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Let N\ be a statistical manifold of density operators, with respect to an n.s.f. trace 7 on a
semifinite von Neumann algebra M. If S? is the unit sphere of the noncommutative space
LP(M, ), using the noncommutative Amari embedding p € N' — p}/P € SP we define
a noncommutative a-bundle-connection pair (F%, V%), by the pullback technique. In
the commutative case we show that it coincides with the construction of nonparametric
Amari—Centsov a-connection made in Ref. 8 by Gibilisco and Pistone.

1. Introduction

Information geometry is the theory of statistical manifolds, that is of manifolds
whose points p can be identified with density functions with respect to a certain
measure 4. The classical references for the theory can be found in Refs. 1, 2, 4, 15
and 19.

The noncommutative version of the theory has been developed by some authors.
For example noncommutative versions of Amari-Centsov a-connections have been
proposed in the literature.0-13:20,21

Recently a nonparametric version of the commutative theory has been proposed
(see Refs. 8, 24 and 25). One of the most important results obtained in Ref. 8 is
that the a-connections can be defined for a@ € [—1,1] also in the nonparametric
infinite-dimensional case. More precisely one shows that the right definition is that

of a-bundle-connection pair (F%,V*): this means that, generally speaking, the
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170 P. Gibilisco & T. Isola

a-connection is not defined on the tangent space of the statistical manifold A
but on a suitable vector bundle F* — N. For o € (—1,1), and p := 2/(1 — a),
the pair (7%, V?) is simply (isomorphic to) the pullback of the Amari embedding
p — p*/P € SP, where SP is the unit sphere of the (commutative) L? space equipped
with the natural connection that SP has as a submanifold of LP.

One of the merits of this approach (besides the nonparametric feature) is that
it shows that the notion of duality introduced by Amari is exactly the LP-space
duality (or Orlicz space duality, if one has to deal with exponential and mixture
connections).

The purpose of this paper is twofold. On the hand, we show that the construction
of the a-connection, for & € (—1,1), made in Ref. 8 is based on the fact that the
commutative L space is uniformly convex with dual space uniformly convex. On
the other hand, when the construction of Ref. 8 is seen at this abstract level, it
is natural to conjecture that a similar construction can be made for statistical
manifolds of density operators. Indeed this is the case: we show that the a-bundle-
connection pair can also be defined on an arbitrary statistical manifold of density
operators. One should also note that in the noncommutative case our approach is
fully general and nonparametric: this means that we do not have to restrict to the
matrix case but we can deal with manifolds of density operators with respect to a
normal, semifinite, faithful trace 7 on a semifinite von Neumann algebra M.

In a subsequent paper we will compare our approach to noncommutative -
connections with the others appearing in the literature.

2. Uniformly Convex Banach Spaces

In this section we review, for the reader’s convenience, some results on the geometry
of uniformly convex Banach spaces, needed in the sequel. In the first part of this
section we consider real Banach spaces. X will denote the dual space of X and S¥X
the unit sphere of X. If L € X and z € X we will write (L&) = L{a).

Definition 2.1. We say that z is orthogonal to y, and denote it by z L y, if
[zll < |lz + Ayl|, for any A\ € R. Moreover, if AC X,z | A means z . y, for any
y € A

Definition 2.2. The duality mapping J : X — P()’Z) is defined by
J(z) = {v € X : (v,z) = ||z|]? = ||v]|*} .

By the Hahn-Banach theorem J(z) # 0, for any = € X. We say that X has the
duality map property if J is single-valued. In this case we set & := J (2).

Definition 2.3. We say that X has the projection property if for any closed convex
M C X and any z € X there is a unique m € M s.t.

|z —m| =inf{||lz — 2| : 2. € M} = d(z, M).

In this case we define my(z) := m.
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Definition 2.4. (i) X is strictly conver if all the points of SX are extreme points
(i.e. on SX there are no intervals).

(ii) X is uniformly convez if for any € > 0 there is § > 0 s.t. z,y € SX and
l(z+y)/2|| >1—§ implies ||z — y|| < e.

(iii) X is uniformly smooth if for any € > 0 there is 6 > 0 s.t. [|z|| > 1, ||ly|| > 1,
and |z — y|| < ¢ implies [|a + y|| > [lz] + |yl <]z — y]l.

Proposition 2.1. (i) X uniformly conver implies X strictly convez.
(ii) X uniformly convez (resp. uniformly smooth) implies X uniformly smooth
(resp. uniformly convez).

