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Indentation of metals by a flat-ended cylindrical punch
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Abstract

The paper reviews the fundamentals of indentation theory for punches with cylindrical geometry, presents a deep-indentation finite element
(FE) simulation and discusses an experimental technique for flat-ended cylindrical indentation. This technique is based on the use of cylindrical
punches with diameters up to 1 mm and allows pressure–penetration curves to be drawn from which yield stress and elasticity modulus can
be determined. Several materials have been tested including pure metals, steels and refractory alloys; yield stress has been determined
and compared with literature values. By testing at different temperatures it was also possible to determine the ductile-to-brittle transition
temperature (DBTT) for some alloys that show such phenomenon.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Since more than a century, the indentation test has been
one of the most common techniques for the mechanical char-
acterization of materials. The test output is usually the in-
dentation depth or the size of the imprint, which are related
to a hardness index number. Different hardness tests have
been standardized, depending on indenter geometry and in-
dentation parameters. Indentation techniques have been also
used to study time and temperature dependent properties of
metals such as creep and load relaxation[1,2], or to estimate
the residual stress field and fracture toughness of brittle ma-
terials[3,4]. Recently, low-load indentation techniques have
been developed for testing metallic and ceramic thin films
or coatings[5]. When the indentation test is operated on a
micro- or nano-scale, factors such as micro-segregation of
chemical elements, surface roughness, residual strain pat-
tern resulting from manufacturing processes can contribute
to produce a large scattering of results, so that several tests
and statistical treatment of data are necessary[6].

Abbreviations: FE, finite element; FEM, finite element modelling;
FIMEC, flat top indenter for mechanical characterization; LVDT, linear
variable differential transformer; DBTT, ductile-to-brittle transition tem-
perature
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Theoretical fundamentals of the indentation problem, that
are elastic and (within certain limits) plastic, have been for-
mulated for different indenter geometries. Different models
have also been set up to predict indentation hardness and to
estimate uniaxial mechanical properties for all the geome-
tries (cone, wedge or pyramid, sphere, flat-ended cylinder).
Recently, a comprehensive model to describe the behaviour
of a wide variety of materials tested with different indenter
geometries has been developed[7]. This model expresses
the analytical equations of hardness as a function of the
material uniaxial properties. Finally, the indentation prob-
lem has been successfully approached by the finite element
modelling (FEM) of indentations performed by a fully rigid
punch on an elastic plastic half-space, both with and without
friction [8,9].

Indentation with sharp punches has been widely used for
material characterisation, but also applications of flat-ended
cylindrical indenters can be found in literature[10–14]. They
concern investigations on mechanical properties of materials
and measurements of the elastic modulus of thermal barrier
coatings[15].

The indentation with sharp or spherical indenters involves
that the contact surface area increases as the load increases;
conversely, during the indentation with cylindrical punches,
the contact area remains constant; thus, the contact pres-
sure linearly increases with indentation load. In this pa-
per, a flat-ended cylindrical indentation technique (FIMEC),
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Table 1
Comparison between yield stressσy obtained by tensile tests andpy/3 by
FIMEC tests

Material Tensile test,
σy (MPa)

FIMEC test

py/3 (MPa) Deviation

Al 60 55 0.08
Cu 190 185 0.03
Zn 55 55 0
Mo 540 560 −0.04
Composite Al–7%Si+ SiCp 280 275 0.02
A986 (Al alloy) 35 32 0.09
Glidcop (Cu–0.48Al2O3) 483 460 0.05
Cu–5Zn–7%Zr 306 310 −0.01
Fe–40%Al+ 1%Y2O 922 900 0.02
W + 1%La2O3 765 710 0.07
TZM (Mo alloy) 960 910 0.05
AISI 1040 steel 450 425 0.06
MANET II steel 640 640 0
BATMAN-1951 steel 510 500 0.02
F82H steel 520 500 0.04
AISI 316 L steel 310 330 −0.06

The deviation∆ is (σy − py/3)/σy.

which has been recently developed by us, is presented and
discussed[14,16–18]. This technique employs cylindrical
indenters with diameters ranging from 0.5 to 1 mm and
gives pressure–penetration curves from which yield stress
and elasticity modulus can be determined. Experiments have
been performed on several metals (Table 1). From tests per-
formed at different temperatures it is also possible to have
an indication about the ductile-to-brittle transition tempera-
ture (DBTT) for those metals which show such phenomenon
[19].

