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Abstract
The identification of the *-Lie algebra of the renormalized higher powers of
White noise (RHPWN) and the analytic continuation of the second quantized
centreless Virasoro (or Witt)–Zamolodchikov–w∞∗-Lie algebra of conformal
field theory and high-energy physics, was recently established in [5] based on
results obtained in [3] and [4]. In the present paper, we show how the RHPWN
Fock kernels must be truncated in order to be positive semi-definite and we
obtain a Fock representation of the two algebras. We show that the truncated
renormalized higher powers of White noise (TRHPWN) Fock spaces of order
�2 host the continuous binomial and beta processes.

PACS numbers: 02.20.Sv, 02.50.Ey, 11.10.Nx, 11.25.Hf
Mathematics Subject Classification: 60H40, 81S05, 81T30, 81T40

1. Content outline

The material presented in this paper is organized as follows:
In section 2, we present the basic theory of the *-Lie algebra of the renormalized higher

powers of White noise (RHPWN) whose commutation relations are obtained through a new
renormalization of the powers of the Dirac delta function introduced in [3] and [4]. We
also describe the recently discovered connection between the RHPWN *-Lie algebra and
the Virasoro–Zamolodchikov–w∞∗-Lie algebra of conformal field theory and high-energy
physics (cf [5]).

In section 3, we give a definition of the action of the RHPWN *-Lie algebra generators
Bn

k where n, k � 0 on the Fock vacuum vector � that is based on White noise and norm
compatibility arguments.
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In section 4, we define the nth order *-Lie subalgebra Ln of the RHPWN *-Lie algebra,
generated by Bn

0 and B0
n where n � 1. The no-go theorems for the Fock representation of

the RHPWN *-Lie algebra proved in [2, 4, 8] are shown to extend to Ln even with the new
renormalization of the Dirac delta function described in section 2.

In section 5, for each n � 1 we describe the singular terms appearing in the nth order Fock
kernel 〈(Bn

0

)k
�,

(
Bn

0

)k
�〉 where k � 0. These terms prevent the kernel from being positive

semi-definite. To eliminate the singular terms a truncation scheme is introduced.
In section 6, we describe the general Fock space construction method of [16].
In section 7, using the truncation scheme introduced in section 5 and the Fock space

construction method described in section 6 we explicitly compute the inner product associated
with the nth order Fock space Fn corresponding to the nth order *-Lie subalgebra Ln of the
RHPWN *-Lie algebra.

In section 8, for each n � 1 we give the exact representation of the RHPWN generators
Bn

0 , B0
n and Bn−1

n−1 as operators acting on the nth order Fock space Fn. The way to obtain a
Fock representation of an arbitrary RHPWN generator Bn

k is also described.
In sections 9 and 10, in the spirit of quantum probability we show that the self-adjoint

operator process corresponding to Bn
0 + B0

n can be identified with classical Brownian motion
if n = 1, and the continuous binomial or beta processes if n � 2.

2. The theory of the renormalized higher powers of White noise

Giving meaning to the powers of the creation and annihilation densities (quantum White
noise) is an old and important problem in quantum field theory. For a general description of
the problem and its connections with classical probability we refer to [1]. The developments
up to this point, can be described as follows. Let at and a

†
s be the standard boson White noise

functionals with commutator[
at , a

†
s

] = δ(t − s) · 1,

where δ is the Dirac delta function. As shown in [3, 4], choosing as test function space the
space of piecewise continuous compactly supported functions f : R → C that vanish at zero,
on the vector space generated by the symbols

Bn
k (f ) =

∫
R

f (s)a†
s

n
ak

s ds; n, k ∈ {0, 1, 2, . . .} (2.1)

with B0
0 (f ) = ∫

R
f (s) ds, one can define a *-Lie algebra structure with involution(

Bn
k (f )

)∗ = Bk
n(f̄ ) (2.2)

and with Lie brackets uniquely defined by the prescriptions[
Bn

k (f ), BN
K (g)

] =
∫

R

∫
R

f (s)g(t)
[
a†

s

n
ak

s , a
†
t

N
aK

t

]
ds dt,

where n, k ∈ {0, 1, 2, . . .}, together with the renormalization rule for the higher powers of the
Dirac delta function