Proposition 2.2. (p. 25 of Ref. 6) Let z, y€ X, f € X, a € R. Then

(i) = L ker(f) is equivalent to |f(z)| = | f|||z]|.
(i) z L (ax +y) & there is f € SX s.t. f(z) = ||z| and a = —f(y)/f ().
(iii) z L (az +y) = lof < |lyll/ll=|.

Proposition 2.3. Let X and X be uniformly conver Banach spaces. Then

(i) X has the projection property.

(ii) X has the duality map property.
(ifi) = L ker(%).
(iv) If M :=ker(z), then mp(v) = v —

|~

Z,v)
,x)

z.

—~|

Proof. (i) See p. 363 of Ref. 22.
(ii) X is strictly convex, and this implies that J is single-valued.
(iii) As [(Z,z)| = ||Z||||=|, applying Proposition 2.2(i), we get = L ker(Z).

(iv) We want to prove that |jv — mp(v)|| < |lv — 2]|, for any z € M. Since

. T (Z,v)] z
b= sutl = || = K = (o))
we may reduce to the case ||z|| = ||Z|| = 1. So we have to show that [(Z,v)| <
v — 2|, for any z € M. Fix z € M, and set a := —(%,v), y := v — z. Then
az +y = —(Z,v)z +v — z = mp(z) — z € ker(Z), since mp(z), 2z € ker(z) = M.
It follows from (iii) that 2 L az + y, so that, by Proposition 2.2(iii), we have
lod < lyll/lll], Le. {2, v)] < [lv - 2] m

Remark 2.1. Now remember that if M is a Banach manifold and N' C M is a
submanifold, then for any p € N there is a splitting of the tangent space TpM =
T,N ®©V and a projection operator m, : T,M — T,N. Moreover if there is a
connection V on M, one gets a connection V' on the submanifold A/, by setting
V' :=rnoV.

Proposition 2.4. Let X, X be uniformly convexr Banach spaces. Then

(i) SX is a Banach submanifold of X .
(ii) TxS¥, the tangent space to SX at z € SX, can be identified with ker().
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(iil) The projection operator my : Tp X — T.S% is given by m,(v) = v — (%, v)z.
Using this projection, the trivial connection on X induces a connection on SX,
that we call the natural connection on SX.

Proof. (i) Since X is uniformly convex, we have that X is uniformly smooth, so
that the norm is a uniformly strongly differentiable function (p. 364 of Ref. 16).
(i) The hyperplane {v € X : (Z,v) = 1} is evidently the unique supporting
hyperplane at S¥ in z. Therefore ker(z) := {v € X : (Z,v) = 0} can be identified
with the tangent vector space T, SX.
(iii) This is simply a rewriting of Proposition 2.3(iv) in a particular case, and
of Remark 2.1. |

Now suppose that X is a complex Banach space. We denote by Xg the same
space considered as a real Banach space. Let L € X, then v € Xg — ReL(v) € R
defines an element of )'(VR Themap L € X > ReL € XVR is a bijective linear isometry
(pp. 179 and 344 of Ref. 16). We have therefore a complex duality mapping z — Z
on X, and the real duality mapping is given by x — ReZ. Correspondingly we have
that the supporting hyperplane at z € SX is given by {v € X : Re(Z,v) = 1},
and therefore the tangent space T,SX is given by the real Banach space M =
T,SX = ker(Rez) = {v € X : Re(z,v) = 0}. The projection formula is 7z (v) =
v — Re(Z,v)z.

3. a-Connections for Commutative Statistical Manifolds

In this section we summarize some of the results of Ref. 8 in the light of the abstract
setting of Sec. 2. Let (X, X, 1) be a measure space. We give the following:

Definition 3.1. If « € (—1,1), set p:=2/(1 — ). LR = LE(X, X, p) = {u: X —
R : u is X-measurable, fx [ul? du < oo}, for p € [1,00). The unit sphere is denoted
by SPi={feLh:|lullp,=1} My :={peLy:p>0,[p=1} Forany p € M,
we set F = L3p) == {u € LR(X, %, pu) : [y updp = 0}. If p > 1 we define p by
1/p+1/p=1

A calculation shows that the duality map is given by u € L} — 4 :=
|ul|2-PsgnufulP’? € L. Therefore, if p € 9M,, we have that p'/? € SP and

pl/P = p'/P ¢ SP. The spaces L% are uniformly convex, so the results of Sec. 2
are applicable. For the tangent space of SP at PP we have Tp/pSP = {u €
LB : [up'/Pdy = 0}. We denote by V? the natural connection on S? in-
duced by the trivial connection on L§. Observe that the isometric isomorphism
I? :u € Lyp(X, X, ) — up~'/P € LB(X, X, pp) sets up a bijection between L{(p)
and T/, SP.

