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We prove some no-go theorems on the existence of a Fock representation of the ∗-Lie

algebra generated by Bn

k
(t) =

∫

t

0
b
†n

s bk
sds, where b

†
s, bs are the Hida white noise densities.

In particular we prove the nonexistence of such a representation for any ∗-Lie algebra
containing b3s . This drastic difference with the quadratic case proves the necessity of
investigating different renormalization rules for the case of higher powers of white noise.
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1. Introduction

The standard boson white noise Lie algebra is defined by its generators, bt, b
†
s, 1

(central element) in the sense of operator valued distributions over Rd on an appro-

priate space of test functions (cf. Ref. 5 for this notion), and by the commutation

relations:

[bt, b
†
s] = δ(t− s)1 ; s, t ≥ 0 (1.1)

[b†t , b
†
s] = [bt, bs] = 0 . (1.2)
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Our goal in this paper is to investigate the possibility of giving a meaning to the

higher powers of white noise, i.e. the symbolic expressions

bnt , b
†k

s ; n, k ∈ {0, 1, 2, . . .} (1.3)

as generators of a Lie algebra with commutation relations obtained by formally

extending, using the Leibnitz rule, the relations (1.1), (1.2) to the symbols (1.3). As

shown in the following section, this formal extension involves higher powers of the δ-

function and some renormalization is required to give a meaning to these powers. As

shown in Ref. 9 the renormalization procedure usually adopted in physics (introduce

a cutoff and then take limits to remove it) can only lead to trivial (i.e. Gaussian)

limits.

A new approach to the problem was proposed in Ref. 5 where it was suggested

to renormalize the commutation relations of the higher powers of white noise and

then to look for a Fock representation (cf. Definition 4.1 below) of the *-Lie algebra

obtained in this way.

Since the Lie algebra commutation relations, together with the Fock prescrip-

tion, uniquely determine the statistics, i.e. the scalar product in the representation

space, the problem is reduced to the proof that the combination of these two ingre-

dients leads to a positive-definite sesquilinear form.

This leads to the problem of finding a definition of these renormalized powers

of quantum white noise (RPQWN) with the additional properties that:

(i) The resulting commutation relations define a *-Lie algebra structure which,

when the test function space is restricted to the linear span of the characteristic

functions of n mutually disjoint open sets (n ∈ N), becomes isomorphic to the full

oscillator algebra, i.e. the *-Lie algebra generated by the powers ah
α, a+k

β of the

generators of the Schrödinger representation of the n-dimesional Heisenberg–Weyl

Lie algebra with central element E:

[aα, a
+
β ] = c2δα,βE ; α, β = 1, . . . , n ; c ∈ R\{0} .

This condition is needed to guarantee that the distribution of (bt + b†s)
k in the

Fock representation (if it exists) will effectively be the kth power of a Gaussian

distribution.

(ii) This *-Lie algebra admits a Fock representation.

(iii) The space of test functions over which the RPQWN are defined contains

characteristic functions of open sets of arbitrarily small (Lebesgue) volume.

This program was successfully realized in Ref. 5 for the second-order powers

and lead to an unexpected connection with the Meixner distributions in Ref. 3

(cf. Ref. 1 for more information on this connection). In this paper we begin to study

the problem for the higher powers of white noise. In order to state more precisely the

problem, let us recall that the main result of Ref. 3 can be formulated as follows: the

current algebra over the Lie algebra sl(2,R) admits a Fock representation (hence,

up to isomorphism, only one).
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Now sl(2,R) is isomorphic to the Lie algebra generated by a2, a+2, N := a+a

and the Heisenberg–Weyl algebra is generated by a, a+, 1 (the symbols are referred

to the Schrödinger representation. Since the current algebra over the Heisenberg–

Weyl algebra (given by (1.1) and (1.2)) has the usual Fock representation, it is

natural to ask oneself whether the current algebra over the combined Lie algebra,

i.e. the one generated by

a, a+, 1, a2, a+2, N := a+a

(and called the Schrödinger algebra) has a Fock representation.

Sniady first raised this problem and proved in Ref. 11 that, surprisingly, the an-

swer is negative. Accardi, Franz and Skeide extended this result in Ref. 3 by showing

that there can exist no Lévy process on the Schrödinger algebra whose restriction to

the Heisenberg–Weyl algebra is not identically zero and whose restriction to sl(2,R)

gives the Fock representation of the current algebra over sl(2,R).

From these results one deduces that: there exist subalgebras of the full oscilla-

tor algebra such that the corresponding current algebras separately admit a Fock

representation, but not jointly, i.e. the current algebra over the Lie algebra gener-

ated by their union does not admit a Fock representation. In particular the current

algebra over the full oscillator algebra does not admit a Fock representation.

On the other hand, since the *-Lie algebra generated by the powers ah
α, a

+k
β with

h, k ≥ 3 has zero intersection with the Schrödinger algebra, one could hope that at

least the current algebra over this Lie algebra exists.

In this paper we prove that this is not the case. More precisely we prove two

no-go theorems for the full oscillator algebra which imply that the current algebra

over the Lie algebra generated by a3, a+3 does not admit a Fock representation.

