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Neural control of locomotion in human adults involves the

generation of a small set of basic patterned commands

directed to the leg muscles. The commands are generated

sequentially in time during each step by neural networks

located in the spinal cord, called Central Pattern

Generators. This review outlines recent advances in

understanding how motor commands are expressed at

different stages of human development. Similar commands are

found in several other vertebrates, indicating that locomotion

development follows common principles of organization of

the control networks. Movements show a high degree of

flexibility at all stages of development, which is instrumental for

learning and exploration of variable interactions with the

environment.
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Introduction
Human neonates exhibit transitory, primitive behaviors

that develop in utero and disappear a few months after

birth [1,2]. Some of these are critical for survival; for

instance, rooting and sucking reflexes are essential for

feeding. But the significance of other primitive behaviors

and their relationship with more mature behaviors are a

long-standing riddle [3,4,5�]. Traditionally, it is thought

that primitive behaviors are suppressed as a result of brain

maturation. However, there is now evidence that some

basic control principles are conserved through develop-

ment, so that the primitive patterns can be considered as

precursors of the mature patterns.

Locomotor behavior is a case in point. Human newborns

exhibit a stepping reflex that typically disappears at �2

months and reappears several months later when it
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evolves into intentional walking. It was once thought

that the patterns of muscle control in newborn stepping

are discarded during development, replaced by entirely

new patterns of walking. Instead, it has recently been

shown that the primitive stepping patterns are retained

and tuned, while new patterns are added during devel-

opment [6�]. Surprisingly similar patterns are observed

also in several other animal species, suggesting that

locomotion is built starting from common elements, per-

haps related to ancestral neural networks [7].

Here we first review recent findings on the prenatal and

postnatal development of motor patterns in human chil-

dren, and on a comparative analysis with other animal

species. Next we consider the role of learning and

exploration in human locomotor development. In a final

section, we deal with abnormalities of motor develop-

ment as typified by cerebral palsy.

Prenatal movements
Spontaneous movements begin as soon as there are

functioning muscles and nervous system in developing

humans and animals. In humans, small, slow, cyclic

bending of the head and/or trunk are detected with

4D-ultrasonography at 5 weeks post-conception [8]. Wax-

ing and waning general movements can be observed

slightly later, at 7 weeks, and persist throughout preg-

nancy and the first months after term birth [9–11]. They

consist of complex, variable, flexion-extensions of the

whole body and limbs, they are not triggered by external

stimuli and lack distinctive sequencing of different body

parts. In addition, human fetuses exhibit a rich repertoire

of leg movements that includes single leg kicks, sym-

metrical double legs kicks, and symmetrical inter-limb

alternation with variable phase [12,13]. Spontaneous

movements of the limbs evolve toward an increased

coordination between the arms and between the legs,

at 2–4 months after birth [14�]. Abnormal movements lack

complexity, variation, and fluency, and are associated

with an increased probability of cerebral palsy [10,15].

While only kinematic analyses are currently available for

human fetuses [16], direct recordings of electrical muscle

activity (EMG) are possible in animals. EMG reflects the

output of spinal a-motoneurons, and therefore the neural

commands for movement. Detailed EMG recordings in

chick embryos during the final week of incubation

showed that the profiles of EMG activity during repeti-

tive limb movements resemble those of locomotion at

hatching [17]. However, in contrast with mature loco-

motor activity, EMG burst duration does not scale with

movement cycle duration in chick embryos.
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Optical imaging of spontaneous activity in ventral spinal

neurons of the zebrafish embryo showed a rapid (few

hours) transition from uncorrelated, sporadic slow activity

to ipsilaterally correlated and contralaterally anticorre-

lated fast activity involving several adjacent somites

[18]. The transition to correlated activity may depend

on electrical connections initially coupling nearby

neurons in local microcircuits and then merging to in-

clude the majority of active ipsilateral neurons into a

single coupled network [18]. Recurrently connected

excitatory networks within the spinal cord are transiently

silenced by activity-dependent depression [19]. In these

networks, motoneurons generate large, slow depolariz-

ations crested by bursts of action potentials, resulting in

the correlated discharge across a population of neurons

with a periodicity in the order of minutes, a firing pattern

that drives spontaneous embryonic movements [20,21].

