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Abstract. In this paper, we study novel structures to represent irdition in
three vital tasks in question answering: question classifin, answer classifica-
tion and answer reranking. We define a new tree structureccBAS to represent
predicate-argument relations, as well as a new kernelifumtd exploit its repre-
sentative power. Our experiments with Support Vector Maebiand several tree
kernel functions suggest that syntactic information hefpexific task as question
classification, whereas, when data sparseness is higlreaaswer classification,
studying coarse semantic information like PAS is a prongisasearch area.

1 Introduction

Question answering (QA) can be seen as a form of informagtiieral where, given a
question expressed in natural language, one or more answies form of sentences
(or paragraphs, or phrases) are returned. The typicaltaothie of a QA system is or-
ganized in three phases: question processing, documeetedtand answer extraction
[1].

In question processing, useful information is gatherenhftioe question and a query
is created; this is then submitted to an information reaii@ngine, which provides a
ranked list of relevant documents. From these, the QA sysiest extract one or more
candidate answers, which can then be reranked accordingrimug criteria such as
their similarity to the query. Question processing is ulsueéntered around question
classification (QC), the task that maps a question into oeeapected answer classes.
This is a crucial task as it constrains the search space aftjesanswers and con-
tributes to selecting answer extraction strategies spdoifa given answer class. Most
accurate QC systems apply supervised machine learningiteats, e.g. Support Vec-
tor Machines (SVMs) [2] or the SNoW model [3], where quessiane encoded using
a variety of lexical, syntactic and semantic features; hieéeas been shown that the
question’s syntactic structure contributes remarkabthéoclassification accuracy.

The retrieval and answer extraction phases consist irevétig relevant documents
[4] and selecting candidate answer passages [5,1] from.tAefurther phase called
answer re-ranking is optionally applied. It is especialyevant in the case of non-
factoid questions, such as those requiring definitionsyettee answer can be a whole
sentence or a paragraph. Here, the syntactic structureesftarece appears once again
to provide more useful information than a bag of words folnsacomplex task.



An effective way to integrate syntactic structures in maehearning algorithms is
the use of tree kernel functions [6]. Successful applicatiof these have been reported
for question classification [2,7] and other tasks, e.gtimleextraction [8,7]. However,
such an approach may not be sufficient to encode syntaatictgtes in more complex
tasks such as computing the relationships between quesdioth answers in answer
reranking. The information provided by parse trees may @tow sparse: the same con-
cept, expressed in two different sentences, will produfferéint, unmatching parses.
One way to overcome this issue is to try to capture semarititiors by processing
shallow representations like predicate argument strastproposed in the PropBahk
(PB) project [9]. We argue that such semantic structuredearsed to characterize the
relation between a question and a candidate answer.

In this paper, we extensively study advanced structuralessmtations, namely
parse trees, bag-of-words, Part-of-Speech tags and ptedicgument structures for
question classification and answer re-ranking. We encodeigformation by combin-
ing tree kernels with linear kernels. Moreover, to explogdgicate argument informa-
tion - which we can automatically derive with our state-oé-art software - we have
defined a new tree structure for its representation and a aavekfunction able to pro-
cess its semantics. Additionally, for the purpose of ansileaessification and re-ranking,
we have created a corpus of answers to TREC-QA 2001 descrigtiestions obtained
using a Web-based QA system.

Our experiments with SVMs and the above kernels show thaba)approach
reaches state-of-the-art accuracy on question clasgificand (b) PB predicative struc-
tures are not effective for question classification but spoemising results for answer
classification. Overall, our answer classifier increaseséimking accuracy of a basic
QA system by about 20 absolute percent points.

This paper is structured as follows: in Section 2, we intaadvanced models to
represent syntactic and semantic information in a QA cdng&ection 3 explains how
such information is exploited in an SVM learning framewoykiitroducing novel tree
kernel functions; Section 4 reports our experiments on tipreslassification, answer
classification and answer reranking; finally, Section 5 tudhes on the utility of the
newly introduced structure representations and sets tie fma further work.