The last section of this paper is devoted to a new no-go theorem for the

Schrödinger algebra which excludes the existence not only of the Fock represen-

tation, but also of a large class of Gaussian non-Fock representations, including the

finite temperature representations constructed in Ref. 7.

2. Formal White Noise Commutators

Lemma 2.1. For l ∈ N denote δl(t − s) the formal lth power of the δ-function

(δ0 := 1). For all t, s ∈ R+ and n, k ≥ 0, the rules (1.1), (1.2) imply that

[bnt , b
†k

s ] = εn,0εk,0

∑

l≥1

(

n

l

)

k(l)b†
k−l

s bn−l
t δl(t− s) (2.1)

where
(

n

l

)

=
n!

(n− l)!l!
, l ∈ {0, 1, . . . , n}

(

n

l

)

= 0 , n < l .



March 17, 2006 19:23 WSPC/102-IDAQPRT 00226

132 L. Accardi, A. Boukas & U. Franz

Moreover, for k = 0, 1, 2, . . . ,

k(l) =

{

k(k − 1)(k − 2) · · · (k − l + 1) if l − 1 < k ,

0 if l − 1 ≥ k .

In particular

k(0) = 1 .

Proof. We will let k be arbitrary and use induction on n. The cases n = 0 and/or

k = 0 are obvious. For n = 1 and k > 0 we have

[bt, b
†k

s ] = btb
†k

s − b†
k

s bt = btb
†
sb

†k−1

s − b†
k

s bt

= (b†sbt + δ(t− s))b†
k−1

s − b†
k

s bt

= b†sbtb
†k−1

s + δ(t− s)b†
k−1

s − b†
k

s bt

= b†sbtb
†
sb

†k−2

s + δ(t− s)b†
k−1

s − b†
k

s bt

= b†s(b
†
sbt + δ(t− s))b†

k−2

s + δ(t− s)b†
k−1

s − b†
k

s bt

= b†
2

s btb
†k−2

s + δ(t− s)b†
k−1

s + δ(t− s)b†
k−1

s − b†
k

s bt

= b†
2

s btb
†k−2

s + 2δ(t− s)b†
k−1

s − b†
k

s bt

= b†
2

s btb
†
sb

†k−3

s + 2δ(t− s)b†
k−1

s − b†
k

s bt

= b†
2

s (b†sbt + δ(t− s))b†
k−3

s + 2δ(t− s)b†
k−1

s − b†
k

s bt

= b†
3

s btb
†k−3

s + 3δ(t− s)b†
k−1

s − b†
k

s bt

...

= b†
k

s bt + kδ(t− s)b†
k−1

s − b†
k

s bt

= kδ(t− s)b†
k−1

s

=
∑

l≥1

(

1

l

)

k(l)b†
k−l

s b1−l
t δl(t− s) .

Thus (2.1) is true for n = 1. Suppose that it is true for n = m. We will show

that it is true for n = m+ 1. We have

bm+1
t b†

k

s = btb
m
t b

†k

s

= bt



b†
k

s b
m
t +

∑

l≥1

(

m

l

)

k(l)b†
k−l

s bm−l
t δl(t− s)





= b†
k

s b
m+1
t + kb†

k−1

s bmt δ(t− s) +
∑

l≥1

(

m

l

)

k(l)btb
†k−l

s bm−l
t δl(t− s)
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= b†
k

s b
m+1
t + kb†

k−1

s bmt δ(t− s) +
∑

l≥1

(

m

l

)

k(l)(b†
k−l

s bt

+ (k − l)b†
k−l−1

s δ(t− s))bm−l
t δl(t− s)

= b†
k

s b
m+1
t + kb†

k−1

s bmt δ(t− s) +
∑

l≥1

(

m

l

)

k(l)b†
k−l

s bm−l+1
t δl(t− s)

+
∑

l≥1

(

m

l

)

k(l)(k − l)b†
k−l−1

s bm−l
t δl+1(t− s)

which, upon letting L = l+ 1 in the last sum, becomes

= b†
k

s b
m+1
t + kb†

k−1

s bmt δ(t− s) +
∑

l≥1

(

m

l

)

k(l)b†
k−l

s bm−l+1
t δl(t− s)

+
∑

L≥2

(

m

L− 1

)

k(L−1)(k − L+ 1)b†
k−L

s bm−L+1
t δL(t− s)

= b†
k

s b
m+1
t + kb†

k−1

s bmt δ(t− s) +mkb†
k−1

s bmt δ(t− s)

+

m
∑

l=2

(

m

l

)

+

(

m

l− 1

)

k(l)b†
k−l

s bm−l+1
t δl(t− s)

+ k(m)(k −m)b†
k−m−1

s δm(t− s)

= b†
k

s b
m+1
t + (m+ k)b†

k−1

s bmt δ(t− s)

+

m
∑

l=2

((

m

l

)

+

(

m

l − 1

))

k(l)b†
k−l

s bm−l+1
t δl(t− s)

+ k(m+1)b†
k−m−1

s δm(t− s) .