Thus, the episodes of spontaneous activity are presum-

ably triggered by motoneurons, but the periodicity of

activity is set by recurrent excitatory interactions in the

network [21]. Bursting activity occurs while motoneurons

are still migrating and prolonging their axons toward the

base of the limbs, so that correct motor axon path-finding

is contingent on normal bursting activity [22]. In addition,

spontaneous motor activity at an early developmental

stage may facilitate the self-organization of neural circuits

at both spinal and supra-spinal levels [21]. Thus, motor

activity modulates the spinal circuits of central pattern

generators (CPG) and those of nociceptive withdrawal

reflexes [23], and it also modulates cortical somatosensory

maps in a somatotopic manner [24]. Once established,

spinal CPGs underlie fetal movements [22], but devel-

oping supra-spinal structures (such as the transient cor-

tical subplate) presumably also play a role in more

complex sequences of general movements, as demon-

strated by the abnormality of general movements in

human fetuses with brain disorders [10].

Postnatal development of locomotion
In addition to the spontaneous general movements, human

newborns also exhibit stepping movements. These can be

elicited in an infant supported under the arms in an upright,

slightly tilted forward posture, after contacting ground with

the feet soles [6�,25]. Reflex stepping has been reported

also in premature infants at 30+ post-conception weeks [26]

and anencephalic newborns [27]. This suggests a predo-

minant role of spinal and brainstem mechanisms, owing to

immature cerebral connections to the spinal cord [28].

While buoyancy of the amniotic fluid counteracts gravity

effects in the human fetus (and other amniotes), newborns

must deal with gravity to move their limbs and support

their body weight. They can support �30–40% of their

weight, the remaining being supported from the outside.

Infant stepping is irregular, variable, and lacks several

features of more mature walking, most notably postural

control [6�,25,29–31]. It looks like an exaggerated march-

ing with flexed legs, high foot lift, and flat-foot touch-down
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(instead of heel-contact as in adults). Ground forces are not

accurately controlled: newborns typically exert vertical

forces supporting part of their weight, but only negligible

horizontal (shear) forces. However, the angular motion of

the lower limbs segments is already coordinated, resulting

in a planar inter-segmental covariance roughly comparable

to that seen in adults [6�].

Upright stepping often becomes very difficult to elicit in

infants between �2 and 7 months of age, while supine

kicking (which shares some features of stepping) con-

tinues [29]. The disappearance of stepping presumably

depends on both neural changes in the CNS (supraspinal

inhibitory influences on spinal CPGs) and biomechanical

factors (the legs may become too heavy for the muscle

strength [29]). However, stepping can still be evoked

during that period with daily practice [29,30,32] or sup-

porting the legs’ weight by means of water immersion

[29]. Practice increases the incidence of alternating steps,

but does not appreciably affect the muscle activity pro-

files [30]. Infant stepping shows sensory adaptation to

imposed loading and perturbations [33]. Longitudinal

studies carried out over the first year show a progressive

reduction of muscle co-contraction and increasingly se-

lective activation patterns [31,34�]. However, there is a

persistently large inter-step variability of EMG activities

compared with more repeatable kinematics. The latter

finding is reminiscent of adult locomotion, and depends

on a prominent role of passive biomechanics in loco-

motion in both infants and adults [35,36].

The neural patterns of muscle control can be revealed by

factorization of EMG activity [36]. In human newborns,

two patterns are sinusoidally modulated over the step

cycle: one pattern (#2 in Figure 1) helps providing body

support during stance, while the other one (#4) helps

driving the limb during swing, but there is no specific

activation pattern at either touch-down or lift-off [6�].
EMG factorization in toddlers (�1-year-old) at their first

unsupported steps finds the same two patterns (#2 and #4

in Figure 1) of the newborn, plus two new patterns timed

at touch-down (#1) and lift-off (#3) that contribute shear

forces necessary to decelerate and accelerate the body,

respectively [6�]. In preschoolers (2–4-years), all four

patterns show transitional shapes. Thus, the waveform

shifts in time relative to the step cycle progressively with

age (see lower panel in Figure 1): the older the child, the

closer the waveform to the adult. In sum, two basic control

patterns are retained from the stage of newborn stepping,

while two other patterns develop after that stage. Transi-

tional patterns indicate a continuous development of the

corresponding motor control modules.

