparticles with environmental molecules (Lynch and Dawson, 2008).

Method Strengths and weaknesses

Surface plasmon resonance (SPR)
high-throughput analyses.
Size exclusion chromatography (gel
filtration)
Magnetic nanosensor arrays

Fast, sensitive but can only measure one protein at a time, suffers from non-specific binding, and is not amenable to

Fast, discriminates different proteins, gives information on kinetics and association rates. Limited ability to identify
proteins, results affected by operating conditions.
High throughput, very sensitive, measure binding kinetics of proteins with high spatial and temporal resolution but

can only measure one protein at a time.

Fluorescence correlation spectroscopy

Fast, sensitive, can follow kinetics of corona build up, hydrodynamic dimensions and photophysical properties can be

determined, but limited to fluorescent species.

Shotgun proteomics analysis
processes.
SDS-PAGE (polyacrylamide gel
electrophoresis)
LC MS/MS (liquid chromatography
mass spectrometry)
Isothermal titration calorimetry
samples.

Identifies identities and quantities in mixtures of proteins but very slow, cannot do kinetics or monitor dynamic
Quick, quantifies relative amounts of proteins. Cannot identify proteins.
Provides very good information on identities and quantities of bound proteins. Limited ability to monitor dynamic

processes, not amenable to high throughput.
Good for thermodynamics of nanoparticle-protein or ion interactions. Slow and not suitable for mixtures of biological
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nanoparticle toxicity in the natural environment (Hu and Shipley,
2012).

Nanomaterials may enter the human body by various routes,
such as the mouth, nose, skin or eyes. Additional challenges are
posed by the fact that nanoparticles move around the body (Péry
et al.,, 2009) and encounter different environments, changing the
composition of the corona and the properties of nanoparticles over
time. Methods using radioactive tracers and magnetic resonance
imaging can track movement of nanoparticles around the body.
Other techniques such as electron and confocal microscopy can
image nanoparticles in cells. New experimental techniques like
scanning near-field ultrasonic holography allow much-improved
imaging of the interaction of nanoparticles with cells (Tetard et al.,
2008), increasing knowledge of uptake and fate as well as effect
on cell function. These methods require further development to
allow in vivo tracking of nanoparticles at the typical concentra-
tions in the body during likely occupational exposure, to determine
their kinetics of transport, and fate. The best methods use some
intrinsic property of the nanoparticle, for example the radioactiv-
ity of an isotope of one of the nanoparticle components, so that
the labelled nanoparticle will behave the same way as the unla-
beled (native) nanoparticle as it traverses the body. In the case
of metal-containing nanoparticles, intrinsic labelling allows also
the simultaneous tracking of dissolved and nanoparticulate metals
in the body or other complex environment, thus improving our
understanding about the dissolution properties of these types of
nanoparticles. In contrast, external tagging (by fluorescent labels,
for example) seems less suitable as the label may alter nanoma-
terials properties, affecting interactions with organs and cells and
transport through the body.

Once the nanoparticle characterization, corona composition,
and translocation data described above become available in suf-
ficient quality and quantity for a wide range of environments
and nanoparticle types, we will be able to predict the bioactive
form of nanoparticles in a given environment. To this end, QNTR
approaches can play a valuable role. Such approaches can model
and predict the in situ forms of nanoparticles, and the time- and
environment-dependent changes in the nanoparticle composition
from the high-throughput experimental data.

3. Choosing the right assays to develop pertinent models

Clearly, the generation of large volumes of in vivo data is not
possible from ethical or cost perspectives. However, regulators
and other risk assessors need to estimate the potential hazard of
a given nanomaterial in the workplace, home, or environment.
Consequently, it is essential to understand the major mechanisms
of toxicity for nanomaterials and define relevant in vitro testing
procedures (assays) that can measure the toxic effects of the nano-
materials that correlate well with their effects in vivo. The selection
of the biological properties measured will almost certainly be end-
use dependent. As with nanoparticle characterization and corona
composition measurement, high throughput and high content (i.e.
measuring several biological responses in cells simultaneously,
Damoiseaux et al., 2011) in vitro toxicity assays, such as those
developed for the pharmaceutical industry (Service, 2008), can be
adapted for nanoparticles (Feliu and Fadeel, 2010; Damoiseaux
et al,, 2011). This will greatly increase the amount of nanotoxic-
ity data that can be generated for use in modelling and improve
our knowledge of mechanisms of toxicity of nanoparticles (Pumera,
2011).As anexample, George et al. (2010) recently reported a rapid
cytotoxicity screen for metal oxide nanoparticles that exploits high
content screening methods. They developed a fluorescence assay
that simultaneously measured four different responses in cells
to oxidative stress caused by ZnO, CeO,, and TiO, nanoparticles.