The specific characteristics of FIMEC are:

(i) the high simplicity of the apparatus and data treatment;
(ii) the possibility to get information about the local mate-

rial properties on a scale large enough to include many
grains; thus, data represent bulk characteristics and are
not influenced by those factors which dramatically af-
fect micro- and nano-indentation tests;

(iii) the large versatility in industrial applications such as
the control of welding quality[20,21], the on-line mon-
itoring of forging or extrusion processes, etc.

In this paper, also the fundamentals of the theory of in-
dentation by a cylindrical punch are reviewed and a numer-
ical finite element (FE) simulation of a deep indentation by
a 1 mm diameter punch is presented.

2. Indentation theory

2.1. Elastic models

The problem of the contact of two elastic (spherical) bod-
ies was originally developed by Hertz[22], but the approach
to the problem of an elastic half-space subjected to a pres-

Fig. 1. Flat-ended indentation scheme.

sure acting on a closed surface is due to Cerruti[23] and
Boussinesq[24], who used the potential theory method, al-
though the solution found cannot be used for problems of a
practical interest. Love[25] managed to find a solution for
conical and cylindrical indenters. Finally, Sneddon[26] de-
rived the load-displacement relations for an arbitrary shaped
axisymmetric punch. The results of the Sneddon solution for
the indentation without friction of an elastic half-space by a
flat-ended cylindrical punch, can be summarised as follows
(seeFig. 1). The contact area is assumed to be circular and
equal to the indenter tip area (radiusa). The boundary con-
ditions for the formulation (z = 0 for the local systemr–z)
are the following:

σz(r, 0) = 0, r > a

τrz(r, 0) = 0, 0 ≤ r ≤ a

uz(r, 0) = h, 0 ≤ r ≤ a

(1)

The first condition imposes that the free surface outside the
contact region has no normal stress (σz) acting on it; the
second one assures the absence of any friction for the contact
region between the indenter and the half space; the third one
forces the displacement inz direction (uz) to be consistent
with the flat facet of the punch. Since the punch has a sharp
edgeσz → ∞ whenr = a. This condition[27] determines
a very localized plasticity on the circular edge that does not
invalidate the effectiveness of the elastic relationships found,
in particular, the load-displacement and the contact pressure
equations.

Following a penetrationh, the mean contact pressurepm
is given by the equation:

pm = 2Eh

πa(1 − ν2)
(2)

which shows that the relationship betweenpm andh is linear
due to the constant contact area.

The distribution of pressure under the punchσz (r ≤ a, z
= 0) is given by the equation:

σz(r, 0) = − pm

2
√

1 − r2/a2
(3)

and the shape of the deformed boundaryuz (r > a, z = 0) by:

uz(r, 0) = 2h

π
arcsin

(a

r

)
(4)

The equations governing the stress field in the elastic
half-space coming from the Sneddon solution[26,28–30]
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are given in the (r, θ, z) cylindrical coordinate system by
the following equations:

σr = −1

2
pm

{[
−z

d2

dz2
− d

dz

]
arctan

[
1 + K sinΦ

z + K cosΦ

]

− 1

r2

[
(1 − 2ν) + z

d

dz

]
(1 − K sinΦ)

}
(5)

σϑ = pm(1 + ν)
d

dz
arctan

[
1 + K sinΦ

z + K cosΦ

]
− σr − σz (6)

σz = −1

2
pm
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dz2
− d

dz
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arctan

[
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τrz = −1

2
pm

z

r

d2

dz2
(1 − K sinΦ) (8)

with the assumptiona = 1 for simplicity and with

K4 = (r2 + z2 − 1) + 4z2 and tan(2Φ) = 2z

r2 + z2 − 1
(9)

2.2. Elastic–plastic model

An indentation model which also includes plasticity is
much more complex. The complexity is due to the fact that
the constitutive equations are not linear and include some
material parameters able to describe the plastic behaviour,
such as the yield stress and the work-hardening coefficient.

