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Interacting resonant-level model with long-range interactions: Fast screening
and suppression of the zero-bias conductance
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The effects of long-range interactions in quantum transport are still largely unexplored, mainly due to
the difficulty of devising efficient embedding schemes. In this work we present a substantial progress
in the interacting resonant level model by reducing the problem to the solution of Kadanoff-Baym-like
equations with a correlated embedding self-energy. The method allows us to deal with short- and long-range
interactions and is applicable from the transient to the steady-state regime. Furthermore, memory effects are
consistently incorporated and the results are not plagued by negative densities or nonconservation of the electric
charge. We employ the method to calculate densities and currents with long-range interactions appropriate to
low-dimensional leads, and show the occurrence of a jamming effect, which drastically reduces the screening
time and suppresses the zero-bias conductance. None of these effects are captured by short-range model
interactions.
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I. INTRODUCTION

Electron correlations have profound implications on the
transport properties of nanoscale devices.1 Local interactions
within small molecules or quantum dots contacted to leads
give rise to peculiar phenomena like the Kondo effect2 and
Coulomb blockade,3 and have been the subject of several
studies. Much less attention has been devoted instead to
the nonlocal interactions responsible for interfacial screening
and polarization-induced renormalizations of the molecular
levels. Recently, a short-range (SR) dot-lead interaction has
been shown to reduce the quasiparticle gap in equilibrium4–7

and to reopen it at sufficiently large biases.8 In the in-
teracting resonant level model (IRLM) the SR interaction
is also at the origin of a negative differential conduc-
tance with an interaction-dependent power-law decay9–12 as
well as of an overall enhancement of the off-resonance
conductance.13,14

In recent years the experimental progress in producing
low-dimensional conducting wires has been accompanied by
an increasing number of theoretical studies on the IRLM with
single-channel leads. In these systems, however, screening
occurs on length scales much longer than a few Angstrom and
long-range (LR) interactions should be more appropriate for a
realistic description. Unfortunately, the techniques developed
to deal with SR interactions are not directly exportable to study
LR ones.15 The difficulty stems from the impracticability of
combining many-body methods with embedding techniques,
hence reducing the problem to the evaluation of the Green’s
function of a finite and interacting open system.16,17 Recently
Elste and coworkers18 approached the problem using the rate
equations (REs) method in the IRLM with Luttinger liquid
leads. The REs, however, are not reliable in the transient regime
and underestimate the steady-state polarizability of the dot, as
we will clearly show below. The fundamental questions which
remain at present totally unanswered are therefore: What is the
impact of a LR dot-lead interaction on the I -V curve? How
does the screening time change from SR to LR interactions?

In this work we consider the IRLM as the prototype model
to address the above issues. We study the real-time evolution
of the current and dot-density after the sudden switch-on of
a bias voltage for both SR and LR interactions. Our results
indicate that LR interactions produce a jamming effect in the
leads that (i) shortens the screening time and (ii) drastically
suppresses the zero-bias conductance.

The proposed methodology to conclude (i) and (ii) is based
on a truncation of the equations of motion for dressed corre-
lators. The procedure leads to Kadanoff-Baym-like equations
with a correlated embedding self-energy, which incorporates
all interaction and memory effects. Our approach overcomes
the negative probability problem19 of the RE and is, at the
same time, charge conserving. The final equations are exact
in the uncontacted case as well as in the noninteracting
case and several analytic results are obtained in the steady-
state, including a Meir-Wingreen-like formula for the current.
We benchmarked this formula against recent results with
SR interaction obtained using field theoretical methods,9

DMRG,9,14 and other renormalization group approaches,11–13

and found the same qualitative behavior.
The plan of the paper is as follows. In Sec. II we

introduce the IRLM for an arbitrary dot-lead interaction and
employ the bosonization method followed by a Lang-Firsov
transformation to formally eliminate the dot-lead coupling.
This allows us to set up a suitable truncation scheme and
derive a set of Kadanoff-Baym equations with a correlated
embedding self-energy. In Sec. III we compare these equations
to the well-known rate equations and show that the proposed
method is superior to describe both the transient and the
steady-state regimes. We further show that our approximation
is in very good agreement with the exact solution for short-
range interactions. Encouraged by these results we extend the
analysis to long-range interactions and discover a remarkable
effect, namely the suppression of the zero-bias conductance.
A summary of the main findings and concluding remarks are
made in Sec. IV.
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II. KADANOFF-BAYM EQUATIONS FOR THE
INTERACTING RESONANT LEVEL MODEL