Let N' C 9, be a statistical model, equipped with a structure of a differential
manifold. Consider the bundle-connection pair on SP given by the tangent bundle

and the natural connection (T'SP, V?). Making use of the Amari embedding A% :
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p €N — p'/?P € SP, we may construct the pullback ((A%*)*T'SP,(A%*)*VP) of the
bundle-connection pair (T'SP, V?) to N. This means that the fiber over p € N of
the pullback bundle is given by T},1/»SP. Consider now F< := |J ¢ F'. Using the
family of isomorphisms I%, p € N, it is possible to identify F with the pullback
bundle (A%*)*T'SP. One can also transfer the pullback connection (A*)*V? using
this isomorphism. We denote by V¢ this last connection on the bundle F<.

Theorem 3.1. Consider the bundle-connection pair (F*,V*), a € (—1,1), on the
statistical manifold N'. Then V* coincides with the Amari-Centsov a-connection.

Proof. See Ref. 8. O

Obviously one may also define a “complex” version of the a-connections. Let
LP = LP(X,%,p) == {u: X - C: u is X-measurable, [, |u|P < co}. Introduce the
function

2 eC,2#0
sgnz:={ |2
0 z=0.
The duality mapping in this case has the form @ := Hu||12,_p sgii|u|P/?. The tan-

gent space is T,1,,S? = {u € LP(u) : Re [y up/Pdy = 0}. In this case we set
Ly(p) = {u € LP(X, %, pp) : Re [, updp = 0}, with the isomorphism still given by
Ig(u) = up~ /P, The rest of the construction applies directly and we have therefore
a “complex” bundle-connection pair (F*, V*), on any statistical manifold N" C 9,,.

4. Noncommutative LP-Spaces

We recall in this section the construction of noncommutative LP-spaces on a general
von Neumann algebra, following the approach by Araki and Masuda.®!8 Moreover
we prove a result that we need in the next section. Observe that there are different
approaches to noncommutative integration.>%1417:3% Therefore let M be a von
Neumann algebra, which is standardly represented on H, i.e. (10.23 of Ref. 28)
there are a conjugation J : H — H and a self-polar convex cone ‘P C H s.t.

(i) the mapping j(z) := Jz*J is a *-anti-isomorphism j : M — M’, which acts
identically on the center of M,
(i) E€P=JE=¢,
(iii) zJzJP C P for any z € M.

Recall that two standard representations of M are unitarily equivalent (10.26 of
Ref. 28), and if ¢ is a (normal semifinite) faithful weight on M, then its GNS
representation is a standard representation of M. Let us denote by W (M) the set
of normal semifinite weights on M, and W (M) the subset of the faithful ones. Take
a @ € Wy(M), and denote by N, := {z € M : p(z*z) < oo}, and by (7, He, 1)
the GNS triple. Then the LP-space w.r.t. ¢, denoted by LP(M, ), consists of the
closed densely defined linear operators T on H s.t.
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(i) TJo?,,,(y)J D JyJT, forany y € NG :={y € N, : t € R = af(y) is an
analytic function},

(i) 1T lp,p = SUDPgemean |lzf<1 ||]T|p/277<p(r)”2/p < 0.

For any T € LP(M, ¢) there is a unique normal positive linear functional 9 € M.,
and a partial isometry w € M s.t. w*w = s(¢), the support projection of 1, and
T= wAzlp/;, where Ay, is the relative modular operator. We have that LP(M, ) is a
uniformly convex Banach space, if p € (1,00), and L}(M, o) = M., L*(M, o) 2 H,
L®(M,p) = M, and LP(M,¢) = LP(M, ), where . + % = 1. Besides, if po €
W;(M) is a different nsf weight, then LP(M, o) and LP(M,p) are isometrically
isomorphic, and the isomorphism is given by IF_, : wA}/; € LP(M, ) — wA;/jo €
LP(M, o), ¥ € M.y, w € M a partial isometry.