δl(t − s) = δ(s)δ(t − s), l = 2, 3, . . . . (2.3)

Furthermore one can prove that the above prescriptions lead to the following Lie brackets:[
Bn

k (g), BN
K (f )

]
RHPWN = (kN − Kn)Bn+N−1

k+K−1 (gf ), (2.4)

where for n < 0 and/or k < 0 we define Bn
k (f ) = 0. The relations (2.4) will be called the

RHPWN commutation relations. It was also proved in [3] and [4] that, for n,N � 2 and

2
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k,K ∈ Z the White noise operators (see [3] and [4] for a precise definition of the integral and
the integrand below)

B̂n
k (f ) =

∫
R

f (t) e
k
2 (at−a

†
t )

(
at + a

†
t

2

)n−1

e
k
2 (at−a

†
t ) dt

satisfy the commutation relations[
B̂n

k(g), B̂N
K(f )

]
w∞

= ((N − 1)k − (n − 1)K)B̂n+N−2
k+K (gf ) (2.5)

of the centreless Virasoro (or Witt)–Zamolodchikov–w∞ Lie algebra of conformal field theory
which becomes a *-Lie algebra with involution

(
B̂n

k (f )
)∗ = B̂n

−k(f̄ ). In particular, for
n = N = 2 we obtain[

B̂2
k(g), B̂2

K(f )
]
w∞

= (k − K) B̂2
k+K(gf )

which are the commutation relations of the Virasoro algebra. The analytic continuation{
B̂n

z (f ); n � 1, z ∈ C
}

of the centreless Virasoro (or Witt)–Zamolodchikov–w∞ Lie algebra,
and the RHPWN Lie algebra with commutator [·, ·]RHPWN have recently been identified
(cf [5]) thus providing a connection between quantum probability, conformal field theory
and high-energy physics. This connection must be further explored.

Notation 1. In what follows, for all integers n, k we will use the notation Bn
k = Bn

k (χI ) where
I is some fixed subset of R of finite measure µ = µ(I) > 0.

3. The action of the RHPWN operators on the Fock vacuum

To formulate a reasonable definition of the action of the RHPWN operators on the Fock
vacuum vector �, we go to the level of White noise. The proof of the following lemma can
be found in [6].

Lemma 1. For all t � s � 0 and n ∈ {0, 1, 2, . . .}
(
a
†
t

)n
(as)

n =
n∑

k=0

sn,k

(
a
†
t as

)k
δn−k(t − s),

where sn,k are the Stirling numbers of the first kind with s0,0 = 1 and s0,k = sn,0 = 0 for all
n, k � 1.

Proposition 1. For all integers n � k � 0 and for all test functions f in the test function
space defined before (2.1), one has

Bn
k (f ) =

∫
R

f (t)
(
a
†
t

)n−k(
a
†
t at

)k
dt.

Proof. For n � k we can write
(
a
†
t

)n
(as)

k = (
a
†
t

)n−k(
a
†
t

)k
(as)

k . Multiplying both sides by
f (t)δ(t − s) and then taking

∫
R

∫
R

. . . ds dt of both sides of the resulting equation we obtain∫
R

∫
R

f (t)
(
a
†
t

)n
(as)

kδ(t − s) ds dt =
∫

R

∫
R

f (t)
(
a
†
t

)n−k(
a
†
t

)k
(as)

kδ(t − s) ds dt

3
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which, after applying (2.1) to its left and lemma 1 to its right-hand side, yields

Bn
k (f ) =

k∑
m=0

sk,m

∫
R

∫
R

f (t)
(
a
†
t

)n−k(
a
†
t as

)m
δk−m+1(t − s) ds dt

= sk,k

∫
R

∫
R

f (t)
(
a
†
t

)n−k(
a
†
t as

)k
δ(t − s) ds dt

+
k−1∑
m=0

sk,m

∫
R

∫
R

f (t)
(
a
†
t

)n−k(
a
†
t as

)m
δ(s)δ(t − s) ds dt

= sk,k

∫
R

f (t)
(
a
†
t

)n−k(
a
†
t at

)k
dt + 0

=
∫

R

f (t)
(
a
†
t

)n−k(
a
†
t at

)k
dt,

where we have repeatedly used the renormalization rule (2.3), the condition f (0) = 0, and
sk,k = 1. �

Proposition 1 suggests that for all n, k ∈ {0, 1, 2, . . .} and test functions f , we define

Bn
k (f )� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n < k or n · k < 0

Bn−k
0 (f σk)� if n > k � 0∫
R

f (t)ρk(t) dt� if n = k,

(3.1)

where σk and ρk are complex valued functions. Through norm compatibility arguments (cf
[7] for details) we can show that for all n ∈ {0, 1, 2, . . .}, σn = σn

1 and ρn = σn
1

n+1 . In view

of the interpretation of a
†
t and at as creation and annihilation densities respectively, it makes

sense to assume that in the definition of the action of Bn
k on � it is only the difference n − k

that matters. Therefore, we take the function σ1 appearing in (3.1) to be identically equal to 1
and we arrive to the following definition of the action of the RHPWN operators on the Fock
vacuum vector �.

Definition 1. For all test functions f we define

Bn
k (f )� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if n < k or n · k < 0

Bn−k
0 (f )� if n > k � 0

1

n + 1

∫
R

f (t) dt� if n = k.

4. The nth order *-Lie subalgebra Ln of RHPWN and the Fock representation no-go
theorem

Definition 2.

(i) L1 is the *-Lie algebra generated by B1
0 and B0

1 , i.e. L1 is the linear span of
{
B1

0 , B0
1 , B0

0

}
.

(ii) L2 is the *-Lie algebra generated by B2
0 and B0

2 , i.e. L2 is the linear span of
{
B2

0 , B0
2 , B1

1

}
.

(iii) For n ∈ {3, 4, . . .},Ln is the *-Lie algebra generated by Bn
0 and B0

n through repeated
commutations and linear combinations. It is the linear span of the operators of the form
Bx

y where x − y = kn, k ∈ Z − {0}, and of the number operators Bx
x with x � n − 1.

4
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Definition 3. A Fock representation of the nth order *-Lie subalgebra Ln of RHPWN is a
pair {Fn,�} consisting of a Hilbert (Fock) space Fn and a cyclic (vacuum) vector � ∈ Fn on
which operator analogues of the RHPWN generators can be defined so that their action on �

is that of definition 1 and they satisfy the RHPWN commutation relations (2.4).

We will show that if the RHPWN action on � is that of definition 1 then the Fock
representation no-go theorems of [8] and [4] can be extended to the RHPWN *-Lie subalgebras
Ln where n � 3. In the following, we will use the notation Bn

k = Bn
k (χI ) where I ⊆ R is an

interval and χI (x) = 1 if x ∈ I, χI (x) = 0 if x /∈ I . Full details of the proofs contained in
this section can be found in [7]. The crucial ingredient of the no-go theorems is the following
lemma.

Lemma 2. Let n � 3 and suppose that a Fock space representation {Fn,�} of Ln exists. Then
it contains both Bn

0 � and B2n
0 �.

Proof. For simplicity we restrict to a single interval I of positive measure µ = µ(I).
We have B0

nB
n
0 � = nµ�,B0

n

(
Bn

0

)2
� = (2nµ + n3(n − 1))Bn

0 � and B0
n

(
Bn

0

)3
� =

3n(µ+n2(n−1))
(
Bn

0

)2
�+n4(n−1)(n−2)B2n

0 �. Since B0
n

(
Bn

0

)3
� ∈ Fn and

(
Bn

0

)2
� ∈ Fn

it follows that B2n
0 � ∈ Fn. �

Theorem 1. Let n � 3. If the test function space includes functions whose support has
arbitrarily small Lebesgue measure, then Ln does not admit a Fock representation in the sense
of definition 3.

Proof. If a Fock representation of Ln existed then we should be able to define inner products of
the form

〈(
aB2n

0 + b
(
Bn

0

)2)
�,

(
aB2n

0 + b
(
Bn

0

)2)
�
〉

where a, b ∈ R and the RHPWN operators
are defined on the same interval I of arbitrarily small positive measure µ(I). Using the notation
〈x〉 = 〈�, x�〉 this amounts to the positive semi-definiteness of the matrix

A =
[ 〈

B0
2nB

2n
0

〉 〈
B0

2n

(
Bn

0

)2〉
〈
B0

2n

(
Bn

0

)2〉 〈(
B0

n

)2(
Bn

0

)2〉
]

.