Using the information, they were able to reduce the cytotoxicity
of ZnO nanoparticles by decreasing ZnO dissolution through Fe
doping. These authors also reported the use of a multiparametric,
automated screening assay for high-throughput analysis of com-
mercial metal/metal oxide nanoparticles and employed zebrafish
(Danio rerio) embryos in order to compare the in vitro with the
in vivo responses (George et al.,, 2011). Moreover, Shaw et al.
(2008)alsoreported on the assessment of nanoparticle effects using
multiple cell types and multiple in vitro assays. Hierarchical clus-
tering of the data identified nanomaterials with similar patterns of
biologic activity across a broad sampling of cellular contexts, yield-
ing robust structure-activity relationships for the nanomaterials
tested. Furthermore, a subset of nanoparticles were tested in mice,
and nanoparticles with similar activity profiles in vitro exerted sim-
ilar effects in vivo, using monocyte number as the endpoint. These
data suggest a strategy of multi-pronged characterization of nano-
materials in vitro that can inform the design of novel nanomaterials
and guide studies of in vivo activity.

A model for how high throughput methods might be used to
assess adverse effects of nanomaterials is ToxCast, a 2007 initiative
of the U.S. Environmental Protection Agency (EPA) to acceler-
ate toxicity testing of industrial chemicals (Collins et al., 2008).
Researchers examined 320 different chemicals in a wide variety of
cell-based assays, which had all undergone extensive conventional
toxicological testing, looking for 400 endpoints that correlated with
adverse effects. This analysis revealed both known and novel tar-
gets that play important roles in toxicity (Knudsen et al., 2011).

Another high-throughput technology that can assist in assessing
the adverse effects of nanomaterials is whole genome microarrays
(Yangetal, 2010). For instance, Zhang et al. examined cells treated
with two dosages of PEG-silane quantum dots and measured both
phenotypic changes and altered transcription of the whole genome,
providing clues to modes of toxicity (Zhang et al., 2006). Similarly,
the ToxCast project uses rapid, high-content assessment of impact
on gene regulatory networks by chemicals to elucidate toxicity
mechanisms and establish a ‘fingerprint’ or profile that correlates
with in vivo adverse effects (Martin et al., 2010; Judson et al., 2010).
Rohetal. (2009) investigated the ecotoxicity of silver nanoparticles
in Caenorhabditis elegans using whole genome microarrays and the
integration of gene expression data with organism and population
level endpoints. The results suggest that oxidative stress might be
an important mechanism in silver nanoparticle-induced toxicity in
this model organism.

For organic chemicals, a surrogate assay approach to predict in
vivo genetic, reproductive and developmental toxicity in silico has
been utilized (Matthews et al., 2006a,b). Surrogate assays are faster,
cheaper experiments that yield results that are strongly indicative
of results from a desired, more complex, expensive and time-
consuming assay. These authors analyzed in vitro genetic toxicity
data, reproductive and developmental toxicity studies, and rodent
carcinogenicity bioassays to identify surrogate in vitro endpoints
that best correlated with rodent carcinogenicity observations. In
the near future, a similar approach could be adopted for predicting
adverse in vivo effects of nanomaterials since the development of
invitro assays is an active field of research which aims at developing
validated protocols (Park et al., 2009).

Choosing relevant assays for predicting adverse effects on the
environment is arguably more challenging than for human toxicity.
Species in the environment are exposed to many types of natu-
rally occurring nanoparticles such as colloids and volcanic dust, but
the concern is that manufactured nanoparticles may have prop-
erties that are substantially different to these. The diversity of
organisms is very high and susceptibilities to toxic materials vary
widely across kingdoms and even between species. Currently, there
are relatively few data on the effects of nanomaterials at realis-
tic environmental concentrations on organisms such as fish and
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crustaceans, and limited data that enable calculations of “50% of
maximal effect” and “no effect” concentrations (Batley et al., 2012).
In contrast, the toxic effects of silver nanoparticles on bacteria have
been amply demonstrated (Rai et al., 2009).