We consider the IRLM described by the Hamiltonian

Ĥ = −
∑

α

iαv

∫
dx ψ̂†

α(x)∂xψ̂α(x) + εd n̂d

+
∫

dx U (x)ρ̂(x)n̂d +
∑

α

[T ∗
α ψ̂†

α(0)d̂ + H.c.], (1)

with α = ±1 for R and L electrons moving with velocity v,
n̂d = d̂†d̂, and ρ̂ = ∑

α ρ̂α = ∑
α ψ̂†

αψ̂α . In Eq. (1) εd is the
dot energy (gate voltage), Tα is the tunneling amplitude, and
the dot-lead Coulomb interaction U (x) can be either SR or LR.
The system is driven out of equilibrium by the bias perturbation

ĤB =
∑

α

Vα

∫
dxρ̂α(x) =

∑
α

VαN̂α (2)

with N̂α the number of electrons with chirality α. For simplicity
we consider a single-level dot but the derivation below remains
applicable to multilevel dots by replacing scalar Green’s
functions with matrices. For a nonperturbative treatment of
the interaction we bosonize the fermion operators20,21

ψ̂α(x) = ηα√
2πa

e−2
√

π iαφ̂α (x), (3)

with boson field

φ̂α(x) = iα
∑
q>0


q(b̂†αqe
−iαqx − H.c.) −

√
πxN̂α

L (4)

and ηα the anticommuting Klein factor. In the mode expansion

of the boson field 
q = e
− aq

2√
2Lq

, with L the length of the system
and a a short-distance cutoff. The bosonized form of the
electron density takes the form

ρ̂α(x) = −∂xφ̂α(x)/
√

π

=
∑
q>0


qq(b̂†αqe
−iαqx − H.c.) + N̂α

L , (5)

and hence the bosonized Hamiltonian reads

Ĥ =
∑

α,q>0

vqb̂†αq b̂αq + εd n̂d

−
∑

α,q>0


qq√
π

Uq(b̂†αq + b̂αq)n̂d + U0

∑
α

N̂α

L n̂d

+
∑

α

[
T ∗

α η†
α√

2πa
exp

(
−2

√
π

∑
q>0


q(b̂†αq−b̂αq)

)
d̂+H.c.

]
,

(6)

where Uq = ∫
dx eiqxU (x) and we used U (x) = U (−x).

Next we perform a Lang-Firsov transformation to (formally)
eliminate the dot-lead coupling. The unitary operator

Û = exp

(
2
√

π
∑
αq


q

2πv
Uq(b̂†αq − b̂αq)n̂d

)
(7)

transforms the original Hamiltonian into Ĥ ′ = Û †Ĥ Û with
(from now on all sums are over q > 0)

Ĥ ′ =
∑
αq

vqb̂†αq b̂αq + ε̃d n̂d + U0

∑
α

N̂α

L n̂d

+
∑

α

[T ∗
α f̂

†
α0d̂ + H.c.]. (8)

In the transformed Hamiltonian it appears the renormalized
fermion field

f̂αx = ηα√
2πa

exp

(
2
√

π
∑
βq


qWαβq(b̂†βqe
−iαqx−b̂βqe

iαqx)

)
,

(9)

evaluated in x = 0, with the effective interactions WRRq =
WLLq = 1 + Uq/(2πv) and WRLq = WLRq = Uq/(2πv), and
the renormalized energy level ε̃d = εd + ∑

q
e−aq

πvL |Uq |2. In the
new basis the ground state of the isolated leads (i.e., with Tα =
0) is the vacuum |0〉 of the boson operators b̂αq . We can exploit
this property to build the proper initial conditions by time
propagation. We will consider the system initially uncontacted
(Tα = 0), then switch on the contacts at time t = 0 and let the
current and dot-density relax. After relaxation, say at time
t0, we will bias the leads and study the screening dynamics
from the transient to the steady state. This procedure simulates
with high accuracy the so-called partition-free scheme,22,23 as
demonstrated in Refs. 24–26.