Two models have been developed to describe the material
stress–strain field, following an indentation performed by
means of punches of different shapes: namely, the spherical
cavity [31] and the slip-line model[32]. The first one was
suggested by the consideration that for some indenter shapes,
such as the spherical and blunt conical ones, the plastic zone
shows spherical symmetry (hemispherical), thus the prob-
lem can be approached in analogy with the elastic–plastic
deformation near a cavity subjected to internal pressure. Un-
fortunately, this model is too rough to be applied to a cylin-
drical indentation because the plastic region shape varies
with penetration depth and becomes roughly spherical only
at elevated depth values[7,33].

The slip-line approach is suitable for the modelling of ma-
terial indentation that can be described by means of a rigid
plastic model (i.e. no hardening), where the plastic deforma-
tion is much higher than the elastic one, so that only plastic
deformation can be considered. During indentation, and dif-
ferently from the spherical cavity model which involves a
compressive action, the material is supposed to flow at a con-
stant shear or normal stress under a punch “cutting action”,
which determines a new surface on the indented specimen.
In these conditions, the stress in the flow region can be de-
scribed by means of the slip-line field theory. This approach
allows a grid of curvilinear lines to be determined: on this
grid, the plastic field can be described by means of a con-
stant simple shear stress and a variable hydrostatic stress.
This approach has been successfully applied to solve plane
strain indentation (e.g. that produced by a wedge punch) but

cannot be applied to solve the general axisymmetric prob-
lem.

Shield [34] showed that the axisymmetric plastic flow
of a rigid-plastic material can be described by a slip-line
field if the material follows the Tresca plasticity criterion,
and assuming the circumferential stress equal to one of the
principal stress in the meridional plane (Haar-von Karman
hypothesis). Under these hypotheses, Shield determined the
plastic stress field for the indentation of a semi-infinite solid
by a smooth flat-ended cylindrical punch. He also extended
the plastic stress field outside the punch contact region and
estimated the value of the average contact pressurepm =
5.69k (k being the shear strength of the material). In the same
conditions, the maximum contact pressure (close to punch
edge) was found to bepmax = 7.2k and the radial extension
of the plastic area is 1.58a.

Afterwards, Eason and Shield[35] studied the indenta-
tion of a semi-infinite solid by a rough punch evaluating
also the radial extension and depth of plastic zone. As al-
ready noticed, due to the discontinuity of contact pressure
under the flat-ended cylindrical punch, the plasticity starts
at punch contact edge; then it progressively extends with in-
creasing penetration. The result of Shield–Eason approach
is that the plasticity extension reaches the indenter-specimen
axis when the mean contact pressure is about six times the
shear strength; thus, as consequence of the Tresca plasticity
criterion, when the contact pressure is about three times the
tensile yield stress.

3. Numerical simulation

As already noticed, the indentation of an elastic–perfectly-
plastic material is a problem difficult to be solved analyti-
cally and the major part of this difficulty is due to the un-
known shape and extension of the plastic field. In certain
hypotheses, a solution can be found, but in any case only for
small plastic strains. Therefore, it is not possible to describe
any deep-indentation process[32].

These difficulties can be avoided by means of a finite el-
ement analysis when a refined mesh is used to model the
continuum half-space, a suitable material formulation is pro-
vided and finally the contact is properly modelled. In this
paper, two approaches are presented: the first one concerns
a basic simulation of the indentation of an elastic–plastic
material with and without strain hardening and friction; the
second one concerns the simulation of the experimental in-
dentation carried out on a martensitic steel (included in the
experimentalSection 4).

3.1. The model

All the calculations (basic analysis and experimental sim-
ulation) have been performed by means of an axisymmetric
model and a geometrical non linear analysis has been car-
ried out. This model consists of a perfectly rigid flat-ended



284 B. Riccardi, R. Montanari / Materials Science and Engineering A 381 (2004) 281–291

Fig. 2. FE model.