Using (2.4) and definition 1 we find that
〈
B0

2nB
2n
0

〉 = 2nµ(I),
〈
B0

2n

(
Bn

0

)2〉 = 2n3µ(I) and〈(
B0

n

)2(
Bn

0

)2〉 = 2n2µ(I)2 + n4(n − 1)µ(I). Thus

A =
[

2nµ(I) 2n3µ(I)

2n3µ(I) 2n2µ(I)2 + n4(n − 1)µ(I)

]
.

A is a symmetric matrix, so it is positive semi-definite if and only if its minors are non-
negative. The minor determinants of A are d1 = 2nµ(I) which is always nonnegative, and
d2 = 2n3µ(I)2(2µ(I)−n2 −n3) which is nonnegative if and only if µ(I) � n2(n+1)

2 . Thus the
interval I cannot be arbitrarily small. A simple approximation argument allows us to extend
the conclusion from characteristic functions of intervals to arbitrary piecewise continuous
functions. �

5. The nth order truncated RHPWN (or TRHPWN) Fock space Fn

For each n � 1 the generic element of the *-Lie subalgebra Ln of definition 2 is Bn
0 . All other

elements of Ln are obtained by taking adjoints, commutators and linear combinations. It thus
makes sense to consider

(
Bn

0 (f )
)k

� as basis vectors for the kth particle space of the Fock

5
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space Fn associated with Ln. A calculation of the ‘Fock kernel’
〈(
Bn

0

)k
�,

(
Bn

0

)k
�
〉

reveals
that it is the terms containing B2n

0 � that prevent the kernel from being positive semi-definite.
The B2n

0 � terms appear either directly or by applying definition 1 to terms of the form Bx
y �

where x −y = 2n. Since L1 and L2 do not contain B2
0 and B4

0 respectively, the problem exists
for n � 3 only and the Fock spaces F1 and F2 are actually not truncated. In what follows we
will compute the Fock kernels by applying definition 1 and by truncating ‘singular’ terms of
the form

〈(
Bn

0

)k
�,

(
Bn

0

)m
Bx

y �
〉
where nk = nm + x − y and x − y = 2n, i.e. k − m = 2. This

amounts to truncating the action of the principal Ln number operator Bn−1
n−1 on the ‘number

vectors’
(
Bn

0

)k
�, which by commutation relations (2.4) and definition 1 is of the form

Bn−1
n−1

(
Bn

0

)k
� =

(µ

n
+ kn(n − 1)

) (
Bn

0

)k
� +

∑
i�1

∏
j�1

ci,jB
λi,j n

0 �

(where for each i not all positive integers λi,j are equal to 1), by omitting the∑
i�1

∏
j�1 ci,jB

λi,j n

0 � part. We thus arrive at the following:

Definition 4. A truncated Fock representation of the RHPWN is a Fock space representation
of the RHPWN *-Lie algebra such that, for any integers n � 1 and k � 0,

Bn−1
n−1

(
Bn

0

)k
� =

(µ

n
+ kn(n − 1)

) (
Bn

0

)k
�,

i.e. the number vectors
(
Bn

0

)k
� are eigenvectors of the principal Ln number operator Bn−1

n−1
with eigenvalues

(
µ

n
+ kn(n − 1)

)
.

In agreement with definition 1, for k = 0 definition 4 yields Bn−1
n−1� = µ

n
�.

6. Outline of the Fock space construction method

We will construct the TRHPWN Fock spaces by using the following method (cf chapter 3 of
[16]):

(i) Compute ∥∥(Bn
0

)k
�
∥∥2 = 〈(

Bn
0

)k
�,

(
Bn

0

)k
�
〉 = πn,k(µ),

where for each k = 0, 1, 2, . . . , πn,k(µ) is a polynomial in µ of degree k.