2 Advanced Models for Sentence/Question Representation

Traditionally, the majority of information retrieval taskave been solved by means of
the so-called bag-of-words approach augmented by languagdeling [10]. However,
when the task requires the use of more complex semanticsbthee approach does
not appear to be effective, as it is inadequate to performiénel textual analysis. To
overcome this, QA systems use linguistic processing taoth ®s syntactic parsers.
In our study we exploited two sources of syntactic informatideep syntactic parsers
and shallow semantic parsers. While parsing produces paasg, shallow semantic
parsing detects and labels a proposition with the relati@mta&een its components, i.e.
predicates and arguments. While the former technology isstigdied [6,11], the latter
has only recently been the object of a consistent body of work
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2.1 Syntactic Structures

The syntactic parse tree of a sentence is a hierarchicaseptation of the syntactic
relationships between its words. In such tree, each nodeitsithildren is associated
with a grammar production rule, where the symbol at theheftd side corresponds to
the parent and the symbols at the right-hand side are assdeiéth the children. The
terminal symbols of the grammar are always associated htteiaves of the tree.

Parse trees have often been applied in natural languagegsiog applications re-
quiring the use of grammatical relations, e.g. extractibsubject/object relations. Re-
cently, it has been shown [2,7] that syntactic informatiotperformed bag-of-words
and bag-of-n-grams on the classification of Question Typ®An The advantage of
computing sentence similarity based on parse trees witheotdo purely lexical ap-
proaches is that trees provide structural relations hacomapute with other methods.

However, when approaching complex QA tasks, the use of geges has some
limitations. For instance in definitional QA candidate aesswcan be expressed by long
and articulated definitions spanning one or more sentehias, since the information
encoded in a parse tree is intrinsically sparse, it does owtribute well to comput-
ing the similarity between long sentences or paragraphthisncase, it makes sense
to investigate more “compact” forms of information represgion: shallow semantics
could be an answer to prevent the sparseness of deep stlagiproaches and the noise
of bag-of-word models.

2.2 Semantic Structures

Initiatives such as PropBank (PB) [9] have led to the creatibvast and accurate
resources of manually annotated predicate argument stasctUsing these, machine
learning techniques have proven successful in Semanti [Rddeling (SRL), the task
of attaching semantic roles to predicates and their argtsn8RL is a fully exploitable
technology: our SRL system based on SVMs is able to achieeeeuracy of 76% on
PB data, among the highest in CoNLL [12]. Attempting an aggilon of SRL in the
context of QA hence appears natural, as understanding di@uesd pinpointing its
answer relies on a deep understanding of the question angEssemantics.

The PB corpus is one of the largest resources of manuallytatatbpredicate ar-
gument structurés for any given predicate, the expected arguments are ldissle
quentially fromARGO to ARG5, ARGA and ARGM . For example, the following
is a typical PB annotation of a sentengg@rco Conpounded interest] [ predicate
conmputes] [ arc1 the effective interest rate for an investnent]

[ ARgv—Tmp during the current year].

Such shallow semantic annotation is quite useful to hainéstmation. For instance,
the predicative annotation of a very similar sentence wddd] srcr—rmp 1N a
year][ areca the bank interest rate] iS [ predicate €val uated] by [ arco

t he compounded interest].

The above annotations can be represented by using tre¢usésidike in Figure 1,
which we call PASs. These attempt to capture the semantiostbfsentences.

4 |t contains 300,000 words annotated with predicative imfation on top of the Penn Treebank
2 Wall Street Journal texts
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Fig. 1. Predicate argument structures of two different sentenqga®essing similar semantics.

We can improve such representation by substituting thenaegts with their most
important word — often referred to as the semantic head — &gure 2. It seems
intuitive that data sparseness can be remarkably reducedibyg this shallow repre-
sentation instead of the BOW representation.

PAS PAS
7N T~ 7\
ARGO rel ARGl ARGM-TMP ARGO rel ARGl ARGM-TMP
| | | | | | | |
interest compute rate year interest evaluate rate year

Fig. 2. Improved predicate argument structures of two differentesgces.

Knowing that syntactic trees and PASs may improve the sirB@8V represen-
tation, we now face the problem of representing tree strastin learning machines.
Section 3 introduces a viable structure representatioroaghp based on tree kernels.