cylindrical punch (radius 0.5 mm) which penetrates a spec-
imen (radius 5 mm, thickness 5 mm). Experimental mea-
surements by modulated optical reflectivity[17] and a
sensitivity FE analysis showed that these dimensions are
sufficient to consider the specimen as a semi-infinite solid.
The analysis has been carried out by means of the general
purpose code Abaqus[36,37]. The indenter has been mod-
elled by means of a rigid surface while the specimen by
means of a mesh of 7200 four nodes reduced integration
axisymmetric elements (Fig. 2). Roller boundary conditions
have been imposed along the symmetry axis and at the
bottom of the specimen (frictionless rigid boundary). The
mesh size chosen is the result of an optimisation carried out
in order to describe the deformation process close to the
indenter edge; a 10�m size element was found to reach a
good compromise in terms of computer time and accuracy
of results. The simulation has been performed by imposing
600 penetration steps (0.1�m each). For the basic calcula-
tions, the material was considered homogeneous, isotropic
and fully described by means of the elastic modulusE,
the Poisson coefficientν and the yield stressσy whereas
the viscosity has not been considered. A parametric study
of the influence of the friction between indenter and sam-
ple, and of the material hardening rate was also carried
out.

3.2. Results

FE calculations have been performed first by assuming
the friction coefficientf as a parameter (f = 0, 0.1, 0.5)
and an elastic–perfectly-plastic material behaviour with no
hardening (E = 2.1 × 105 MPa, ν = 0.3, σy = 500 MPa).
The indentation curves, as proposed by Yu[7], have been
normalized by plottingpm/σy versus 2E/[π(1 − ν2)σy]h/a
and are shown inFig. 3. Each curve has a linear initial stage,
whose slope can be derived fromEq. (2); the linear stage
is followed by a curved part and finally, at high penetration
values, by an almost constant slope stage. The results of
this simulation point out that friction coefficient effect is
practically negligible at least up to the penetration values
investigated here.

In the case of frictionless contact, the trend of the curve
in Fig. 3 is given with good approximation by the equation:

ξ = c1
χ

1 + χc
(10)

wherec1 = 2.55,c = 0.93, ξ = pm/σy andχ = 2E/[π(1−
ν2)σy]h/a. The qualitative stress–strain field under the in-
denter is shown inFig. 4(a–d)for a penetration parameter
h/a = 0.1 (corresponding toχ = 27.9, i.e. in the constant
slope stage of the load–penetration curve). The hydrostatic
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Fig. 3. FE normalized indentation curves calculated with three different friction coefficients.

Fig. 4. Elastic–perfectly-plastic, frictionless FE analysis contour ath/a = 0.1: (a) hydrostatic pressure (×100 MPa); (b) shear stress (×100 MPa); (c) von
Mises equivalent stress (×100 MPa); (d) von Mises equivalent plastic strain.
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Fig. 5. FE normalized indentation curves calculated with three different
hardening rates.

pressure stress distribution inside the material shows that the
maximum value occurs atr = 0.8a. It would have been use-
ful to compare the calculated strain with some experimen-
tally measured values. Unfortunately, only measurements of
strain distribution around Vickers indentations are reported
in literature[38]. Therefore, this will be the next step of our
activity.

Simulations have been also carried out to estimate the
effect of the hardening rate in the case of frictionless contact
if the material properties remain unchanged.Fig. 5 shows
the indentation curves calculated with different hardening
ratesn (0, 0.1 and 0.3). The effect of the hardening rate

Fig. 6. FIMEC scheme and apparatus.

appears to be modest in the initial part of the curve, but is
remarkable on the final slope.

4. Experimental

4.1. The apparatus

The FIMEC indentation procedure is based on the pene-
tration of a flat punch at constant rate. Usually, a punch with
diameter= 1 mm and axial length= 1.5 mm is employed
in the tests, however, punches of reduced size (diameters up
to 0.5 mm) can also be used, depending on the extension of
the zone to examine.