The gradual development of adult gait from infant step-

ping is generally believed to stem from a growing integ-

ration of supraspinal, intraspinal and sensory control

[3,30]. The lack of activation patterns corresponding to
Current Opinion in Neurobiology 2012, 22:822–828
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Figure 1
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Basic patterns of muscle control at different ages. Top. Stick diagrams depicting one step cycle starting with stance onset in neonates (2–7-days-old),

toddlers (11–14-months-old), preschoolers (24–48-months), and adults. Middle. Basic activation patterns obtained by non-negative matrix

factorization of averaged EMG profiles of 24 bilateral leg muscles in each age group. Patterns are plotted versus normalized gait cycle (aligned with

stance onset in the right leg). Bottom. Pattern # 4 was averaged separately in 3 different subgroups of preschoolers with the indicated mean age.

Notice the shift of the waveform with increasing age.
foot contact in the neonate could depend on immature

sensory and/or descending modulation of stepping.

Indeed, in the absence of sensory modulation (e.g. during

fictive motor tasks), the spinal circuitry of animals tends to

produce sinusoidal-like patterns [37,38], similar to those

observed in the human neonate. The addition of basic

patterns in the first months of life implies a functional

reorganization of inter-neuronal connectivity, the appear-

ance of additional functional layers in the CPGs, and/or

more powerful descending and sensory influences on

CPGs. In particular, there is increasing consensus that

motor centers in the brain play an important and greater

role in human adult walking than in quadrupeds [39].

Indeed, there is evidence for maturation of cortico-spinal

drive on leg muscles during locomotor development [40�].

Comparative aspects
In postembryonic tadpoles, motoneurons initially innerv-

ate most of the dorso-ventral extent of the swimming

muscles, but during early larval life the innervation fields

become restricted to a limited sector of each muscle block

[41�]. This developmental trend leads to more selective

and flexible control of the muscles. Just as humans, rats do

not have a mature neural control of locomotion at birth,

and they walk only several days later. The CPGs of

neonatal rat spinal cord are intrinsically flexible, inasmuch

as different patterns of hindlimb muscle activation are

evoked depending on whether pharmacological (seroto-

nin and N-methyl-D-aspartic acid) modulation or sensory

afferent stimulation is applied [42�,43]. Locomotor-like
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oscillatory activity can be recorded from the lumbar and

sacral ventral roots of the isolated spinal cord of neonatal

rats, bathed with dopamine plus NMDA or serotonin [37].

Factorization of the electroneurograms associated with

this fictive walking reveals two patterns essentially iden-

tical to those of human newborns [6�]. Factorization of the

EMG of adult rats, cats, macaques, and guinea fowls

shows four patterns, closely resembling those found in

human toddlers [6�].

These results are consistent with comparative studies in

vertebrates based on genetic and electrophysiological

approaches which demonstrate that, despite the existence

of species-specific features, there are several common

principles in the organization and regulation of CPGs

[44,45]. In particular, the core premotor components of

locomotor circuitry mainly derive from a set of embryonic

interneurons that are remarkably conserved across different

species [46]. Grillner [7] hypothesizes that the neural

control system for locomotion can be traced back to the

oldest known vertebrate, the lamprey, which appeared

more than 500 million years ago, before any legged animal

had evolved yet. Evolutionary conservation of develop-

mental patterns [6�] and neural core control networks [44–
46,47�] points to the comparative approach as a most fruitful

one for the study of locomotor development [47�,48].

Human development shows commonalities with other

animal species, but also important idiosyncratic features,

as demonstrated by the distinct motor patterns of the
www.sciencedirect.com
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adults [6�]. Thus, we are the only animals to use habitu-

ally an erect bipedal locomotion with a heel-strike well

ahead of the body. The long time required to develop

independent locomotion in humans is probably related to

the overall complexity of neural wiring in our species.

Consistent with this view, it has been shown [49] that the

time from conception to independent locomotion is lin-

early related to the adult brain mass across 24 different

mammalian species: the bigger the brain, the longer the

time to start walking. This suggests that the development

of independent locomotion depends on the duration of

overall neural development, presumably because of the

need to develop stance, balance and orientation control in

parallel with locomotor control; these diverse functions

require maturation of large parts of the CNS.