We want to give an explicit formula, that we use in Sec. 5, for this isomorphism,
in the particular case when o commutes with ¢, which means that there is a
positive self-adjoint operator p€ M %, with supp(p) = 1, s.t. g = ¢,, where p,(z) =

lim, o w(p;/%py?) and p. := p(1+¢p)~! € M. Then

Proposition 4.1. Ay,, = Ay,Jp™'J, so that I =18 , : T € LP(M,p) —
TJp~'PJ € LP(M,p,).

Proof. We will be using Theorem C.1 of Ref. 3 repeatedly. It follows from Eq. (C.5)
(loc. cit.) that AfptwA;:ip = (D : Dp,)tJs(1)J, and (D : Dip,): = p~*, by 4.8 of
Ref. 27. As supp(Ayy) = supp(Qy,y) = Js(¥)J, we get A%, = Agﬁ¢pit. Observe
that p and A,y commute, as A% p* A = of (p)Js(y)J = p** Js(¥)J, so that
Al p = p* Js(ip) JA%, = p** Alk,. Therefore Ay,y = Ayyp. Now from Eq. (85)
(loc. cit.) it follows that A;‘; = JoyQyy ), and analogously with ¢, in place of
. As from Eq. (C.12) (loc. cit.) that Joy = Jy,p = s(¥)J, we get

Az;qla,, = ¢p¢A¢P¢J;p¢
= 3(¥)JDpyds(¥) I pJ = Joyp Doy gy pJ
—1
= AWJpJ

and the thesis follows. 0

Example 4.1. If M is a semifinite von Neumann algebra and ¢ = 7 is an nsf
trace on M, then any o commutes with 7, and LP(M, 7) coincides with the LP-
space defined in Refs. 7, 23 and 26. Besides ¢o = 7, € M.y iff p € LY(M, 1)
(see Sec. 7.1 of Ref. 18). Moreover for any ¢ = 77 € M,y, with T € L'(M, )4,
one has that Ay, = T. Indeed A} A7} = (D¢ : Dr); = (Drr @ D7)y = T™.
Therefore, if g = 7, € M,4, then the isometric isomorphism is given by the map
IP:ue LP(M,7) = uJp~'/PJ € LP(M, 7).

Example 4.2. Let us assume now that M = B(H) is a type I factor, and 7 is
the ordinary trace. Then LP(B(H),7) is the von Neumann-Schatten class LP(H).

9
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Let (H,,7-,n,) be the GNS triple of 7, H, = L*(H), J-n-(z) = n-(z*), for any
Tz € N, = L?(H). We want to express the modular operators relative to a normal
positive linear functional % € M.,. Recall that ¥ = 7, with ¢ € LY(H); C
M. Then its GNS representation is (Hr,,mr,, s, ), where H,, = H., - (z) =
N (z0l/?) = J. 0?20 (), z €N, = {z € M: 7(z*z0) < 00}, Jr, = Jrsupp(o),
and, if ¢ = 7, € M,4 is a normal faithful positive linear functional, then A, . =
oJ.p~tJ., as

A}—‘{z—pnﬂ’ ($) = JTn‘rg (I*) = J-rn‘r(l'*Ul/?)
= 0'1/2JTT]T(I*) _ 0_1/277T($)

= UI/ZJT,O"I/?JTT]TP (z).
Therefore the proof of the above proposition simplifies considerably.

Example 4.3. In case H = C" is finite-dimensional, i.e. M is the full matrix
algebra of n X n complex matrices, and 7 is the ordinary normalized trace, the
Hilbert space of the GNS representation is given by H, = (C"z, with orthonormal
basis {e;;}, whereas M (which is generated by the matrix units {upt}) acts on
H, as mr(unk)ei; = Okienj, and the cyclic vector is & = Z?:leu—. Then J, is
given by the antilinear extension of the map enr — exn. The LP-spaces are given
by LP(M,T) = (M) with the LP-norm, whereas, for ¢ = 7, € M, a faithful
(normal) positive linear functional, LP(M, 7,) = {m,(X)J,p~/PJ. : X € M}.

5. a-Connections for Statistical Manifolds of Density Operators

This section contains the main result of the paper.

Definition 5.1. (Theorem 1 of Ref. 18) On L!(M, ¢) one defines an integral as

/Td<p = ;igll(w(y),Tw(y)),

where the limit is taken in the *-strong operator topology of the unit ball of
NG*. Observe that, if ¢ € Mg, the previous formula simplifies in [Tdp =
(IT|Y?w*&,, | T|V/2%€,), where T = w|T| is the polar decomposition, and &, € H
is the GNS vector of ¢.