The experimental set-up is sketched inFig. 6, which also
shows a picture of the apparatus. A massive frame, dimen-
sioned to have a total elastic deformation of about 1�m for
the maximum applied load (10 kN), hosts all the compo-
nents of the apparatus: the linear actuator which drives the
indenter advancement, the load cell, the displacement mea-
suring system (LVDT) and optionally also a thermostatic
container. The linear actuator is an electro-mechanical drive
equipped with a step motor. The motor rotation is transmit-
ted to a ball screw by a precision reduction gear; the ball
screw converts the rotation at the gear output to translation,
guided by means of a pre-loaded ballspline. The flat punch
indenter is made of tungsten carbide which guarantees low
deformability and high strength. The indenter is mounted at
the end of a rod and the advancement speed can be varied in
the range from 1× 10−4 to 2× 10−2 mm/s. The motor con-
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trol unit is connected to the LVDT and a feedback system
provides constant speed in the full range of the load applied.
The LVDT system measures the displacement between the
sample holder and the indenter with a resolution of 1�m
and the load cell, located under the sample holder, measures
the applied load with a resolution of 1 N. Tests at low and
high temperatures, in the range from−180 to 200◦C, can
be performed by using a thermostatic device.

To control the position of each indentation on the sam-
ple, and to optimise the number of indentations, the sample
holder is mounted on a plate that can rotate and translate.
A distance of 5 mm between the centres of two adjacent in-
dentations has been determined to be the minimum distance
to avoid overlapping of the strain fields of neighbouring im-
prints, which can affect the pressure–penetration curves[17].
So, for example, it is possible to perform up to 18 inden-
tations on a disk-shaped sample with diameter 25 mm and
thickness 5 mm.

The entire indentation process is controlled by a software
specifically developed for the instrument.

For each test temperature and tested material, at least five
indentations are performed and generally the results show
a very good reproducibility. All the data presented in this
paper are mean values.

4.2. Experimental results

The typical trend of an experimental indentation curve
with the different stages is evidenced inFig. 7for F82H steel
(a 9% Cr martensitic steel stabilized by 2% W). A punch
imprint and a micrographic section are shown inFig. 8(a
and b).

The curves of all the tested materials show a trend char-
acterized by an initial linear elastic stage up to a pressure
load pL. Below pL the curve is fully reversible and no per-
manent deformation occurs on the sample. The linear stage
is followed by three plastic stages:

• the first one is almost linear and ends at a pressurepy: the
imprint shows permanent sharp edges;

Fig. 7. Experimental pressure–penetration curve for F82H steel.

Fig. 8. Punch imprint (a) and its micrographic section (b).

• the second one occurs forp > py and is characterized by
a sudden slope decrease. During this stage the material
starts to protrude around the imprint;

• the third stage shows a trend with an almost constant slope.

For some materials the third stage evidences a saturation
pressure loadps which is strongly influenced by the pen-
etration rate, while thepy load is scarcely affected by this
parameter[17]. This last result holds for all the investigated
materials and is of great importance to correlate indentation
and tensile test results. When the indentation tests are car-
ried out with a penetration rate of 0.1 mm/min or lower, it
is possible to compare directly the indentation results with
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Fig. 9. Experimental load–penetration curves at different temperatures for
F82H steel.

those of tensile tests with a strain rate of 10−3 s−1; in these
conditions it has been observed that the yield stressσy is ap-
proximately equal topy/3. This result is similar to the finding
of Yu et al. [13]. They found that, when plastic flow occurs
during a cylindrical indentation, the ratio between indenta-
tion pressure and compression (yield) stress is not widely
different from value 3. Moreover, according to the results
of Yu et al. [13], the pressure–penetration curves obtained
in this work by testing the same material with indenters of
different diameters (1.0, 0.8 and 0.7 mm) show an almost
perfect overlapping[18].

Several metals have been tested andTable 1lists for some
of them the yield stress (σy) values from standard tensile
tests, the py/3 values coming from indentation curves and the
relative difference of these two values∆ = (σy − py/3)/σy.
This difference does not exceed 9%, a value similar to the
scattering of data (about 7%) in tensile tests on the same
material[39].

Fig. 10. Determination of DBTT for F82H steel.