Handy et al. (2008) reviewed issues involved in the compre-
hensive assessment of environmental effects of nanomaterials
and identified the major data gaps. These gaps include: a better
understanding of environmental fate; more studies on uptake and
distribution within organisms; measurement of ecotoxicological
data across a broader range of terrestrial, marine and plant species;
detailed investigations of absorption, distribution, metabolism and
excretion on species from the major phyla. Assessment of the
environmental impacts of nanomaterials will be accelerated by
adoption of high-throughput technologies, if suitable standard
reference materials, assays, and procedures can be established
internationally. However, as a cautionary note, standard proce-
dures should be adopted with care, as the sequence of steps and
time taken to prepare nanomaterial samples for testing can influ-
ence observed toxicities (Oberdorster et al., 2005), and so early
adoption of standardized procedures may result in not all adverse
effects being identified.

4. Modelling of complex nanomaterials-biology
interactions

The large volumes of data that may be generated by the high
throughput experimental methods referred to above will allow
development of QNTR models for properties such as corona com-
position and cellular toxicity for specific environments and organs,
in vitro. Such models will allow in vitro responses of new nanoma-
terials to be predicted. This allows experimental work to be focused
more effectively, by identifying materials or properties of particular
concern. QSAR modelling of large data sets therefore requires cycles
of iteration between experiments and modelling that allows pre-
dictions to be tested and, subsequently, models to be refined. The
refined models will be better predictors of biological responses to
new nanomaterials.

Ultimately, in vivo effects of nanoparticles are the most impor-
tant for regulatory purposes, although they are the most expensive
and difficult to obtain by experiment. The combination of results
from in vitro assays (or predictions from QNTR models of in vitro
assays) and nanomaterials descriptors such as size, shape, composi-
tion, zeta potential, elemental and molecular properties and corona
composition constitute nanoparticle ‘fingerprints’ that can be used
to derive QNTR models of in vivo activity. For example, nanoparticle
fingerprints and experimental in vivo data could be used to train a
neural network that predicts the in vivo responses more broadly. A
similar approach has been effective in predicting in vivo toxicities
of industrial chemicals using in vitro assay results and molecular
descriptors (Lee et al., 2010).

Existing QSAR modelling tools include: statistical methods
like multiple linear regression, polynomial and kernel regression;
machine learning methods like artificial neural networks (Burden
and Winkler, 1999) and support vector machines; and clustering
methods like random forest and decision trees (Lee et al., 2010;
Fourches et al., 2010; Katritzky et al., 2010; Nantasenamat et al.,
2010). They are used to find mathematical relationships that link
the microscopic (e.g. molecular) or physicochemical properties of
nanomaterials to their biological properties. These relationships
are often very complex and nonlinear, and QSAR and QNTR meth-
ods have the advantage that complete knowledge of intermediate
processes and mechanisms is not required to construct useful
models. These methods have been shown to predict in vivo toxi-
cities of industrial chemicals or drugs in animals and humans (e.g.
Lessigiarska et al., 2006) and ciliates (e.g. Richard et al., 2008) with

useful fidelity. The existing QSAR modelling tools appear adequate
to model experimental data from nanomaterials.

Recent papers have suggested that QNTR methods can gener-
ate useful models of the in vitro biological effects of nanomaterials
(Puzyn et al., 2011; Fourches et al., 2010; Epa et al., 2012b). Puzyn
et al. reported on the cytotoxicity of 17 different types of metal
oxide nanoparticles to Escherichia coli while Fourches et al. stud-
ied the cellular uptake of 109 different nanoparticles with similar
core but diverse surface modifiers. These proof-of-concept models
are promising, but more studies are needed using larger datasets
and emphasis on additional endpoints relevant to the nanosafety
assessment for consumers, workers, patients, and for the environ-
ment.

5. The relationship between QNTR methods and other
computational approaches

Physics-based methods such as quantum chemistry (Barnard,
2009) and molecular dynamics (Liu and Hopfinger, 2008) comple-
ment QNTR methods by elucidating mechanisms and generating
useful molecular descriptors. Quantum chemical methods are
based on approximate solutions of the Schrodinger equation, while
molecular dynamics is a computational method for investigat-
ing the physical movements of atoms and molecules. Quantum
chemistry computations are particularly suited to investigating the
geometry and stability of packed carbon nanotubes; the application
of this form of computational approach allowed an effective sim-
ilarity comparison among nanostructures by taking into account
energy gaps (e.g. energy differences between the highest occupied
molecular orbital and the lowest unoccupied molecular orbital),
chemical potentials, chemical hardness and Parr electrophilicity
(Poater et al., 2010)