We define the dot Green’s function on the Keldysh contour
as

G(z,z′) = 1

i
〈T {d̂(z)d̂†(z′)}〉, (10)

where T is the contour ordering, operators are in the Heisen-
berg picture with respect to Ĥ ′ + ĤB (the bias perturbation
does not change after the transformation), and the average is
taken over the uncontacted ground state |0〉 ⊗ |n〉, |n〉 being the
state of the dot with single (n = 1) or zero (n = 0) occupancy.
The Green’s function obeys the equation of motion (EOM)

(i∂z − ε̃d )G(z,z′) = δ(z,z′) +
∑

α

Tα(z)Gα0(z,z′), (11)

where

Gαx(z,z′) = 1

i
〈T {f̂αx(z)d̂†(z′)}〉 (12)

is the dot-lead Green’s function.27 To close the EOM we derive
Gαx with respect to its first argument and find

(i∂z + iαv∂x − Vα(z))Gαx(z,z′)

= 1

i

∑
β

〈T {[T ∗
β f̂

†
β0d̂ + H.c.,f̂αx](z)d̂†(z)}〉. (13)

The computation of the correlator in the right-hand side of
Eq. (13) is a formidable task. In order to proceed we approxi-
mate it by T ∗

α 〈(f̂ †
α0f̂αx + f̂αx f̂

†
α0)(z)〉P G(z,z′), where 〈· · · 〉P

signifies that operators are in the Heisenberg picture with
respect to the uncontacted Hamiltonian. This approximation
is at the basis of our truncation scheme and corresponds to
discard virtual tunneling processes between two consecutive
interactions of the propagating electron. It becomes exact in
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the noninteracting case as well as in the uncontacted case. Our
approximation remains very accurate also for small Tα since
it correctly reproduces recent results on the IRLM with SR
interaction (see below).

To solve the EOM for Gαx we define

gαxαx ′ (z,z′) = 1

i
〈T {f̂αx(z)f̂ †

αx ′(z′)}〉P , (14)

which satisfies the EOM

(i∂z + iαv∂x − Vα(z))gαxαx ′ (z,z′)

= δ(z,z′)〈(f̂αx f̂
†
αx ′ + f̂

†
αx ′ f̂αx)(z)〉P . (15)

We can now perform a standard embedding and write the dot
Green’s function as the solution of

(i∂z − ε̃d )G(z,z′) −
∫

γ

dz̄
∑

α

�α(z,z̄)G(z̄,z′) = δ(z,z′),

(16)

where �α(z,z′) = |Tα|2gα0α0(z,z′) is the correlated embed-
ding self-energy and the integral runs over the Keldysh contour.
Using the Langreth rules28 Eq. (16) is converted into a coupled
system of Kadanoff-Baym equations29–32 (KBEs), which we
solve numerically. The real-time Keldysh components of �

can be evaluated exactly using the bosonization method20,21

and read

�≶
α (t,t ′) = ± i|Tα|2

2πa
e−iϕα (t)eQ[±(t−t ′)]eiϕα (t ′), (17)

with phase ϕα(t) = ∫ t

0 dt̄ Vα(t̄) and interaction dependent
exponent

Q(t) =
∑

q

2π

Lq
e−aq(eivqt − 1)

[
1 − Uq

πv
+ 1

2

(
Uq

πv

)2]
. (18)

From solution of Eq. (16) we can easily calculate the dot-
density from 〈n̂d (t)〉 = −iG<(t,t). Similarly, the current Iα at
the interface between the dot and lead α can be calculate from

Iα(z) = ∂z〈N̂α(z)〉 = −i T ∗
α 〈f̂ †

α0(z)d̂(z)〉 + H.c.

=
∫

γ

dz̄ �α(z,z̄)G(z̄,z) + H.c. (19)

In the steady-state regime G(t,t ′) depends only on the time
difference t − t ′ and the current Ī = IL(t → ∞) = −IR(t →
∞) is given by a Meir-Wingreen-like formula

Ī =
∫

dω

2π

�>
L (ω)�<

R (ω) − �<
L (ω)�>

R (ω)∣∣ω − ε̃d − ∑
α �R

α (ω)
∣∣2 . (20)

Remarkably, the current cannot be written in terms of the
difference between the leads’ Fermi functions despite the left
and right contacts are the same (proportionate coupling).16

III. RESULTS

A. Comparison with the rate equations

Our analysis starts by comparing the present approximation
to the RE method, recently employed in a similar context.18 It is
worth recalling that within the RE method only the equal-time
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0.8