Table 2
Ductile to brittle transition temperature (DBTT) of three martensitic steels
obtained by different methods

Material DBTT (ISO-V)
(◦C)

DBTT (KLST)
(◦C)

DBTTFIMEC

(◦C)

MANET −35 – −50
BATMAN −15 −75 −85
F82H −45 −80 −79

Fig. 9 shows thep–h curves for F82H steel at different
temperatures. The slope of the third plastic stage (�p/�h)
depends on the test temperatures. In particular, the curves
obtained at lower temperature exhibit higher�p/�h slopes
and slightly higherpy values. Therefore,�p/�h has been
used to correlate the results of FIMEC and Charpy tests to
have an estimation of the ductile to brittle transition tem-
perature[17]. Fig. 10 shows the mean value of�p/�h in
the third plastic stage versus the test temperature for F82H
steel. The curve has been plotted using a reversed ordinate
scale to show how the trend is similar to that of a resilience
curve. The DBTT has been determined as the abscissa cor-
responding to the average value M between the upper (U)
and the lower (L) values in the plot. The DBTT of several
steels have been determined by FIMEC[19]. Table 2com-
pares the DBTT values of three martensitic steels obtained
from FIMEC and Charpy tests performed by using standard
ISO-V and sub-sized (3 mm× 4 mm× 27 mm) KLST spec-
imens.

The DBTT values from FIMEC are very close to those
obtained by Charpy tests with KLST specimens while larger
differences are observed with data from tests employing
ISO-V probes.

One of the main interest of FIMEC test is a direct es-
timation of the elastic modulusE because the cylindrical
indentation loading/unloading curve is linear provided that
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the sample deformation is only elastic[15]. The FIMEC in-
dentation allows this property to be determined from the un-
loading part of the pressure–penetration curve by means of
the elastic relationship (2). In principle, also the loading part
could serve the scope but possible punch-sample imperfect
contact and back-lash in the movement transmission intro-
duce some uncertainties in the measurement, so it is conve-
nient to estimate E from the unloading part of the curve. As
observed also by Oliver et al.[40], in a deep indentation of
metals, most of the indenter displacement is accomodated
by sample plastic deformation and only a small amount re-
lated to the elastic deformation. The unloading part of the
flat punch indentation (in ideal experimental conditions) is
expected to be linear back to zero load. In our case, due to
problems of contact mismatches (the recovered surface is
not flat or parallel thus the indenter experiences a receding
area of contact as it disconnects from the sample) and pos-
sible friction between punch and specimen, only the initial
part of the unloading curve is linear. Therefore, this initial
part has been used for the estimation of the elastic modu-
lus. The elastic modulus is estimated by means of the slope
of the initial part of the unloading curve (contact stiffness
S = dP/dh) by using the equation[40]:

S = dP

dh
= 2√

π
Eeq

√
A (11)

Eeq is the equivalent modulus defined by[22,41]:

1

Eeq
= 1 − ν2

E
+ 1 − ν2

i

Ei
(12)

whereEi , E andνi , ν are the Young’s modulus and Poisson’s
coefficient of indenter and sample.

The flat top cylindrical indentation test has the big ad-
vantage (with respect those performed by means of sharp
indenters) that the contact areaA is independent on in-
dentation depth.Fig. 11 shows for F82H steel a typical
loading-unloading curve. Several tests performed showed
that the slope of the initial part of unloading curves is sub-
stantially independent from the penetration depth. For exam-
ple, from the unloading part of the curve reported inFig. 11a
valueEeq = 162 GPa was determined by means ofEq. (11).
By assumingEi = 668.35 GPa,νi = 0.24 [42] and ν =
0.33, the elastic modulus E calculated fromEq. (12) was
210.5 GPa. This value differs from that obtained by tensile
tests (205 GPa) by only 3%; it can therefore be considered
to be a good estimation.

4.3. Numerical simulation

A finite element analysis of the indentation process was
carried out by means of the same geometric model used
in the ideal elastic–plastic case. The real indenter has been
modelled as perfectly rigid and this assumption can be con-
sidered sufficiently approximated by taking for the material
the equivalent elastic modulusEeq as defined byEq. (12).

Fig. 11. Experimental loading–unloading curve for F82H steel.

A study of deep penetration (up to 1 mm) was carried out
by means of a geometric non linear-adaptive mesh-dynamic
analysis[37]. The adaptive mesh option was used in or-
der to deal with the severe distortion of the FE mesh used
for the model; in this way it was possible to re-arrange
locally the model mesh when the distortion of each ele-
ment exceeds a pre-defined value. This is a very heavy pro-
cedure that Abaqus Explicit code allows to be both done
and controlled automatically. This analysis, even if per-
formed by means a dynamic code, is representative of the
penetration process because the used parameters allowed
to get a quasi static response. Conversely, the results of
the simulation, which did not account for the material vis-
cosity, only led to a rough estimation of strain amplitude
and pattern. The analysis also gave a preliminary indica-
tion of how it is possible to reproduce the imprint pro-
file.