Using
(

m
l

)

+
(

m
l−1

)

=
(

m+1
l

)

this becomes

= b†
k

s b
m+1
t + (m+ 1)kb†

k−1

s bmt δ(t− s)

+
m
∑

l=2

(

m+ 1

l

)

k(l)b†
k−l

s bm−l+1
t δl(t− s)

+ k(m+1)b†
k−m−1

s δm(t− s)

= b†
k

s b
m+1
t +

∑

l≥1

(

m+ 1

l

)

k(l)b†
k−l

s bm−l+1
t δl(t− s) .
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Lemma 2.2. For all t, s ∈ R+ and n, k, N, K ≥ 0,

b
†n

t bkt b
†N

s bKs = b
†n

t b†
N

s bkt b
K
s +εk,0εN,0

∑

l≥1

(

k

l

)

N (l)b
†n

t b†
N−l

s bk−l
t bKs δ

l(t−s) . (2.2)

Proof.

b
†n

t bkt b
†N

s bKs = b
†n

t (bkt b
†N

s )bKs

= b
†n

t ([bkt , b
†N

s ] + b†
N

s bkt )bKs

= b
†n

t



εk,0εN,0

∑

l≥1

(

k

l

)

N (l)b†
N−l

s bk−l
t δl(t− s) + b†

N

s bkt



 bKs

= εk,0εN,0

∑

l≥1

(

k

l

)

N (l)bnt b
†N−l

s bk−l
t bKs δ

l(t− s) + bnt b
†N

s bkt b
K
s

= εk,0εN,0

∑

l≥1

(

k

l

)

N (l)bnt b
†N−l

s bk−l
t bKs δ

l(t− s) + b
†n

t b†
N

s bkt b
K
s .

Lemma 2.3. For all t, s ∈ R+ and n, k, N, K ≥ 0

[b†
n

t bkt , b
†N

s bKs ] = εk,0εN,0

∑

l≥1

(

k

l

)

N (l)b
†n

t b†
N−l

s bk−l
t bKs δ

l(t− s)

− εK,0εn,0

∑

L≥1

(

K

L

)

n(L)b†
N

s b
†n−L

t bK−L
s bkt δ

L(t− s) . (2.3)

Proof. The first term on the right-hand side of (2.1) is

b
†n

t b†
N

s bkt b
K
s = b†

N

s b
†n

t bKs b
k
t

= b†
N

s ([b†
n

t , bKs ] + bKs b
†n

t )bkt

= b†
N

s (−[bKs , b
†n

t ] + bKs b
†n

t )bkt

= b†
N

s



−εn,0εK,0

∑

l≥1

(

K

l

)

n(l)b
†n−l

t bK−l
s δl(t− s) + bKs b

†n

t



 bkt

= −εn,0εK,0

∑

l≥1

(

K

l

)

n(l)b†
N

s b
†n−l

t bK−l
s bkt δ

l(t− s) + b†
N

s bKs b
†n

t bkt

from which (2.3) follows by substituting into (2.2).
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3. Renormalized White Noise Commutators

Motivated by Ref. 5 we introduce the renormalization

δl(t− s) = cl−1δ(t− s) , l ≥ 1 , c0 = 1 , (3.1)

where the cl−1 are constants to be defined and

cl−1 > 0 , ∀ l . (3.2)

Let f be a test function. We define the symbols

Bn
k (f) =

∫

R

f(s)b†
n

s bksds (3.3)

with involution

(Bn
k (f))∗ = Bk

n(f̄) (3.4)

and with

B0
0(f) =

∫

R

f(s)ds1 =: µ(f) , (3.5)

where 1 is the identity operator. Multiplying both sides of (2.3) by test functions

f(t)ḡ(s) and formally integrating the resulting identity (i.e. taking
∫ ∫

· · · dsdt), we

obtain the commutation relations

[BN
K (ḡ), Bn

k (f)] =
∑

L≥1

bL(K,n)BN+n−L
K+k−L (ḡf) −

∑

l≥1

bl(k,N)BN+n−l
K+k−l (ḡf) , (3.6)

where n, k, N , K ∈ {0, 1, 2, . . .} and

εn,k := 1 − δn,k ,

where δn,k is Kronecker’s delta, and

bx(y, z) := εy,0εz,0

(

y

x

)

z(x)cx−1 .

The positive constants cx−1 are those in (3.2) and the factorial powers x(y) are

defined by:

x(y) = x(x − 1) · · · (x− y + 1) , (3.7)

with x(0) = 1. In particular (3.6) contains the commutation relations of linear white

noise:

[B0
1(ḡ), B1

0(f)] = 〈g, f〉 ,

[B0
1(ḡ), B1

1(f)] = B0
1(ḡf) ,

[B1
1(ḡ), B1

0(f)] = B1
0(ḡf)
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and of the renormalized square of white noise:

[B0
2(ḡ), B2

0(f)] = 4B1
1(ḡf) + 2c〈g, f〉 ,

[B1
1(ḡ), B0

2(f)] = −2B0
2(ḡf) ,

[B1
1(ḡ), B2

0(f)] = 2B2
0(ḡf) .