Learning and exploration
Motor patterns of locomotion are not fixed but highly

flexible. Variability and versatility of behavior may be

instrumental for learning and exploration of different

solutions in different environmental contexts [3,5�,50].

Infant movements display a high degree of variability at

all stages of development, starting from fetal stages. After

birth, stepping remains non-functional until a stable erect

posture can be maintained, and infants adopt a variety of

different crawling styles to move around, although a

significant proportion (�30%) never crawls and walks

upright directly [5�,51]. Infants can crawl on hands-

and-knees, hands-and-feet, hands-and-buttocks, or on

the belly. Inter-limb coupling may involve diagonal

trot-like gait, or ipsilateral pace-like gait. This versatility

reflects a flexible coupling between cervical and lumbo-

sacral CPGs (controlling upper and lower limbs respect-

ively) that persists till adulthood [52].

Also upright walking before independent walking shows

great flexibility. Infants may first cruise sideways while

grasping furniture with both hands for support, then turn

their body to face forwards holding furniture with one

hand only [5�,53�]. Different developmental stages (for

instance, crawling and cruising) may be concurrent rather

than serial, and there may even be a reversal of order

(cruising before crawling). Moreover, often there is no

transfer of learning environmental risks from one loco-

motor mode to the next: experienced crawlers or cruisers

discriminate very precisely affordable versus unafford-

able support surfaces, but when they start walking inde-

pendently they may fall because they do not discriminate

anymore [53�].

Infants start walking independently around 12-months

(median, 9–18 months range), but cultural child-rearing

habits may anticipate or delay this time [5�]. Unsupported

walking is jerky and variable, with poor balance over the

single support leg (while swinging the contralateral leg),

the arms raised above the waist (as balance poles), legs
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splayed wide apart, and short variable steps [5�,25,54–59].

Double support is relatively prolonged, while swing is

brief. Touch-down is with flat-foot or toes-first. Some

idiosyncratic features of toddlers gait may be useful to

cope with initial unstable conditions of unsupported

walking, such as the increased base of support and the

flailing arms [58]. Also, non-plantigrade gait with a high

foot lift represents a simple strategy to avoid stumbling

and falling, while reducing foot drag owing to limited

dorsiflexor activity. However, energy recovery by exchan-

ging forward kinetic energy and gravitational potential

energy of the center of body mass is very limited [55].

It is often assumed that infants cannot walk indepen-

dently until they achieve balance control, but it has been

shown that step variability and several other gait

parameters of toddlers remain unchanged even when

balance is augmented with the help of a parent or exper-

imenter hand [56]. Moreover, walking experience rather

than chronological age explains improvement in perform-

ance [5�]. Indeed, onset of unsupported locomotion trig-

gers the improvement of several gait parameters (speed,

inter-step repeatability, trunk oscillations, tuning of pla-

nar covariance, energy recovery) relative to the previous

supported locomotion [55,58]. These changes occur

rapidly over the first 6 months after the onset of inde-

pendent walking. Afterwards, gait continues to develop

more slowly until 8–10 years of age, as shown by changes

in several parameters, such as stride length, cadence,

coordination timing, and energy recovery [5�,54,59].

When toddlers must step across an obstacle or walk on a

staircase, they do not adapt the inter-segmental coordi-

nation to the surface inclination and height as adults do,

but they keep constant phase relationships [60�]. This is

consistent with the hypothesis proposed decades ago by

Nikolai Bernstein that, when humans start learning a

skill, they restrict the number of controlled degrees of

freedom to reduce the size of the search space and

simplify the coordination. Toddlers often place a foot

on the obstacle or on the edges of the stairs, presumably as

part of an exploratory strategy of the environment

[5�,60�,61]. Naturalistic observations at the infants’ home

show that most toddlers spontaneously carry objects while

walking, combining locomotor and manual skills. Despite

the additional biomechanical constraints, carrying an

object is actually associated with improved upright bal-

ance, as demonstrated by smaller probabilities of falling

with the object than without [62].