1

0 5 10 15 20

0

0.03

0.06

KBE
RE
MRE

t

n
d

n
d

FIG. 1. (Color online) Time-dependent density for SR intraction
using KBEs (dashed), REs (solid), and MREs (dotted) for dot energy
ε̃d = 0 (top panel) and ε̃d = 3 (bottom panel) and initial dot density
n = 0. The remaining parameters are VL = VR = 1, γ = 0.2, U =
0.5, t0 = 0 (partitioned scheme). Units are 10−1v/a for Vα , γ , ε̃d ,
10a/v for t and 2πv for U .

density matrix is accessible. In the non-Markovian case the
RE to be solved reads

i∂tG
<(t,t) = i

∑
α

∫ t

0
dt̄ 2Re

[ − i�R
α (t,t̄)eiε̃d (t−t̄)

]
G<(t̄ ,t̄)

+
∑

α

∫ t

0
dt̄ 2Re[i�<

α (t,t̄)eiε̃d (t−t̄)], (21)

which in the Markovian limit reduces to

i∂tG
<(t,t) = i(P0→1 + P1→0)G<(t,t) − P0→1, (22)

with constant tunneling rates

P0→1 =
∑

α

∫ ∞

0
dt2Re[−i�<

α (t,0)eiε̃d t ],

(23)

P1→0 =
∑

α

∫ ∞

0
dt2Re[i�>

α (t,0)eiε̃d t ],

denoting the probability of absorption (emission) of one
electron in (from) the dot, respectively.

In Fig. 1 we plot the time-dependent dot density using
the KBEs, the REs and their Markovian version (MREs) for
a SR interaction Uq = U . Both the KBE and RE densities
exhibit oscillations with frequencies associated to charge-
neutral excitations. As anticipated, however, the REs suffer
from the negative-density problem19 (bottom panel). The
MRE density is instead always non-negative but the lack of
memory washes out the oscillations and the transient becomes
a featureless exponential (top panel). The KBE density is
superior also at the steady state. Both the REs and MREs
predict a zero-temperature steady-state density either 0 or 1
and hence severely underestimate the dot polarizability. We
also verified that the KBE approach is charge conserving since
it fulfills with high numerical accuracy the continuity equation
d〈n̂d (t)〉/dt = IR(t) + IL(t) at every time (not shown).
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V
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FIG. 2. (Color online) I -V curve for SR interaction. The param-
eters are γ = 0.2, ε̃d = 0. Units are 10−2v/a for I , V , γ , ε̃d , and 2πv

for U .

B. Short-range interaction

We next calculate the steady-state current for a SR interac-
tion and in the symmetric case (ε̃d = 0, TL = TR = T , VL =
−VR = V > 0) recently considered by several authors.9,11,12

The I -V curves resulting from Eq. (20) are shown in Fig. 2.
The integral (20) can be accurately approximated by evaluating
all � in ω = 0,33 thus yielding the following analytic result

ĪSR(V ) 

(

V a

v

)β−1
γ

π�(β)
tan−1

[
V

γ

(
V a

v

)1−β

�(β)

]
,

(24)

with exponent β(U ) = 1 + U (U−2πv)
2π2v2 and tunneling rate γ =

|T |2/v. The above expression is in excellent agreement with
the exact results of Ref. 9. In particular it reproduces the
universal Ohmic behavior ĪSR(V ) 
 V/π at small bias34 (with
σ0 = 1/2π the quantum of conductance), and the negative
differential conductance with the nonuniversal power-law
decay ĪSR(V ) ∼ V β−1 at large bias (the REs fail again here).
Note that the exponent β is exactly that of Ref. 9. Equation (24)
enjoys the self-duality U → 2πv − U which, as discussed in
Ref. 9, is the continuum version of the lattice self-duality
U → 1/U . Furthermore at the self-dual point U = πv, the
I -V curves of Eq. (24) for different γ collapse on one single
curve if we rescale V → γ 3/2V and I → γ 3/2I . This rescaling
is again in agreement with Ref. 9, which found the same result
by a best fitting.