Three of the major roadblocks to applying QSAR methods
to modelling biological properties of nanoparticles are insuffi-
cient experimental data on the composition of the bio-corona on
nanoparticle surfaces, the lack of in vitro data predictive of in vivo
effects of nanomaterials, and the paucity of ‘nanoparticle-specific’
descriptors. Nanomaterials differ substantially in structure from
small organic molecules and chemicals for which the existing
descriptors were developed. Although existing descriptors work
well for modelling of some nanomaterials, it is clear that further
research is required to generate nanomaterials-specific mathe-
matical descriptors. In this respect, an interesting perspective is
provided by the use of spectral information (e.g., NMR, infrared,
UV) as a descriptor of nanostructures. Indeed, spectra represent
a unique fingerprint of chemicals and they have been used for
designing photoactive nanocatalysts (Yang et al., 2011) and for
characterizing nanotubes (Zhou et al., 2008).

6. A roadmap for the future

Policy-makers, regulators and scientists must harmonize efforts
and rationalize nanoparticle characterization, bioactive entity, and
toxicological data for an effective development of QNTR mod-
els for regulatory purposes. Since the discipline of computational
nanotoxicology is in its infancy, we are at a critical juncture for
organizing a synergy between experimentalists and theoreticians,
and policy-makers, industrialists and scientists.

A recent international COST (European Cooperation in Science
and Technology) workshop on the use of QSAR methods to model
biological effects of nanomaterials (www.cost.esf.org/events/qntr)
identified roadblocks to achieving useful models for assessing
nanoparticle risks, and methods for overcoming them. A number of
tasks that need to be completed in order to create models useful for
nanoparticle regulation within the ten-year time frame requested
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= Good in vitro endpoint models

= Nascent in vivo endpoint models

= Improved mechanistic understanding
of how NPs interact with biology

* Predictive models for biologically-relevant
NP species

= Lots of relevant in vitro data and
mechanisms of toxicity

* Most informative high throughput
in vitro assays functioning
* Environment changes to NP
predicted a priori
* NP classification fingerprints developed
e In vitro, in vivo, in situ models useful
for NP regulation

2 YEAR
HORIZON

Measure and model environment-specific
changes to NPs

Develop high throughput methods for
distribution and interactions of NPs

Develop surrogate or improved in vivo assays
Develop better NP-specific descriptors

NM characterisation (pristine and time/
location-dependent changes)

Fig. 3. QNTR (quantitative nanostructure-toxicity relationship) roadmap showing achievable objectives in short, medium, and long term horizons. The outcome will be a
set of data and computational tools that can guide regulators in assigning the correct level of risk to nanomaterials.

by regulators, were divided into three time horizons that the expert
consensus of COST workshop participants identified as being real-
istically achievable (Fig. 3).

Within two years, the following were considered achievable:
establishment of well characterized materials for experiments;
development of specific nanoparticle descriptors; development of
high throughput in vitro assays for toxicologically relevant end-
points; development of high throughput methods for measuring
the interactions of a diverse set of commercially relevant nanopar-
ticles with plasma proteins; refinement of methods for tracking
nanoparticles in the body. Commercial samples often contain
nanoparticles with a wide range of sizes and shapes, surface proper-
ties, and states of aggregation. When studying the biological effects
of nanoparticles, it is important that properties of the pristine
nanoparticle (i.e. as supplied, before exposure to environmental
influences), as well as their (altered) properties in a biological sys-
tem, are well understood so that valid inferences can be made
about how these properties affect nanoparticle behaviour in com-
plex systems (Fubini et al., 2010). It is essential to establish an
agreed set of reference nanomaterials for experimentation, such
as those defined by the Organization for Economic Cooperation
and Development (OECD) Working Party on Manufactured Nano-
materials (WPMN; http://www.oecd.org/env/nanosafety). These
commercially sourced materials include: fullerenes, carbon nano-
tubes, silver, gold, iron, titanium dioxide, aluminium oxide, cerium
dioxide, zinc oxide, silicon dioxide nanoparticles, dendrimers and
nanoclays. An internationally agreed set of nanomaterials char-
acterization methods and organism toxicity measurements also
needs to be defined, and the OECD WPMN is also taking the lead on
this.

Traditionally, toxicological profiles of drugs or chemicals rely
on in vivo studies in laboratory animals, which are expensive, low-
throughput, and inconsistently predictive of human biology and
pathophysiology. Improvements to in vivo assays, and particularly
the use of in vitro assays that correlate with in vivo outcomes, will
provide reliable information of immediate use by regulators and
will allow construction of in vivo QNTR models as described pre-
viously. To this end, the US National Institutes of Health (NIH)
and Environmental Protection Agency (EPA) in the US have devel-
oped a suite of cell-based assays to profile the toxicity of chemical

compounds in a variety of cell types. The ultimate goal is to identify
in vitro chemical signatures that could act as predictive surrogates
for in vivo toxicity (Matthews et al., 2006a,b). A similar approach,
coupled with QNTR modelling methods, could yield useful in vivo
predictions for nanomaterials.