Remark 5.1. For p € (1,00), T € LP(M, ), S € LP(M, ), then TS € L' (M, ¢)
and the duality between LP(M, ) and LP(M, ) is given by (T, S) = [ T*S de.

Let M be a semifinite von Neumann algebra, 7 an nsf trace on M, and 7, € M.,
as in Example 4.1.

Definition 5.2. Introduce the set 9, := {p € LY (M, 1)+ : supp(p) = 1, |pl1 =
7(p) = 1}, which, by the Pedersen—Takesaki theorem (4.10 of Ref. 27), is in bijective
correspondence with the set of normal faithful states of M.



176 P. Gibilisco & T. Isola

Definition 5.3. We call any N' C 91, a statistical model, whereas we call statis-
tical manifold any statistical model which is also a Banach manifold. Let A be a,
statistical manifold, and define the Amari map A® : pEN — pl/P ¢ SP where
p=2/(1-a), and a € (~1,1). Define F* := Upen F5» where F2 := {v ¢
LP(M,1,) : Re fvdr, =0}.

Theorem 5.1. Let N be a statistical manifold of density operators w.r.t. (M, T).
Then F* is a vector bundle on N, and, using the pullback by the Amari embedding,
we may define an a-connection V* on F*. In this way we obtain the noncommu-
tative a-bundle-connection pair (F*,V?).

If M is commutative, this construction reduces to the construction of the non-
parametric Amari-Centsov a-bundle-connection pair (F*, V%) of Theorem 3.1.

Proof. Denote by S? := {T € LP(M,7) : ||T||, = 1} the unit sphere of LP(M, 7).
As we have seen, the noncommutative LP-spaces are uniformly convex, with uni-
formly convex duals, if p € (1,00), so that the results of Sec. 2 apply. As SP
is a Banach submanifold of LP(M,7), there is a splitting of the tangent space
T,LP =T,SP®V, as in Remark 2.1, and a continuous projection 7y, : T, LP — T, SP.
Using 7 we define the natural connection VP on SP by the formula V? := oV,
where V is the trivial connection on LP(M,T) (see Proposition 2.4).

Using the Amari map, we can pull the natural connection on SP back to A , and
obtain a bundle-connection pair ((A%)*T'SP, (A%)*V?). The fiber of (AP)*T'SP at
p € N is isomorphic to T51/»SP. We have in general the duality mapping in LP(M,T)
given by T = w|T| € LP(M,7) —» T := HT[[,1,‘1[’/ﬁuz|T|1"/’3 € LP(M, 7). Indeed
ITl5 = ITlle™™Pr(ITIP)/? = |T|lp, and +(T*T) = |TI|S /P (|TP/Pww|T]) =
HTH},_p/ﬁT(]T[p) = ||IT||2. Therefore p'/P = p'/7 and Tp1/»S? = {u € LP(M,T):
Re [up/Pdr = 0}. Now we need the following:

Lemma 5.1. The isometric isomorphism IP(u) = uJp~YPJ of Sec. 4 sets up a

bijective correspondence between {u € LP(M,7) : Re JupPdr = 0} and {v €
LP(M,7,) : Re [vdr, = 0}.

Proof. Observe that the statement follows from the formula [ vdr, = [ up!/? dr,
if v = uJp~YPJ, that is what we are going to prove. On identifying H, with
L*(M,T), we get &, = pM?, and Jp“l/ngéTp = Jp~ V2 Jpl/2 = pl/2 Indeed
p~'/?" is 7-measurable, and J becomes the *-operation on L. Therefore

[ vdne = Qa2 520 s, 257 20 g, )
= (/2w o, [u]}/21/29)

= 7(p"*Pup!/?P) = (up'/?) = /ur)”ﬁ dr. O
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Using the previous lemma, the fiber of (AP)*T'SP at p € N is isomorphic to
Fy:={v e LP(M,7,) : Re [vdr, = 0}. Using this isomorphism we may transfer
the pullback connection (A*)*V? on the bundle F* to get a bundle-connection pair
(F*,V*) over N, for any o € (—1,1).

If M is commutative, then, by e.g. Ref. 29, there is a measure space (X, X, i)
s.t. LP(M,7) = LP(X, %, u), for p € [1,00], and 7(T) = [T dr = [ T(z) du(z), for
T € L'(M, ). Therefore the previous construction reduces to that of Theorem 3.1,
and this concludes the proof of Theorem 5.1. (11
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