Split-belts treadmills can impose a different direction

and/or speed to the motion under each leg during loco-

motion. They are especially suited for studying sensor-

imotor adaptation and learning mechanisms. Young

infants (7–12 months of age) show the ability to adapt

to asynchronous split-belt motion [63]. However, the

mechanisms controlling temporal and spatial adaptation
Current Opinion in Neurobiology 2012, 22:822–828
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to these conditions are different and mature at different

times, with spatial parameters adapting more slowly than

temporal ones [64�,65�].

Body size and proportions change dramatically during

development. Locomotor commands must take these

changes into account to keep limb segment motion cali-

brated with body size. The importance of a body scheme

incorporating limb and body parameters is demonstrated

by the observation that an 11-years-old child, who under-

went surgical elongation of the shanks by >50%, walked

as if on the pre-surgery shorter legs, just as do adults

walking on stilts [66].

Cerebral palsy
Cerebral palsy (CP) is one of the most common devel-

opmental motor disorders. It is a non-progressive syn-

drome involving poor motor control, spasticity, paralysis,

and other neurological problems resulting from perinatal

brain injury [67]. It may be hypothesized that neural

control patterns in CP children are closer to those of

younger, normally developing children, and this would

reflect relative immaturity of the locomotor networks.

Many CP children start walking much later than normal.

Till adulthood, they continue walking on their toes with

knee hyper-flexion during stance and ankle dorsiflexion

during swing [68]. The foot trajectory is undulating owing

to poor control of ankle torque. Muscle co-activation is

greater than in healthy children of the same age. Hip

flexors lack phasic activity, hip extensors and adductors

are hyper-active, while gastrocnemius is hypoactive at

push-off [68]. The normal tonic depression of soleus H-

reflex during gait is absent in CP, reflecting a lack of

maturation of the corticospinal tract [69]. Reflex behavior

and walking speed improves with treadmill training [68],

although the long-term effectiveness of this protocol

remains to be validated [70] also using energy expendi-

ture monitoring [71].

Conclusions
We argued that the neural control patterns underlying

mature locomotion are tightly related to those involved in

primitive movements. In addition, development of motor

patterns shows variability and versatility of behavior

presumably as a means to learn and explore different

solutions. Notice that this holds true not only for loco-

motion, but even for behaviors – such as vocalization in

birds – where mature neural substrates are definitely

distinct from the immature ones [50]. We also highlighted

the remarkable similarities in motor patterns across differ-

ent animal species, despite gross morpho-functional

differences in the musculo-skeletal architecture. These

similarities probably reflect common principles in the

underlying control mechanisms, as well as common bio-

mechanical constraints related to stability, kinematics,

kinetics, and energy-efficiency [72,73]. An emerging view

is that the co-ordination of limb and body segments in
Current Opinion in Neurobiology 2012, 22:822–828 
mature locomotion  arises from the coupling of neural

oscillators between each other and with limb mechan-

ical oscillators [35,36]. Muscle activations intervene at

discrete times to re-excite the intrinsic oscillations of

the system when energy is lost. Development of motor

patterns, then, requires progressively tuning the timing

and amplitude of muscle activity to the intrinsic modes

of mechanical behavior resulting from the interaction of

the limbs/body parts between each other and with the

environment, also taking into account the growing body

of the child.

The current coarse picture of the development of human

locomotor patterns needs now to be refined in order to

understand how the locomotor networks are configured

precisely at different developmental stages. Moreover,

the functional abnormalities associated with perinatal

motor disorders such as CP need to be understood, also

taking advantage of the application of modern quantitat-

ive analyses of the motor patterns.
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8. Felt RH, Mulder EJ, Lüchinger AB, van Kan CM, Taverne MA,
de Vries JI: Spontaneous cyclic embryonic movements in
humans and guinea pigs. Dev Neurobiol 2011 http://dx.doi.org/
10.1002/dneu.20945.

9. de Vries JI, Visser GH, Prechtl HF: The emergence of fetal
behaviour. I. Qualitative aspects. Early Hum Dev 1982,
7:301-322.

10. Hadders-Algra M: Putative neural substrate of normal and
abnormal general movements. Neurosci Biobehav Rev 2007,
31:1181-1190.
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