Choosing in (3.2)

cl−1 := cl−1 , c > 0 , ∀ l (3.8)

and fixing all test functions to be multiples of a fixed f = χI for some interval

I , one obtains a Lie algebra isomorphic to the (infinite dimesnional) Lie algebra

whose generators are the powers of the generators a, a†, of the one-dimensional

Schrödinger representation of the CCR. From this, one can deduce that there exist

choices of the constant c such that, if one chooses the test function space sufficiently

small (e.g. the linear combinations of the characteristic functions of a finite set of

mutually disjoint intervals), then the commutation relations (3.6) effectively define

a Lie algebra. In what follows we will use the notation

Bn
k := Bn

k (χI) , (3.9)

where I ⊂ R with µ(I) < +∞ is fixed. Moreover, to simplify the notations, we will

use the same symbol for the generators of the RPQWN Lie algebra and for their

images in a given representation.

Proposition 3.1. For any representation of the RPQWN Lie algebra, for all α,

β, γ ≥ 0 and all n ≥ 1, the following identity holds:

Bα
β (Bγ

0 )n = (Bγ
0 )nBα

β +

n
∑

i=1

(

n

i

)

∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

× (Bγ
0 )n−iB

α+iγ−
∑

i
w=0

Lw

β−
∑

i
w=0

Lw
, (3.10)

where L0 = 0.

Proof. For n = 1 the formula becomes

Bα
βB

γ
0 = B

γ
0B

α
β +

∑

L1≥1

bL1
(β, γ)Bα+γ−L1

β−L1
(3.11)

which is true by (1.5). Assuming that (3.10) is true for n = k we have

Bα
β (Bγ

0 )k+1 = Bα
β (Bγ

0 )kB
γ
0 =

(

(Bγ
0 )kBα

β +

k
∑

i=1

(

k

i

)

×
∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

(Bγ
0 )k−iB

α+iγ−
∑i

w=0
Lw

β−
∑

i
w=0

Lw

)

B
γ
0
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which, by (3.11) and the fact that by (3.6)

B
α+iγ−

∑i
w=0

Lw

β−
∑

i
w=0

Lw
B

γ
0

= [B
α+iγ−

∑i
w=0

Lw

β−
∑

i
w=0

Lw
, B

γ
0 ] +B

γ
0B

α+iγ−
∑i

w=0
Lw

β−
∑

i
w=0

Lw

=
∑

Li+1≥1

bLi+1

(

β −
i
∑

w=0

Lw, γ

)

B
α+(i+1)γ−

∑i+1

w=0
Lw

β−
∑i+1

w=0
Lw

+B
γ
0B

α+iγ−
∑

i
w=0

Lw

β−
∑

i
w=0

Lw
,

is

=
k
∑

i=1

(

k

i

)

∑

L1,L2,...,Li+1≥1

i+1
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

(Bγ
0 )k−iB

α+(i+1)γ−
∑i+1

w=0
Lw

β−
∑i+1

w=0
Lw

+
k
∑

i=1

(

k

i

)

∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

(Bγ
0 )k+1−iB

α+iγ−
∑i

w=0
Lw

β−
∑

i
w=0

Lw

+
∑

L1≥1

bL1
(β, γ)(Bγ

0 )kB
α+γ−L1

β−L1
+ (Bγ

0 )k+1Bα
β

which upon replacing i by i−1 in the first sum, with i now ranging from 2 to k+1,

is

=
k+1
∑

i=2

(

k

i− 1

)

∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

(Bγ
0 )k+1−iB

α+iγ−
∑

i
w=0

Lw

β−
∑

i
w=0

Lw

+
k
∑

i=1

(

k

i

)

∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

(Bγ
0 )k+1−iB

α+iγ−
∑i

w=0
Lw

β−
∑

i
w=0

Lw

+
∑

L1≥1

bL1
(β, γ)(Bγ

0 )kB
α+γ−L1

β−L1
+ (Bγ

0 )k+1Bα
β .

Extracting the i = k + 1 term from the first sum and including
∑

L1≥1

bL1
(β, γ)(Bγ

0 )kB
α+γ−L1

β−L1

as its i = 1 term, the above becomes

=
∑

L1,L2,...,Lk+1≥1

k+1
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

B
α+(k+1)γ−

∑k+1

w=0
Lw

β−
∑k+1

w=0
Lw

+

k
∑

i=1

((

k

i− 1

)

+

(

k

i

))

×
∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

× (Bγ
0 )k+1−iB

α+iγ−
∑

i
w=0

Lw

β−
∑

i
w=0

Lw
+ (Bγ

0 )k+1Bα
β
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which, since
(

k

i− 1

)

+

(

k

i

)

=

(

k + 1

i

)

is

=

k+1
∑

i=1

(

k + 1

i

)

∑

L1,L2,...,Li≥1

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

× (Bγ
0 )k+1−iB

α+iγ−
∑

i
w=0

Lw

β−
∑

i
w=0

Lw
+ (Bγ

0 )k+1Bα
β .