(ii) Using the fact that if k �= m then 〈(Bn
0

)k
�,

(
Bn

0

)m
�〉 = 0, for a, b ∈ C compute

〈
eaBn

0 �, ebBn
0 �
〉 = ∞∑

k=0

(āb)k

(k!)2

〈(
Bn

0

)k
�,

(
Bn

0

)k
�
〉

=
∞∑

k=0

(āb)k

k!

πn,k(µ)

k!
=

∞∑
k=0

(āb)k

k!
hn,k(µ),

where

hn,k(µ) = πn,k(µ)

k!
. (6.1)

(iii) Look for a function Gn(u,µ) such that

Gn(u,µ) =
∞∑

k=0

uk

k!
hn,k(µ). (6.2)

6



J. Phys. A: Math. Theor. 41 (2008) 304001 L Accardi and A Boukas

Using the Taylor expansion of Gn(u,µ) in powers of u

Gn(u,µ) =
∞∑

k=0

uk

k!

∂k

∂uk
Gn(u, µ)|u=0 (6.3)

by comparing (6.3) and (6.2) we see that

∂k

∂uk
Gn(u, µ)|u=0 = hn,k(µ). (6.4)

Equation (6.4) will play a fundamental role in the search for Gn in the following section.
(iv) Reduce to single intervals and extend to step functions. For u = āb, assuming that

Gn(u,µ) = eµĜn(u). (6.5)

which is typical for ‘Bernoulli moment systems’ (cf chapter 5 of [16] ), equation (6.2)
becomes

eµĜn(āb) =
∞∑

k=0

(āb)k

k!
hn,k(µ). (6.6)

Take the product of (6.6) over all sets I, for test functions f = ∑
i aiχIi

and g = ∑
i biχIi

with Ii ∩ Ij = 
 for i �= j , and end up with an expression like

e
∫

R
Ĝn(f (t)g(t)) dt =

∏
i,j

〈
eaiB

n
0 (χIi

)�, ebj B
n
0 (χIj

)
�
〉

(6.7)

which we take as the definition of the inner product 〈ψn(f ), ψn(g)〉n of the ‘exponential
vectors’

ψn(f ) =
∏

i

eaiB
n
0 (χIi

)� (6.8)

of the TRHPWN Fock space Fn. Note that � = ψn(0).

7. Construction of the TRHPWN Fock spaces Fn

Lemma 3. Let n � 1 be fixed. Then for all integers k � 0

B0
n

(
Bn

0

)k+1
� = n(k + 1)

(
µ + k

n2(n − 1)

2

) (
Bn

0

)k
�. (7.1)

Proof. (7.1) is true for k = 0 since

B0
nB

n
0 � = (

Bn
0 B0

n +
[
B0

n, B
n
0

])
� = n2 µ

n
� = nµ�.

Assuming (7.1) to be true for k we have

B0
n

(
Bn

0

)k+2
� = (

B0
nB

n
0

)(
Bn

0

)k+1
� = (

Bn
0 B0

n + n2Bn−1
n−1

)(
Bn

0

)k+1
�

= Bn
0 n(k + 1)

(
µ + k

n2(n − 1)

2

) (
Bn

0

)k
� + n2Bn−1

n−1

(
Bn

0

)k+1
�

=
(

n(k + 1)

(
µ + k

n2(n − 1)

2

)
+ n2

(µ

n
+ (k + 1)n(n − 1)

)) (
Bn

0

)k+1
�

= n(k + 2)

(
µ + (k + 1)

n2(n − 1)

2

) (
Bn

0

)k+1
�

which proves (7.1) to be true for k + 1 also, thus completing the induction. �

7
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Proposition 2. Let k � 1. Then for all n � 1

πn,k(µ) = 〈(
Bn

0

)k
�,

(
Bn

0

)k
�
〉 = k!nk

k−1∏
i=0

(
µ +

n2(n − 1)

2
i

)
. (7.2)

Proof. Let n � 1 be fixed. Let ak = k!nk
∏k−1

i=0

(
µ + n2(n−1)

2 i
)
. Then a1 = nµ and for

k � 1, ak+1 = n(k + 1)
(
µ + k n2(n−1)