3 Syntactic and Semantic Tree Kernels

As mentioned above, encoding syntactic/semantic infdomaepresented by means
of tree structures in the learning algorithm is problemafine possible solution is to
use as features of a structure all its possible substrict@®en the combinatorial
explosion of considering the subparts, the resulting fesgpace is usually very large.
To manage such complexity we can define kernel functionsriaicitly evaluate the
scalar product between two feature vectors without explicomputing such vectors.
In the following subsections, we report the tree kernel fismdevised in [6] computing
the number of common subtrees between two syntactic pamse &ind a new modified
version that evaluates the number of semantic structueredtoetween two PASs.

3.1 Syntactic Tree Kernel

Given two treeqd andTy, let{f1, f2,..} = F be the set of substructures (fragments)
and let/;(n) be equal to 1 iff; is rooted at node and 0 otherwise. We define

K(T\,Tz) = Z Z A(ny,ng2) (2)

n1E€NT, n2€NT,
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Fig. 3. Input trees T1 and T2 with their fragmenfs, f- and f3 derived by the kernel function.

whereNp, and N, are the sets of nodes i andT5, respectively and\(n1,ng) =

Z‘f‘ I;(n1)I;(n2). The latter is equal to the number of common fragments rooted
nodesn; andns. We can computel as follows:

1. if the productions at; andns are different them\(n,, ny) = 0;

2. if the productions at; andn. are the same, and, andn, only have leaf children
(i.e. they are pre-terminals symbols) th&iin,, no) = 1;

3. if the productions at; andn. are the same, and, andn, are not pre-terminals
then

ne(ny)

A(ni,ng) = [ 1+ A, ¢,)) (@)

Jj=1

wherenc(n)® is the number of children af; and¢’, is the j-th child of noden. As
proved in [6], the above algorithm allow us to evaluate Eqn D{|Nr,| x |Nz,|).
Moreover, a decay factox is usually added by changing the formulae in (2) and (3)
to®:

2. A(nlﬂ’bg) )\
3. A(ny,na) = AU (1 + A, cl,).

As an example, Figure 3 shows two trees and the substruchegdave in com-
mon. It is worth to note that the fragments of the above Syittdcee Kernel (STK)
are such that any node contains either all or none of its @nldConsequently, NP
[DT]] and[ NP [ NN]] are not valid fragments. This limitation makes it unsuigabl
to derive important substructures from the PAS tree. Thé seotion shows a new tree
kernel that takes this into account.

3.2 Semantic Tree Kernel

As mentioned above, the kernel function introduced in $ec# is not sufficient to
derive all the required information from trees such as th& RAFig. 2: we would like
to have fragments that contain nodes with only part of thédodn, e.g. to neglect the

® Note that, since the productions are the sam€yn; ) = nc(ns).
6 To have a similarity score between 0 and 1, we also apply thealization in the kernel

K(T,,T3)
space, i.eK'(T1,Tz) = RO AT
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Fig. 4. A PAS+ with some of its fragments.

information constituted by ARGM-TMP. For this, we need tiglstly modify the PAS
and to define a novel kernel function.

First, we change the PAS into the PAS+ structure as shownguar€i2(a). Each
slot node accommodates an argument label in the naturahengfiorder. Since diverse
predicates or their different use may involve a differenhiber of arguments, we also
provide additional slots which are filled witlull arguments. The figure shows just one
slot to complete a structure of 5 arguments. More slots caadoed to manage the
maximum number of arguments that a predicate can have @.gaore than 10). The
leaf nodes are filled with a wildcard character, +.eThey may alternatively accommao-
date additional information such as the POS-tag of the sto@amgument head.

The slot nodes are used in such a way that the adopted tres kemntion can generate
fragments containing one or more children like for examptese shown in frames (b),
(c) and (d). As previously pointed out, if the arguments wdirectly attached to the
root node, the kernel function would only generate the stinecwith all children (or
the structure with no children, i.e. empty).