4. Non-Existence of a Fock Representation of the Renormalized

Oscillator Algebras

Definition 4.1. A representation of the RPQWN Lie algebra on a Hilbert space

H is called Fock if there exists a unit vector Φ ∈ H, called “vacuum vector”, such

that:

B0
kΦ = 0 , ∀ k ∈ N , (4.1)

Bh
k Φ = 0 , ∀ k > 0, h ≥ 0 . (4.2)

The set of vectors

N := {(BkN

0 )nN · · · (Bk1

0 )n1Φ : N ∈ N, n1, . . . , nN , k1, . . . , kN ∈ N} (4.3)

is total in H and

〈Bk
0 ξ, η〉 = 〈ξ, B0

kη〉 ; ∀ k ≥ 0 ∀ ξ, η ∈ N . (4.4)

If H is a vector space and Φ ∈ H is a unit vector satisfying (4.2) and (4.3), then

on the algebraic linear span of N there exists one and only one sesquilinear form

〈·, ·〉 satisfying (4.4). It is not difficult to verify that, if a Fock representation exists,

it is unique up to isomorphism.

Do there exist Fock representations of the RPQWN Lie algebra? The answer

depends on the choice of the renormalization constants cn. The following theorem

shows that, with a single renormalization constant, i.e. with cl−1 = cl−1 (cf. (3.8)),

no Fock representation can exist if, for some n ≥ 1, Bn
0 and B2n

0 have the corre-

lations deduced from the commutation relations (3.6) and the Fock prescriptions

(4.1), (4.2).

Corollary 4.1. Suppose that the Fock representation exists, then for all α, β, γ ≥ 0

and all n ≥ 1 one has:

Bα
β (Bγ

0 )nΦ = δβ,0(B
γ
0 )nBα

0 Φ +

n
∑

i=1

(

n

i

)

∑

L1,L2,...,Li≥1

L1+L2+···+Li=β

i
∏

j=1

bLj

(

β −

j−1
∑

w=0

Lw, γ

)

× (Bγ
0 )n−iB

α+iγ−β
0 Φ ,

where L0 = 0.
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Proof. Follows directly from Proposition 3.1 and the fact that

Bα
β Φ = δβ,0B

α
0 Φ .

Theorem 4.1. Let L be a Lie ∗-sub-algebra of the RPQWN Lie algebra with the

following properties:

(i) L contains Bn
0 , and B2n

0 where, in the notation (3.9) the noise operators are

defined on the same interval I and B0
0(χI) = µ(I).

(ii) the BN
K satisfy the commutation relations (3.6) with cl−1 satisfying (3.1) and

(3.8).

Then L has no Fock representation if the interval I is such that

µ(I) <
1

c
.

Proof. By contradiction. If a Fock representation exists, then for any a, b ∈ R one

must have:

〈(aB2n
0 + b(Bn

0 )2)Φ, (aB2n
0 + b(Bn

0 )2)Φ〉 = ‖aB2n
0 Φ + b(Bn

0 )2Φ‖2 ≥ 0 .

Using the notation 〈x〉 = 〈Φ, xΦ〉, and since, under our assumptions

〈B0
2n(Bn

0 )2〉 = 〈(B0
n)2B2n

0 〉, this amounts to the positive semi-definiteness of the

quadratic form

a2〈B0
2nB

2n
0 〉 + 2ab〈B0

2n(Bn
0 )2〉 + b2〈(B0

n)2(Bn
0 )2〉

or

uAut ≥ 0 ,

where

u = (a b) , ut =

(

a

b

)

and A is the symmetric real matrix

A =

(

〈B0
2nB

2n
0 〉 〈B0

2n(Bn
0 )2〉

〈B0
2n(Bn

0 )2〉 〈(B0
n)2(Bn

0 )2〉

)

.

Using Proposition 3.1 and Corollary 4.1 we have

B0
2nB

2n
0 Φ = ([B0

2n, B
2n
0 ] +B2n

0 B0
2n)Φ = [B0

2n, B
2n
0 ]Φ = (2n)(2n)c2n−1B0

0Φ

= (2n)!c2n−1µ(I)Φ .

Thus

〈B0
2nB

2n
0 〉 = (2n)!c2n−1µ(I) .
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Similarly,

B0
2n(Bn

0 )2Φ =

2
∑

i=1

(

2

i

)

∑

L1,...,Li≥1

L1+···+Li=2n

n
∏

j=1

bLj

(

2n−

j−1
∑

w=0

Lw, n

)

(Bn
0 )2−iBin−2n

0 Φ

= 2b2n(2n, n)(Bn
0 )1B−n

0 Φ +
∑

L1,L2≥1

L1+L2=2n

bL1
(2n, n)bL2

(2n− L1, n)B0
0Φ

= 0 +
∑

L1,L2≥1

L1+L2=2n

(

2n

L1

)

n(L1)cL1−1

(

2n− L1

L2

)

n(L2)cL2−1µ(I)Φ

=
∑

L1,L2≥1

L1+L2=2n

(

2n

L1

)(

2n− L1

L2

)

n(L1)n(L2)cL1+L2−2µ(I)Φ

=

(

2n

n

)(

2n− n

n

)

n(n)n(n)cn+n−2µ(I)Φ

= (2n)!c2n−2µ(I)Φ

since only for L1 = L2 = n both factorial powers are nonzero. Thus

〈B0
2n(Bn

0 )2〉 = (2n)!c2n−2µ(I) .