The analysis has been focussed on the F82H indentation
at room temperature; the plastic part of the stress strain curve
was modelled by means of the Holloman’s relationshipσ

= kεn wherek = 813.63 MPa and the average work hard-
ening coefficientn = 0.07168[18]. In the plastic range, the
material was assumed to follow the von Mises plasticity cri-
terion.

The von Mises equivalent plastic strain contours are
shown inFig. 12after a penetration of 1 mm.

The main finding of the F82H steel FEM indentation anal-
ysis, obtained by plotting several plastic strain contours and
deformed plots at increasing penetration depth, was that a
consistent extension of plastic region under the punch and
the occurrence of plastic flow and protrusion (pile up) can be
observed at a pressure value (pyFEM) approximately equal
to the valuepy determined experimentally (pyFEM/3= py/3
∼= σy). In these conditions (extended plastic flow under the
indenter), the empirical relation used in the present work to
correlatepy and yield stress, is analogous to one of the main
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Fig. 12. Von Mises equivalent strain pattern following a 1-mm depth
penetration estimated by FE analysis.

findings of the Shield and Eason work carried out by means
of slip-line theory[34,35], i.e. the mean contact pressure is
about six times the shear strength and as a consequence of
Tresca plasticity criterion about three times the tensile yield
stress.

Therefore, one can conclude that thepy pressure deter-
mined experimentally is related to an extended plastic flow
under the indenter and for the strain hardening materials to
the initiation of the material pile up. The deformed shape and
material pile up around the imprint are qualitatively similar
to the experimental ones.

5. Conclusions

Considering the tests employing sharp punches, the
flat-ended cylindrical indentation is characterised by a
constant punch-sample contact area; thus, elastic mod-
ulus and yield stress can be directly determined from
pressure–penetration curves by applying simple analytical
relationships.

The experimental apparatus (FIMEC), developed by us,
has been described. It has been used for investigating several
metallic materials, including pure metals, steels and refrac-
tory alloys.

The yield stress can be determined by means of a char-
acteristic pressure (py) clearly evidenced in the curves ob-
tained for all tested materials: this pressure, as confirmed
also by a FE analysis, is related to the full plasticity of the
contact area and the beginning of material pile-up around
the imprint.

The yield stress values experimentally determined exhibit
relative deviations from those obtained by standard tensile
tests not exceeding 9%; a value similar to the scattering of
data in tensile tests on the same material. The deviation for
the elasticity modulus is about 3%.

Furthermore, the variation of the slope�p/�h in the third
plastic stage of pressure–penetration curves, when tests are
performed at different temperatures, can be exploited to es-
timate the DBTT of those metals which show such phe-
nomenon. In particular, the DBTT data determined exper-
imentally are very close to those obtained in Charpy tests
with sub-sized KLST samples.

In this paper, the main theoretical aspects of flat-ended
cylindrical indentation have been examined and a FE analy-
sis has been performed to provide basic understanding of the
plasticity mechanisms governing the indentation and their
effect on pressure–penetration curve.

List of symbols
a indenter radius
A indentation contact area
E sample elasticity (Young’s) modulus
Eeq indentation equivalent elasticity modulus
Ei indenter elasticity modulus
f friction coefficient
h penetration depth
k shear strength
n hardening rate in Holloman’s relationship
p indentation pressure
pL linear limit of the experimental

pressure–penetration curve
pm indentation mean pressure
py limit of the first plastic stage of the

experimental
pressure–penetration curve

pS saturation limit of the experimental
pressure–penetration curve

p–h curve mean contact pressure–penetration
P indentation load
(r, θ, z) local cylindrical coordinate system
S contact stiffness
uz displacement inz direction
σr normal stress inr direction
σθ normal stress inθ direction
σz normal stress inz direction
τrz shear stress in therz plane
ν sample Poisson’s coefficient
νi indenter Poisson’s coefficient
σy yield stress
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