Second, we observe that the above approach generates marhemwith slots filled
with the null label. For example, from trgéAS [ SLOT nul []..[SLOT nul | ]]
having 10 null slots2'? irrelevant subtrees are generated by the combinationgdfah
[ SLOT nul |'] subtrees (keeping or removing each of them). To solve tlublpm,
we have modified the\ function by setting a new step 0:

0. if ny (orny) is a pre-terminal node and its child labehigll, A(nq,n2) = 0;
and by subtracting one unit td(n, ns), in step 3:

3. A(ny,no) = [1MU (1 + A(d ¢ ) — 1,

j=1 ny) “ne

The newA in Eq. 1 defines a new kernel that we call Shallow Semantic Kezeel
(SSTK). By induction, we prove that SSTK applied to PAS+ gates the space of alll
possiblek-ary relations derivable from a set bfarguments, i.erZl (’f) relations of



arity 1 tok, where the predicate is considered as a special argumedrg sfructure.

To begin with, we observe that if the kernel function is apglbetween a tre®; and
itself, all substructures of the kernel space containedilmre generated. This is be-
cause tree kernel functions simply operate the intersedteween the structures of
two objects. Thus, to verify that alt-ary relations are accounted for, we evaluate SSTK
between a PAS+ and itself.

For the base casé,= 0, we use a PAS+ with no arguments, i.e. all the slots are filled
with null. Letr be the PAS+ root; sinceis not a pre-terminal, step 3 is selected ahd

is recursively applied to ali’'s children, i.e. the slot nodes. For the latter, step 0 assig

A(ci, ¢d) = 0. As aresult A(r,r) = [["“"(1 4+ 0) — 1 = 0 and the base case holds.

T T 7j=1
For the general caseijs the root of a PAS+ witlk+1 argumentsA(r, r) = H;ﬁ({) (1+
Alcl,cl)) — 1 =Hf:1(1 + A(cl,cl)) x (1 + Akt ck+1)) — 1. Fork arguments,

T 7 ) “r
k k

we assume by induction thﬂle(l + A(cl,¢d)) —1=3, (7). .e. the number of

k-ary relations. Moreove(,l + A(ck+ ck+1)) = 2, thusA(r,r) = Zle (k) X 2=

4
2k x 2= 21 = YL (K1) e, all the relations until arity + 1.

4 Experiments

The purpose of our experiments is to study the impact of thestricture representa-
tions introduced earlier for QA tasks. In particular, weds®n question classification
and answer reranking for Web-based QA systems.

In the question classification (QC) task, we extend prevgtudies, e.g. [2,7], by test-
ing a set of previously designed kernels and their comhonatiith our new Shallow
Semantic Kernel based on PropBank theory. SVMs are theiteamachines adopted
to build the multi-class classifiers based on the above ketimekernel combinations
being just the sum of the individual models. This operatitwags produces a valid
kernel [13].

In the answer reranking task, we approach the problem ottetedescription answers
(among the most complex in the literature [14,15]). We ldainary answer classifiers
based on question-answer pairs constructed by querying/ebrQA system, YourQA
[16], with the same questions as the test set used in the Q&Zimgnt. Our experiments
with different kernel combinations on question-answersallow us to select the best
performing classifier, which in turn is used to re-rank answ&he resulting ranking is
compared with the ranking provided by Google and by our lrEs€A system.

4.1 Question classification

As a first experiment, we focus on question classification)(QGth because of its
great impact on the quality of a question answering systetb@cause it is a widely
approached task for which benchmarks and baseline reseltvailable [2,3].

QC is defined as a multi-classification problem which cossistassigning an in-
stancel to one ofn classes, which generally belong to two types: factoid, isgeshort
fact-based answers (e.g. name, date) or non-factoid,regelg. descriptions or defini-
tions (see e.g. the taxonomy in [3]). We design a questiorti+alalssifier by using:



binary SVMs combined according to the ONE-vs-ALL schemeesgtthe final output
class is the one associated with the most probable predi€ioestion representation is
based on the following features/structures: parse treg (Rig-of-words (BOW), bag-
of-POS tags (POS) and predicate argument structure (PAS)mplemented the pro-
posed kernels in the SVM-light-TK software availableaat nl p. i nf 0. uni r onma2.
it/ moschi tti/ which encodes the tree kernel functions in SVM-light [1lhe PAS
structures were automatically derived by our SRL systerh [12