Finally,

B0
n(Bn

0 )2Φ =

2
∑

i=1

(

2

i

)

∑

L1,...,Li≥1

L1+···+Li=2n

n
∏

j=1

bLj

(

n−

j−1
∑

w=0

Lw, n

)

(Bn
0 )2−iBin−n

0 Φ

= 2bn(n, n)Bn
0B

0
0Φ +

∑

L1,L2≥1

L1+L2=n

bL1
(n, n)bL2

(n− L1, n)Bn
0 Φ

= 2bn(n, n)µ(I)Bn
0 Φ +

n−1
∑

L1=1

bL1
(n, n)bn−L1

(n− L1, n)Bn
0 Φ

= 2

(

n

n

)

n(n)cn−1µ(I)Bn
0 Φ +

n−1
∑

L1=1

(

n

L1

)

n(L1)cL1−1

(

n− L1

n− L1

)

×n(n−L1)cn−L1−1Bn
0 Φ

= 2(n!)cn−1µ(I)Bn
0 Φ +

n−1
∑

L1=1

(

n

L1

)

n(L1)n(n−L1)cn−2Bn
0 Φ

= 2(n!)cn−1µ(I)Bn
0 Φ + ((2n)(n) − 2(n!))cn−2Bn

0 Φ
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since, by the binomial theorem for factorial powers

(x+ y)(m) =

m
∑

k=0

(

m

k

)

x(m−k)y(k)

we have
n−1
∑

L1=1

(

n

L1

)

n(L1)n(n−L1) = (n+ n)(n) −

(

n

n

)

n(n)n(0) −

(

n

0

)

n(0)n(n)

= (2n)(n) − 2(n!) .

Thus

(B0
n)2(Bn

0 )2Φ = 2(n!)cn−1µ(I)B0
nB

n
0 Φ + ((2n)(n) − 2(n!))cn−2B0

nB
n
0 Φ

and since

B0
nB

n
0 Φ = ([B0

n, B
n
0 ] +Bn

0B
0
n)Φ = [B0

n, B
n
0 ]Φ = (n)(n)cn−1B0

0Φ = n!cn−1µ(I)Φ

we obtain

(B0
n)2(Bn

0 )2Φ = 2(n!)2c2n−2µ(I)2Φ + ((2n)! − 2(n!)2)c2n−3µ(I)Φ

and so

〈(B0
n)2(Bn

0 )2〉 = 2(n!)2c2n−2µ(I)2 + ((2n)! − 2(n!)2)c2n−3µ(I) .

Thus

A =

(

(2n)!c2n−1µ(I) (2n)!c2n−2µ(I)

(2n)!c2n−2µ(I) 2(n!)2c2n−2µ(I)2 + ((2n)! − 2(n!)2)c2n−3µ(I)

)

.

A is a symmetric matrix, so it is positive semi-definite if and only if its minors are

non-negative. The minor determinants of A are

d1 = (2n)!c2n−1µ(I) ≥ 0

and

d2 = 2c4(n−1)µ(I)2(n!)2(2n)!(cµ(I) − 1) ≥ 0 ⇔ µ(I) ≥
1

c
.

Theorem 4.2. Let L be a Lie ∗-sub-algebra of the RPQWN Lie algebra with the

following properties:

For any k > n ≥ 1

(i) L contains Bn
0 , B

k
0 , and Bn+k

0 where, in the notation (3.9) the noise operators

are defined on the same interval I and B0
0(χI ) = µ(I),

(ii) the BN
K satisfy the commutation relations (3.6) with cl−1 satisfying (3.1) and

(3.8).

Then L does not have a Fock representation if the interval I is such that

µ(I) <
r

c
,
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where

r =
(n+ k)! − ((n+ k)(n) − k(n) − n!)k!

n!k!
> 0 , ∀ n, k ∈ N\{0} .

Proof. (By contradiction) If a Fock representation exists, then for any a, b ∈ R

one must have:

〈(aBn+k
0 + bBn

0B
k
0 )Φ, (aBn+k

0 + bBn
0B

k
0 )Φ〉 = ‖(aBn+k

0 + bBn
0B

k
0 )Φ‖2 ≥ 0 .

Using the notation 〈x〉 = 〈Φ, xΦ〉 this amounts to the positive semi-definiteness of

the quadratic form

a2〈B0
n+kB

n+k
0 〉 + 2ab〈B0

n+kB
n
0B

k
0 〉 + b2〈B0

kB
0
nB

n
0B

k
0 〉

or

uAut ≥ 0 ,

where

u = (a b) , ut =

(

a

b

)

and A is the symmetric real matrix

A =

(

〈B0
n+kB

n+k
0 〉 〈B0

n+kB
n
0B

k
0 〉

〈B0
n+kB

n
0B

k
0 〉 〈B0

kB
0
nB

n
0B

k
0 〉

)

.

We have

B0
n+kB

n+k
0 Φ = ([B0

n+k , B
n+k
0 ] +Bn+k

0 B0
n+k)Φ = [B0

n+k, B
n+k
0 ]Φ

= (n+ k)(n+k)cn+k−1B0
0Φ = (n+ k)!cn+k−1µ(I)Φ .

Thus

〈B0
n+kB

n+k
0 〉 = (n+ k)!cn+k−1µ(I) .