C. Long-range interaction

We can now present the most important numerical results
of the paper, i.e., the current with LR interaction Uq =
−W ln(aq)2 (corresponding to the soft-Coulomb interaction
U (x) = W/

√
x2 + a2 in real space). In this case the function

Q(t) as well as the integral in Eq. (20) must be evaluated
numerically. In Fig. 3 we display the I -V curve for several
W . The behavior is qualitatively different from the SR case.
In particular the zero-bias conductance is strongly suppressed
with increasing W . Due to the LR nature of the interaction
the addition (removal) of an electron to (from) the dot induces
a charge depletion (accumulation), which extends smoothly
deep inside the leads (jamming effect). For a current to

0 2 4 6 8 10
0

0.1

0.2

0.3 W = 0.0
W = 0.05
W = 0.10
W = 0.125
W = 0.15

I

V

FIG. 3. (Color online) I -V curve for LR interaction. Same
parameters and units as in Fig. 2. W is in units of 2πv.

flow the bias must be larger than the polarization energy of
this particle-hole collective state. This picture also explains
a common feature of the SR and LR I -V curves (i.e., the
existence of an optimal value of the interaction strength for
which the current has a maximum at fixed bias). Increasing
the interaction from zero the electron density diminishes
close to the dot, thus enhancing the effective tunneling rate
(Coulomb deblocking). However, increasing the interaction
further the particle-hole binding energy becomes larger than
the charge-transfer energy VL − VR to move an electron from
one lead to the other, and the current starts decreasing.

In Fig. 4 we show the cross-over from short- to long-
range interactions using a soft-Yukawa-type of interaction
U (x) = We−|x|/λ/

√
x2 + a2, with varying screening length

λ. We observe that our prediction on the suppression of
the conductance is quite robust and is not an artifact of
the regularization procedure. This prediction could be ex-
perimentally verified in, e.g., a quantum dot coupled via
tunneling barriers to single-channel quantum wires or to the
edge states of two-dimensional (2D) quantum Hall liquids.
This experimental setup was proposed in Ref. 35 but the

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

λ = 100
 a

λ = 101
a

λ = 102
 a

λ = 103
 a

V

I

FIG. 4. (Color online) I -V curve for a soft-Yukawa dot-lead inter-
action U (x) = We−|x|/λ/

√
x2 + a2 with W = 0.15 and for different

values of λ. W is in units of 2πv. The other of parameters are like in
Fig. 2.
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Partition-free scheme

t

I
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FIG. 5. (Color online) Time-dependent current for SR (dashed)
and LR (solid) interaction for an initial density n = 0. The thick
curves represent IL(t) while the thin curves IR(t). The parameters
are VL = −VR = 1, γ = 0.2, U = W = 0.2, ε̄d = 0. In the top
panel t0 = 0 (partitioned scheme) while in the bottom panel t0 = 60
(simulated partition-free scheme). Units are 10−1v/a for Vα , γ , ε̃d ,
10a/v for t and 2πv for U and W .

dot-lead interaction was neglected. In the 2D quantum Hall
liquid the current through the dot is carried by the edge state
electrons which, unscreened by the bulk electrons, experience
a long-range interaction with the charged dot. At present there
is no experimental evidence that in these systems the zero-bias
conductance is σ0 at resonance. In fact, in Ref. 36 values below
σ0 were reported.

LR interactions have an impact also in the screening time.
In Fig. 5 we plot the time-dependent currents for LR and
SR interaction with same interaction strength W = U .37 The
LR current relaxes faster both in the partitioned scheme
(contacts and bias switched on simultaneously at t = 0) and
partition-free scheme. The same behavior is observed for
different values of W (not shown). The jamming effect of
LR interactions is at the origin of the faster screening time:
electrons respond to a change in the dot population suddenly
and well deep inside the leads.

Finally we observe that the steady-state value of the current
is the same in both schemes. This agrees with the results of
Refs. 23–26 according to which the memory of the initial state
is washed out in the long-time limit.

IV. CONCLUSION

In conclusion we presented a comprehensive character-
ization of the transport properties of the IRLM with LR
interactions. We proposed an embedding scheme based on
a suitable truncation of the EOM for the dressed fermion
fields and derived KBEs, which we solved numerically and
benchmarked against available exact results. Even though we
explicitly considered a single-level dot, no complications arise
with more complex systems. The method was compared with
recently proposed RE approaches, and found to be superior
from the transient (no negative densities) to the steady-state
regime (no severe underestimation of the dot polarizability).
LR interactions leave clear fingerprints in the time-dependent
current as well as in the I -V curve. In particular, we predict a
suppression of the zero-bias conductance when the level is in
resonance with the lead Fermi energy.
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