As benchmark data, we use the question training and testaiédlale at:l 2r . cs.
ui uc. edu/ ~cogconp/ Dat a/ Q& QC/ , where the test set are the TREC 2001 test ques-
tions [18]. The benchmarkis manually partitioned accagdathe coarse-grained ques-
tion taxonomy defined in [3] — i.e. ABBREVIATION, DESCRIPTND NUMERIC,
HUMAN, ENTITY and LOCATION — and contains 5,500 training aB@0 test in-
stances. We refer to this split as UIUC.

The performance of the multi-classifier and the individuaéby classifiers are mea-
sured using accuracy and F1-measure, respectively. Tectoflore statistically signifi-
cantinformation, we also run 10-fold cross validation om@h000 questions altogether.

Question classification results Table 1.(a) shows the accuracy of different question
representations on the UIUC split (Column 1) and the aveeageracy+ standard
deviation on the cross validation splits (Column 2) wherEstsle 1.(b) reports the F1
for the individual classes using the best model, i.e. PT+BDN¢ analysis of the above
data suggests that:

Firstly, the STK on PT and the linear kernel on BOW produce iy Yégh result,
i.e. about 90.5%. This is higher than the best outcome d#hnivE?], i.e. 90%, obtained
with a special kernel combining BOW and PT. When our BOW is bimrad with STK,
it achieves an even higher result, i.e. 91.8%, very cloded®2.5% accuracy reached in
[3] by using complex semantic information derived manufdiyn external resources.

Our higher results with respect to [2] are explained by a lgiglerforming BOW,
the use of parameterization and most importantly the featt dur model is obtained
by summing two separate kernel spaces (with separate niaatiah), as mixing BOW
with tree kernels does not allow SVMs to exploit all its reggetational power.

Secondly, model PT+BOW shows that syntactic informatiom loa beneficial in
tasks where text classification is vital, such as QA. Heratasycan give a remarkable
contribution in determining the class of a question; moegpthe lexical information
(BOW) has a limited impact due to the little number of wordsring a question.

Thirdly, the PAS feature does not provide improvement. Thimainly due to the
fact that at least half of the training and test questiong onhtained the predicate “to
be”, for which a PAS cannot be derived by our PB-based shallawantic parser. Also,
PT probably covers most of the question’s semantic infoienancoded by PAS.

Next, the 10-fold cross-validation experiments confirm tfeeds observed in the
UIUC split. The best model is PT+BOW which achieves an aveeagruracy of 86.1%.
This value is lower than the one recorded for the UIUC splite Explanation is that
the test set in UIUC is not consistent with the training setgntains the TREC 2001

" We adopted the default regularization parameter (i.e.atrezage ofl/||«||) and we tried
a few cost-factor values (i.e{], 3, 7,10, 30, 100}) to adjust the rate between Precision and
Recall on the development set.



guestions) and itincludes a larger percentage of easigitiad question types, e.g. the
numeric (22.6%) and description classes (27.6%) while theicentage in training is

16.4% and 16.2%, respectively. This shows the importan@easfs-validation results

that, given the very low values the standard deviation, algggest that the superior
accuracy of the PT+BOW over the BOW model is statisticalyndicant.

Finally, for individual binary classification, the most acate is the one carried out
for NUM, which generally exhibits easily identified cues kuas “how much/many”.
The more generic ENTY type proves hardest in both the UIUC @ods-validation
experiments, while LOC and HUM questions remain well-dfaextin both cases also
thanks to their regular patterns (“where” and “who” ideetif)).