Similarly,

〈B0
n+kB

n
0B

k
0 〉 = 〈B0

nB
n+k
0 Φ, Bk

0Φ〉 = 〈[B0
nB

n+k
0 ]Φ, Bk

0Φ〉

= bn(n, n+ k)〈B0
kB

k
0 〉 = bn(n, n+ k)bk(k, k)µ(I)

= (n+ k)!cn+k−2µ(I) .

Finally,

B0
nB

n
0B

k
0Φ

= ([B0
n, B

n
0 ] +Bn

0B
0
n)Bk

0Φ = [B0
n, B

n
0 ]Bk

0Φ +Bn
0 [B0

nB
k
0 ]Φ

=
∑

L≥1

bL(n, n)([Bn−L
n−L , B

k
0 ] +Bk

0B
n−L
n−L)Φ +Bn

0

∑

L′≥1

bL′(n, k)Bk−L′

n−L′Φ

=

n−1
∑

L=1

bL(n, n)bn−L(n− L, k)Bk
0Φ + n!cn−1µ(I)Bk

0Φ + k(n)cn−1Bn
0B

k−n
0 Φ
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and, using the binomial theorem for factorial powers, we obtain

B0
nB

n
0B

k
0Φ = ((n+ k)(n) − k(n) − n!)cn−2Bk

0Φ + n!cn−1µ(I)Bk
0 Φ

+ k(n)cn−1Bn
0B

k−n
0 Φ

and so

B0
kB

0
nB

n
0B

k
0Φ = ((n+ k)(n) − k(n) − n!)cn−2B0

kB
k
0Φ + n!cn−1µ(I)B0

kB
k
0Φ

+ k(n)cn−1B0
kB

n
0B

k−n
0 Φ .

Using

〈B0
kB

k
0 〉 = k!ck−1µ(I)

and

〈B0
kB

n
0B

k−n
0 〉 = k(n)(k − n)!ck−2µ(I)

we obtain

〈B0
kB

0
nB

n
0B

k
0 〉 = (((n + k)(n) − k(n) − n!)k! + (k(n))2(k − n)!)cn+k−3µ(I)

+n!k!cn+k−2µ(I)2 .

Therefore

A =













(n+ k)!cn+k−1µ(I) (n+ k)!cn+k−2µ(I)

(((n+ k)(n) − k(n) − n!)k!

(n+ k)!cn+k−2µ(I) + (k(n))2(k − n)!)cn+k−3µ(I)

+n!k!cn+k−2µ(I)2













.

A is a symmetric matrix, so it is positive semi-definite if and only if its minors

are non-negative. The minor determinants of A are

d1 = (n+ k)!cn+k−1µ(I) ≥ 0

and

d2 = µ(I)2(n+ k)!c2n+2k−4(((n+ k)(n) − k(n) − n!)k! − (n+ k)! + n!k!cµ(I))

which is ≥ 0 ⇔ µ(I) ≥ r
c
.

Theorem 4.3. Any ∗-Lie algebra that contains B0
3 and B3

0 also contains B0
6 and

B6
0 , hence it does not admit a Fock representation.

Proof. We have, in the notations of the introduction and with N := a†a,

[a3, a†
3

] = 9N2 + 18N + 6 ∈ L ,

where L is the Lie algebra generated by a3, a†
3

. Therefore

[a3, 9N2 + 18N + 6] = 108a3 + 54Na3 ∈ L .
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Since a3 ∈ L, also Na3 ∈ L. But then

[a3, Na3] = 3a6 ∈ L

which implies that a6 ∈ L. Since the Lie algebra generated by B0
3 and B3

0 is iso-

morphic to the one generated by a3 and a†
3

, it will contain B0
6 and B6

0 . Therefore

the proof follows from Theorem 4.1.

5. Non-Existence of Gaussian Representations

Theorem 5.1. Let A be a ∗-algebra of operator valued distributions on Rd whose

test function space includes the characteristic functions of intervals in Rd defined

as follows:

(a, b) =

{

{x = (xj) : aj < xj < bj , j = 1, . . . , d} , if aj < bj , ∀ j

φ, if aj > bj for some j
(5.1)

and let

b2k, b
+2
k , bh, b

+
h (5.2)

be elements of A. There exists no state 〈·〉 on A with the following properties:

〈bkb
+
h 〉 = µ(k)δ(k − h) , (5.3)

〈bk′bkb
+
h′b

+
h 〉 = 2µ(k)µ(k′)δ(k′ − h′)δ(k − h) , (5.4)

〈b2kb
+
h′b

+
h 〉 = 2µ(k)2δ(k − h′)δ(k − h) , (5.5)

〈b2kb
+2
h 〉 = σ(k)δ(k − h) , (5.6)

where σ ∈ L1
loc(R

d) and µ ∈ L1
loc ∩ L2

loc(R) are such that there exist an interval

I ⊆ Rd and constants MI , εI > 0 such that

+∞ > MI > σ(k) , µ(k) ; µ(k) ≥ εI > 0 , ∀ k ∈ I . (5.7)

Remark. (5.4) is deduced from the usual (boson) Gaussian rule with mean zero

and covariance given by (5.3). (5.5) is obtained from (5.4) by putting (formally) k ′ =

k. (5.6) is obtained from (5.5) by putting (formally) h′ = h and renormalizing δ2(k−

h), i.e. replacing 2µ(k)2 by the renormalizing factor σ(k). Since no assumptions have

been made on the remaining correlations, the above considerations prove the non-

existence of a state with the following properties: (i) it is boson Gaussian when

restricted to the first-order noise (cf. (5.3) and (5.4)); (ii) it extends the usual