The most important research component of computational
nanotoxicology, namely the development of nanoparticle-specific
descriptors, will be achieved within this two-year time frame.
Also during this period, development of mechanisms for informa-
tion sharing and close collaboration between experimentalists and
computational scientists, with cooperation and input from regu-
lators and industry, is essential. Establishment of tools for data
storage and sharing, toxicity mark up languages and informat-
ics tools (like ToxML, a toxicology database language; DSSTox,
a distributed toxicity database network; and ACToR, an online
warehouse of all publicly available chemical toxicity data), and
development of ontologies (formal representations of knowl-
edge as a set of concepts, and the relationships between those
concepts) for nanomaterials (Richard et al., 2008) will facilitate
this.

Within a five-year timeframe the amount of in vivo data on the
effects of nanoparticles will be significantly increased; data storage
and sharing methods will be developed; reliable in vitro models of
in vivo endpoints will be developed; the first models of nanopar-
ticle corona in different environments will be achieved; and the
mechanisms of entry of nanoparticles into cells and mechanisms of
toxicity such as free radical production, genotoxicity and apoptosis
will be understood. High throughput technologies will provide sub-
stantial improvements in the ability to measure in vitro responses
to nanomaterials, and an improved understanding of mechanisms
of toxicity. Based on the limited but promising QNTR models of bio-
logical effects of nanoparticles, and the successful track record of
this approach to modelling in vitro and in vivo toxicity data for small
molecules, predictive models of the biologically relevant entity and
anumber of important in vitro endpoints will be possible. The larger
quantity of data will also allow benchmarking of different QNTR
modelling methods to be carried out, identifying those that are
most reliable and that generate the most robust models. Concur-
rent accumulation of in vivo data from animal and ecotoxicological
experiments and relevant in vitro data will see development of
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the first models that can be used by regulators to predict in vivo
responses to new nanoparticles.

The aim of the ten-year plan is to create QNTR models of in vitro
and in vivo effects of nanoparticles and to obtain sufficient experi-
mental and mechanistic data to allow regulators to make decisions
on nanoparticle risk. In the final five years, based on achieving
the earlier milestones, the following outcomes are considered to
be realistic. In vitro assays most informative of in vivo effects of
nanoparticles will be identified, models will be available that can
reliably predict corona in diverse environments, nanoparticle ‘fin-
gerprints’ will be developed that are useful for classification, and
QNTR models of in vivo effects sufficiently reliable for regulatory
purposes (with accuracies similar to models used to regulate indus-
trial chemicals) will be available. We expect that nanomaterials
classification fingerprints — physicochemical, genomic, and/or bio-
logical profiles of nanomaterials that group materials with similar
in vivo effects - can also be developed. This would allow regula-
tors to classify nanomaterials into hazard classes in a similar way
to that currently adopted for industrial chemicals. This approach
is particularly important since it will provide a rationale for form-
ing chemical categories of nanoparticles to be used in regulatory
toxicology to fill data-gaps (Diderich, 2010; Hansen et al., 2007).

Achieving the milestones in this roadmap requires a num-
ber of things to happen. Firstly, we need to maintain and
expand the network of experimental and computational
researchers, regulators and policy-makers, such as will be
achieved through the COST Action MODENA (http://www.cost.eu/
domains_actions/mpns/Actions/TD1204). Secondly, it is essential
that the needs of the end-users of the experimental and modelling
research outcomes remain a prominent driver for the work.
Thirdly, it is important to focus on the high throughput experi-
mentation flagged above as this will provide the essential data
required for the QNTR models, will elucidate how environment
affects nanoparticles, and will increase our knowledge of how
nanoparticles enter, move through, and affect the biology of
human and environmental systems. Finally, a funding mechanism
needs to be developed to support a strong collaborative network
of stakeholders, and to fund the research component of the work
to be done. If these four important elements can be achieved,
we are confident that the computational models developed, and
increased knowledge of nanoparticle behaviour in biological sys-
tems, will generate outcomes that will assist regulators to assess
nanoparticle risk within a 10-year time frame. This will facilitate
finding the best balance between commercial development of
these valuable materials and protection of workers, the public, and
the environment from adverse effects.
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