2

)
ak . Similarly, let bk = 〈(

Bn
0

)k
�,

(
Bn

0

)k
�
〉
. Then

b1 = 〈
Bn

0 �,Bn
0 �

〉 = 〈
�,B0

nB
n
0 �

〉 = n2
〈
�,Bn−1

n−1�
〉 = n2 µ

n
= nµ and, by lemma 3, for k � 1

we have that bk+1 = 〈(
Bn

0

)k
�,B0

n

(
Bn

0

)k+1
�
〉 = n(k + 1)

(
µ + k n2(n−1)

2

)
bk . Thus ak = bk for all

k � 1. �

Corollary 1. The functions hn,k appearing in (6.1) are given by h1,k = µk and for n � 2

hn,k = nk

k−1∏
i=0

(
µ +

n2(n − 1)

2
i

)

Proof. The proof follows from proposition 2 and (6.1). �

Corollary 2. The functions Gn appearing in (6.2) are given by G1(u, µ) = euµ and for n � 2

Gn(u,µ) =
(

1 − n3(n − 1)

2
u

)− 2
n2(n−1)

µ

= e− 2
n2(n−1)

µ ln(1− n3(n−1)

2 u)
. (7.3)

Proof. For Gn as in the statement of this corollary, in accordance with (6.4) we have

∂k

∂uk
Gn(u, µ)|u=0 = nk

k−1∏
i=0

(
µ +

n2(n − 1)

2
i

)
.

�

Corollary 3. The functions Ĝn appearing in (6.5) are given by Ĝ1(u) = u and for n � 2

Ĝn(u) = − 2

n2(n − 1)
ln

(
1 − n3(n − 1)

2
u

)
.

Proof. The proof follows directly from corollary 2. �

Corollary 4. The Fn inner products are given by

〈ψ1(f ), ψ1(g)〉1 = e
∫

R
f̄ (t)g(t) dt (7.4)

and for n � 2

〈ψn(f ), ψn(g)〉n = e
− 2

n2(n−1)

∫
R

ln
(

1− n3(n−1)

2 f̄ (t)g(t)
)

dt
, (7.5)

where |f (t)| < 1
n

√
2

n(n−1)
and |g(t)| < 1

n

√
2

n(n−1)
.

Proof. The proof follows from (6.7) and corollary 2. �

The function G1 and the Fock space inner product (7.4) are associated with the
Heisenberg–Weyl algebra and the quantum stochastic calculus of [18]. For n = 2 the function
G2 and the associated Fock space inner product (7.5) have appeared in the study of the finite-
difference algebra and the square of White noise algebra in [11, 12, 14, 15]. The functions Gn

of (7.3) can also be found in proposition 5.4.2 of chapter 5 of [16].

Definition 5. The nth order TRHPWN Fock space Fn is the Hilbert space completion of
the linear span of the exponential vectors ψn(f ) of (6.8) under the inner product 〈·, ·〉n of
corollary 4. The full TRHPWN Fock space F is the direct sum of the Fn’s.

8
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8. Fock representation of the TRHPWN operators

Using (6.8) and lemma 3 we have (for a detailed proof see [7]) that for all test functions f, g, h

and for all n � 1

B0
n(f )ψn(g) = n

∫
R

f (t)g(t) dtψn(g) +
n3(n − 1)

2

∂

∂ε

∣∣∣∣
ε=0

ψn(g + εfg2)

Bn
0 (f )ψn(g) = ∂

∂ε

∣∣∣∣
ε=0

ψn(g + εf )

and

Bn−1
n−1 (fg)ψn(h) = 1

n

∫
R

f (t)g(t)ψn(h)

+
n(n − 1)

2

∂2

∂ε∂ρ

∣∣∣∣
ε=ρ=0

(ψn(h + εg + ρf (h + εg)2) − ψn(h + εf h2 + ρg)).

Using the prescription

Bn+N−1
k+K−1 (gf ) = 1

kN − Kn

(
Bn

k (g)BN
K (f ) − BN

K (f )Bn
k (g)

)
and suitable linear combinations, we obtain the representation of the Bx

y (and therefore of
the RHPWN and centreless Virasoro (or Witt)–Zamolodchikov–w∞ commutation relations)
on F .

9. Classical stochastic processes on Fn

Definition 6. A quantum stochastic process x = {x(t)/t � 0} is a family of Hilbert space
operators. Such a process is said to be classical if for all t, s � 0, x(t) = x(t)∗ and
[x(t), x(s)] = x(t)x(s) − x(s)x(t) = 0.