@ (b)

Features Acc Acc Q.class P R F1 F1

(UIUC)|(cross val. (UIUC)|(UIUC)|(UIUC)|(cross val.
PT 90.4 | 84.8+1.4 ABBR | 875 | 77.8 | 82.4 |785:7.0
BOW 90.6 | 84.7+1.4 DESC | 95.8 | 99.3 | 97.5 | 84.6+2.3
PAS 34.2 | 43.0+£2.2 ENTY | 73.6 | 83.0 | 78.0 | 75.H41.3
POS 26.4 | 32.4£2.5 HUM 89.6 | 92.3 | 90.9 | 86.8£2.0
PT+BOW 91.8 | 86.1+1.3 LOC 86.6 | 85.2 | 85.7 | 88.9£15
PT+BOW+POS| 91.8 | 84.7+1.7 NUM 99.0 | 86.7 | 925 |94.2t14
PAS+BOW 90.0 | 82.1£1.5 Multi-Class. Accuracy | 91.8 | 86.14+1.3
PAS+BOW+POS$ 88.8 | 81.0+1.7

Table 1. Accuracy of the question classifier with different featuoenbinations and performance
of the best classifier by question class.

4.2 Answer Classification and Reranking

Question Classification does not allow to fully exploit threglicate argument potential
since questions tend to be short and with no predicates.férdift scenario is answer
classification, i.e. deciding if a passage/sentence diyraaswers the question: here,
the semantics that the classifier has to generate are ndtaioesl to a small taxonomy
and the length of an answer may make the representation baget too sparse.

We learn answer classification with a binary SVM which deiess if a answer is
correct for the target question: consequently, the classi€in instances are tljquestion,
answey pairs. Each pair component can be encoded with PT, BOW, POB&S rep-
resentations and processed with the previous kernels.

The output of the binary classifier can be used to rerank #teoficandidate an-
swers of a QA system. Starting from the top answer, eachriostis classified based
on its correctness with respect to the question. If it issifees] as correct its rank is un-
changed; otherwise it is pushed down, until a lower rankedrirect answer is found.

As output of the basic QA we use Google rank along with the Qduf16] system.
YourQA uses the Web documents corresponding to the top 2@léwesults for the
question. Then, each sentence in each document is compahedguestion to compute
the Jaccard similarity, which, in the answer extractiongeh#s used to select the most



relevant sentence. A passage of up to 750 bytes is then draatend the sentence and
returned as an answer.

As test data, we collected the 138 TREC 2001 test questibreid as “description”
and for each, we obtained a list of answer paragrapkacted from Web documents
using our basic QA system. Each sentence of each paragrapmamually evaluated
according to whether it contained an answer to the corratipgiuestion; moreover, to
simplify the classification problem, we isolated for eachagaaph the sentence which
obtained the maximal judgment (in case more than one seniartbe paragraph had
the same judgment, we chose the first one). We collected aisapntaining 1123
sentences, 401 of which — labeled as “+1" — answered the iquesither concisely or
with noise; the rest — labeled as “-1"— were either irrelétarthe question or contained
hints relating to the question but could not be judged ashaiswerd

Answer classification and reranking results In order to gather more statistically sig-
nificant data, we ran five-fold cross-validation, with th@stiaint that two pairég, a1 )
and(g, a>) associated with the same questipcould not be split between training and
testing. The results of the answer classification experimenreported in Table 2.

We note that: first, the contribution of the POS feature innaaisclassification is
much higher than in question classification and even outpeis the PT feature (see
Table (a)). This is due to the fact that on one side, we are wgnkith Web data, for
which the performance of a parser can be drastically redbieeause of the noisy input;
on the other, POS tagging is a more robust operation andsyiets errors. Moreover,
while question classification is a multi-classificationkiaghere the POS feature must
be used to determine a semantic category, definition andassification is a binary
classification task — hence statistically simpler.

Second, although the accuracy of the PAS feature as a staevedahs inferior to that
of the PT feature, when coupled with the BOW feature it yidithégher accuracy,
in this case, its ability to generalize the answer inforoatllowed to overcome the
erroneous/noisy information provided by the PT on Web data.

Third, we compared the answer classifier with two baselin@susing the YourQA
and Google rankings. For this, we considered theNomnked results as correct defi-
nitions and the remaining ones as incorrect for differehtesof V. Table 2.(b) shows
the results forV = 1 and the maximun¥V (ALL), i.e. all the available answers. Each
measure is the average of the Precision, Recall and F1 dirtbe $ystems on the cross-
validation splits. The F1-measures of Google and YourQA {QFab. 2.(b)) are greatly
outperformed by the classifier, even in case all answersoarsidered V = ALL) and
the low standard deviations ensure the statistical retevahthe results.