Gaussian rule to fourth moments involving b2k and b+2
k (cf. (5.5) and (5.6)). Finally,

since I is an arbitrary bounded interval, for any β > 0 we can always find an I such

that (5.7) is satisfied if I is an interval not containing 0 in its closure and such that

µ(k) =
1

eβωk − 1
, σ(k) =

c

(eβωk − 1)2
,
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where c > 0 is a (renormalization) constant and ω is a function satisfying the

conditions described in Sec. 5.8 of Ref. 4. Since the above choice of µ(k) characterizes

the equilibrium boson Gaussian states at inverse temperature β (cf. Sec. 2.10 of

Ref. 4), this implies that the above result extends to the finite temperature (and

more general) cases the no-go theorems proved in Ref. 11 and Ref. 3.

Proof. If such a state exists, then the matrix

(

〈b2kb
+2
h 〉 〈b2kb

+
h′b

+
h′′〉

〈bh′′bh′b+2
k 〉 〈bk′bk′′b+h′b

+
h′′〉

)

=

(

σ(k)δ(k − h) µ(k)22δ(k − h′)δ(k − h′′)

2µ(k)2δ(k − h′)δ(k − h′′)µ(k′′)µ(k′) 2µ(k′)µ(k′′)δ(k′ − h′)δ(k′′ − h′′)

)

(5.8)

must be positive definite, expressing the positivity of the expectation value

〈|αb+2
h + βb+h′b

+
h′′ |2〉

for any α, β ∈ C. In the notations (3.3)–(3.5) the positivity of (5.8) is equivalent

to the positivity of the covariance matrix

(

〈B0
2(ϕ)B2

0(ϕ)〉 〈B0
2(ϕ)B1

0(ξ)2〉

〈B0
1(ξ)2B2

0(ϕ)〉 〈B0
1(ξ)2B1

0(ξ)2〉

)

=









∫

|ϕ(k)|2σ(k)dk 2

∫

ϕ̄(k)2ξ(k)2dkµ(k)2

2

∫

ϕ(k)2ξ̄(k)2µ(k)2dk 2

(∫

|ξ(k)|2µ(k)dk

)2









for any choice of test functions ϕ, ξ on Rd. Taking

ϕ(k) = ξ(k) = χI(k) ,

where I ⊆ Rd is any interval, one finds









∫

I

σ(k)dk 2

∫

I

µ(k)2dk

2

∫

I

µ(k)2dk 2

(∫

I

µ(k)dk

)2









=:

(

σ(I) 2µ2(I)

2µ2(I) 2(µ(I))2

)

=: F (I) .

Now let us choose I so that condition (5.7) is satisfied and let In+1 ⊆ In ⊆ I

be a sequence of bounded open intervals such that
⋂

n

In = ∅ .
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Then, for α = 1, 2, because of assumption (5.7), one has:

lim sup
n→∞

µ(In)

|In|
= lim sup

n→∞

1

|In|

∫

In

µ(k)dk ≤MI <∞ , (5.9)

lim inf
n→∞

µ2(In)

|In|
= lim inf

n→∞

1

|In|

∫

In

µ(k)2dk ≥ ε2I > 0 , (5.10)

lim
n→∞

σ(In)

|In|
= lim

n→∞

∫

In

σ(k)dk = 0 . (5.11)

Therefore, denoting

D(I) := detF (I) = 2σ(I)(µ(I))2 − 4(µ2(I))2

we have

lim sup
n→∞

D(In)

|In|2
≤ −4ε4I < 0 .

Thus, if n is large enough (5.9)–(5.11) imply that:

D(In) ≤ −4ε4I |In|
2 < 0

and the matrix (5.8) cannot be positive definite.

Corollary 5.1. Let T be any complex vector space of complex valued functions on

Rd containing the characteristic functions of all open intervals (cf. (5.1)) and let σ

and µ be as in Theorem 5.1. With the notations (for ψ ∈ T )

σ(ψ) :=

∫

Rd

ψ(k)σ(k)dk , µ(ψ) :=

∫

Rd

ψ(k)µ(k)dk , µ2(ψ) :=

∫

Rd

ψ(k)µ(k)2dk

there exists no algebraic probability space {A, 〈·〉} and linear maps

B+
2 , B

+
1 : ψ ∈ T → B+

2 (ϕ) , B+
1 (ϕ) ∈ A

such that, denoting Bj := (B+
j )∗, one has

(

〈B2(ϕ)B+
2 (ϕ)〉 〈B2(ϕ)(B+

1 (ξ))2〉

〈B1(ξ)
2B+

2 (ϕ)〉 〈B1(ξ)
2B+

1 (ξ)2〉

)

=

(

σ(|ϕ|2) 2µ2(ϕ̄2ξ2)

2µ2(ϕ2ξ̄2) 2(µ(|ξ|2))2

)

.

Proof. This is simply a rephrasing of Theorem 4.2 for smeared fields.
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