Proposition 3. Let a quantum stochastic process x = {x(t)/t � 0} be defined by
x(t) = ∑

n,k∈� cn,kB
n
k (t) where cn,k ∈ C − {0},� is a finite subset of {0, 1, 2, . . .} and

Bn
k (t) = Bn

k (χ[0,t]). If for each n, k ∈ �, cn,k = c̄k,n then the process x = {x(t)/t � 0} is
classical.

Proof. By (2.2) x(t) = x∗(t) for all t � 0. Moreover, by (2.4), [x(t), x(s)] = 0 for all t, s � 0
since each term of the form cN,Kcn,k

[
BN

K (t), Bn
k (s)

]
is cancelled out by the corresponding term

of the form cn,kcN,K

[
Bn

k (s), BN
K (t)

]
. Thus the process x = {x(t)/t � 0} is classical. �

In the remaining of this section we will study the classical process x = {x(t)/t � 0}
whose Fock representation as a family of operators on Fn is x(t) = Bn

0 (t) + B0
n(t).

Lemma 4 (splitting formula). Let s ∈ R and let µ be as in notation 1. Then for n = 1

es(B1
0 +B0

1 )� = e
s2

2 µ esB1
0 �

and for n � 2

es(Bn
0 +B0

n)� =
(

sec

(√
n3(n − 1)

2
s

)) 2nµ

n3(n−1)

e
√

2
n3(n−1)

tan
(√

n3(n−1)

2 s

)
Bn

0 �.

Proof. We will use the ‘differential method’ of proposition 4.1.1, chapter 1 of [16]. So let

E� = es(Bn
0 +B0

n)� = eV (s)Bn
0 eW(s)�, (9.1)

9
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where W,V are real-valued functions with W(0) = V (0) = 0. Then,

∂

∂s
E� = (

Bn
0 + B0

n

)
E� = Bn

0 E� + B0
nE�. (9.2)

By lemma 3 we have

B0
nE� = B0

n eV (s)Bn
0 eW(s)� = eW(s)B0

n eV (s)Bn
0 �

= eW(s)

∞∑
k=0

V (s)k

k!
B0

n

(
Bn

0

)k
�

= eW(s)

∞∑
k=0

V (s)k

k!
nk

(
µ + (k − 1)

n2(n − 1)

2

) (
Bn

0

)k−1
�

=
(

nµV (s) +
n3(n − 1)

2
V (s)2Bn

0

)
eV (s)Bn

0 eW(s)�

=
(

nµV (s) +
n3(n − 1)

2
V (s)2Bn

0

)
E�.

Thus (9.2) becomes

∂

∂s
E� =

(
Bn

0 + nµV (s) +
n3(n − 1)

2
V (s)2Bn

0

)
E�. (9.3)

From (9.1) we also have that

∂

∂s
E� = (

V ′(s)Bn
0 + W ′(s)

)
E�. (9.4)

From (9.3) and (9.4), by equating coefficients of 1 and Bn
0 , we have that

W ′(s) = nµV (s) (9.5)

V ′(s) = 1 +
n3(n − 1)

2
V (s)2 (Riccati equation). (9.6)

For n = 1 we find that V (s) = s and W(s) = s2

2 µ. For n � 2 by separating the variables we
find that

V (s) =
√

2

n3(n − 1)
tan

(√
n3(n − 1)

2
s

)

and so

W(s) = − 2nµ

n3(n − 1)
ln

(
cos

(√
n3(n − 1)

2
s

))

which implies that

eW(s) =
(

sec

(√
n3(n − 1)

2
s

)) 2nµ

n3(n−1)

thus completing the proof. �

In the theory of Bernoulli systems and the Fock representation of finite-dimensional Lie
algebras (cf chapter 5 of [16]) the Riccati equation (9.6) has the general form

V ′(s) = 1 + 2αV (s) + βV (s)2

10
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and the values of α and β determine the underlying classical probability distribution and the
associated special functions. For example, for α = 1 − 2p and β = −4pq we have the
binomial process and the Krawtchouk polynomials, for α = p−1 − 1

2 and β = qp−2 we have
the negative binomial process and the Meixner polynomials, for α �= 0 and β = 0 we have the
Poisson process and the Poisson–Charlier polynomials, for α2 = β we have the exponential
process and the Laguerre polynomials, for α = β = 0 we have Brownian motion with moment

generating function e
s2

2 t and associated special functions the Hermite polynomials, and for
α2 − β < 0 we have the continuous binomial and beta processes (cf chapter 5 of [16] and
also [17] ) with moment generating function (sec s)t and associated special functions the
Meixner–Pollaczek polynomials. In the infinite-dimensional TRHPWN case the underlying
classical probability distributions are given in the following.