8 The number of answers per question varied as the Web docsitmamhbeen filtered by YourQA

% For instance, given the question “What are invertebrateb@’sentence “At least 99% of all
animal species are invertebrates, comprising over 30 rgajaips and over 5 million species.”
was labeled “-1”, while “Invertebrates are animals withbatkbones.” was labeled “+1”

10 Although the standard deviation in this case is high, as tineptexity can vary across splits,
since the PAS and PAS+BOW models are similar, the standaidtan of their difference is
lower, i.e. 2.03. When we performed the t-test on such valgs;onfirmed that PAS+BOW is
superior to BOW with a 90% level of confidence



@ (b)

Features P|R F1 Baseline class. P R F1
PT 56.470.059.654.0 Google@1 | 39.7 | 9.4 |[15.2£3.1
BOW 58.585.969.3£6.6 QA@1 453 | 109 |17.6+2.9
POS 52.484.164.0+5.9 Google@ALL| 358 | 100 [52.7+6.2
PAS 52.471.1/58.6:5.6 QA@ALL 358 | 100 |52.7+6.2
PT+BOW 59.879.7/68.1+8.0 Google| OA [Reranke
PAS*BOW ~  164.1,79.2 70.75.9 MRR 54.8£6.7/60.154.179.2£0.9
PT+BOW+POS|63.871.7 67.4£7.6

PAS+BOW+PO$54.475.269.2+ 6.5

Table 2. Accuracy of the answer classifier with different combinatid features, accuracy of the
baseline classifiers and MRR of the best answer rerankera@udo the baseline

Finally, we implemented the simple re-ranking algorithnsaéed previously and
we assessed its performance with the MRRetric also adopted in TREC 2081

YourQA's MRR outperforms the Google MRR (last row of Tablé?) since Google
ranks are parameterized on whole documents, not on singlagas, so documents
where no passage contains all of the question’s keywordsheaganked higher than
documents containing all of them. When the answer classsfapplied to improve the
QA ranking MRR reaches .792, i.e. an increase of nearly 20tpoi

Related work on definitional QA Unfortunately, no results are known to the authors
concerning a Web-based answer classifier for the same qoestf and few are avail-
able on the performances computed over description questione on the NIST cor-
pus; for instance, NTT’s system achieved an MRR of .247 orrifgfon questions
using a heuristic searching for appositions [15].

Interesting related work on definition answer reranking e@sducted by using the
output of an SVM-based classifier based on lexical and stioteatures and a linear
function [20]. The study compared the use of the predictmisn SVM classifier to
induce a ranking and the use of the Ranking SVM [17] algorittmanother approach,
ranks were computed based on the probabilities of biterguage models generating
candidate answers [21].

5 Conclusion

In this paper, we introduce novel structures to represettiaé information in three
question answering tasks: question classification, anslassification and answer rerank-
ing. We define a new tree structure called PAS to represedigate-argumentrelations,

' The Mean Reciprocal Rank is defined a8RR = - 37| -, wheren is the number of
questions andank; is the rank of the first correct answer to questigne. labeled as “+1” in
the human annotation)

12 Although since the TREC 2003 definition track [19] answersenmexpected in the form of

bags of information “nuggets”, we believe the MRR to be stilaningful in a QA context.



which we automatically extract using our SRL system. We aisoduce a new kernel

function to exploit its representative power.

Our experiments with Support Vector Machines and such newtifons suggest that
syntactic information helps specific tasks such as questassification. On the other
hand, the coarse-grained semantic information contaigettido PAS gives promising

results in answer classification, which suffers more frotadgparseness. Moreover,
our simple answer reranker, based on the output of the ardassifier, obtains a 20

percent more accurate ranking than our baseline QA system.

In the future, we will investigate the utility of PASs for siar tasks affected by noisy

data and apply a true SVM re-ranker trained with the propasiednced information.
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