Proposition 4 (moment generating functions). For all s � 0〈
es(B1

0 (t)+B0
1 (t))

〉
1 := 〈

es(B1
0 (t)+B0

1 (t))�,�
〉
1 = e

s2

2 t

i.e.
{
B1

0 (t) + B0
1 (t)

/
t � 0

}
is Brownian motion (cf [16], [18] ) while for n � 2

〈es(Bn
0 (t)+B0

n(t))〉n := 〈es(Bn
0 (t)+B0

n(t))�,�〉n =
(

sec

(√
n3(n − 1)

2
s

)) 2nt

n3(n−1)

i.e. {Bn
0 (t) + B0

n(t)/t � 0} is for each n a continuous binomial/beta process (see section 10
below).

Proof. The proof follows from lemma 4, µ([0, t]) = t , and the fact that for all n � 1 we have
B0

n(t)� = 0. �

10. The continuous binomial and beta processes

Let bn,k(x) = (
n

k

)
xk(1 − x)n−k , where n, k ∈ {0, 1, 2, . . .}, n � k and x ∈ (0, 1), be the

standard binomial distribution. Using the gamma function we can analytically extend from
n, k ∈ {0, 1, 2, . . .} to z,w ∈ C with Re z � Re w > −1 and we have

bz,w(x) = �(z + 1)

�(z − w + 1)�(w + 1)
xw(1 − x)z−w

= 1

z + 1

1

B(z − w + 1, w + 1)
x(w+1)−1(1 − x)(z−w+1)−1 = 1

z + 1
βw+1,z−w+1(x)

where for Re a > 0 and Re c > 0, B(a, c) = �(a)�(c)

�(a+c)
= ∫ 1

0 xa−1(1 − x)c−1 dx is the beta
function and βw+1,z−w+1 is the analytic continuation to Re a > 0 and Re c > 0 of the standard
beta distribution βa,c(x) = �(a+c)

�(a)�(c)
xa−1(1 − x)c−1 where a > 0 and c > 0.

Proposition 5. For each t > 0 let Xt be a random variable with distribution given by the
density

pt(x) = 2t−1

2π
B

(
t + ix

2
,
t − ix

2

)
,

where B is the beta function. Then the moment generating function of Xt is

〈esXt 〉 =
∫ ∞

−∞
esxpt (x) dx = (sec s)t ; s ∈ R. (10.1)

Proof. See proposition 4.1.1, chapter 5 of [16]. �

11
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Corollary 5. With Xt and pt as in proposition 5, let Yt =
√

n3(n−1)

2 Xt . Then the moment
generating function of Yt with respect to the density qt = p 2n

n3(n−1)
t , where n ∈ {2, 3, . . .}, is

〈esYt 〉 =
(

sec

(√
n3(n − 1)

2
s

)) 2nt

n3(n−1)

.

Proof. For each t > 0, pt is a probability density function. Therefore
∫∞
−∞ pt(x) dx = 1.

Replacing t by 2n
n3(n−1)

t we obtain
∫∞
−∞ p 2n

n3(n−1)
t (x) dx = 1 and so

∫∞
−∞ qt (x) dx = 1 which

means that for each t > 0, qt is a probability density function. Replacing t by 2n
n3(n−1)

t and s

by
√

n3(n−1)

2 s in (10.1) we obtain

∫ ∞

−∞
es

√
n3(n−1)

2 xqt (x) dx =
(

sec

(√
n3(n − 1)

2
s

)) 2nt

n3(n−1)

which is precisely the moment generating function 〈esYt 〉 of Yt with respect to qt . �
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