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1. Introduction and statement of the problem

The investigation of the 3 problems stated below has led, in the past 10 years, to a multiplicity of new results
and to the discovery of several unexpected connections between different fields of mathematics and physics:

Problem I: construct a continuous analogue of the ∗–Lie algebra (and associative ∗–algebra) of differential
operators in d variables with polynomial coefficients

DOPC(Rd) := {
∑
n∈Nd

Pn(x)∂nx ; x ∈ Rd ; Pn complex polynomials in d real variables}

where continuous means that the space

Rd ≡ {functions {1, . . . , d} → R}

is replaced by some function space
{functions R→ R}

Since, for d = 1, this algebra can be canonically identified to the universal enveloping algebra of the one–
mode Heisenberg algebra HeisC(1), this problem is equivalent to the old standing problem of constructing
a theory of nonlinear quantum (boson) fields: hence its connections with the renormalization problem.

Problem II: construct ∗–representations of this algebra (typically a generalization of the Fock representa-
tion) as operators acting on some domain in a Hilbert space H

Problem III: prove the unitarity of these representations, i.e. that the skew symmetric elements of this
∗–algebra can be exponentiated, leading to strongly continuous 1–parameter unitary groups.

The combination of the constructive results obtained in this direction with the no–go theorems have made
clear since the early developments of this programme, that the algebra DOPC(Rd) is too large to allow a
nontrivial realization of this programme and that one has to restrict one’s attention to appropriately chosen
subalgebras of it (see the survey paper [7]).

The investigation of the connections of the renormalization problem with the problem of central extensions
of ∗–Lie algebras has led to the discovery that the one–mode Heisenberg algebra HeisC(1) admits a unique
non trivial central extension and to its boson representation.

More precisely: let a, a†, h (central element) denote the generators of the one–mode Heisenberg algebra
HeisC(1), with relations

(a)∗ = a† ; h∗ = h

[a, a†]Heis = h ; [a, h]Heis = [h, a†]Heis = 0
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Here and in what follows all omitted commutators are assumed to be equal to zero. We define p and q by
the equations

(1.1) a† = p+ i q ; a = p− i q
and we suppose that a†, a, h, p, q are realized in the Schroedinger representation, where the powers of all
these operators are well defined. The following result was proved in [6] and [2], see also [8] and [9].

Theorem 1. Up to isomorphisms there exists a unique nontrivial central extension of the Heisenberg algebra
HeisC(1), denoted CeHeisC(1), with generators a, a†, h, E (central element) and relations

[a, a†]CeHeis = h ; [h, a†]CeHeis = E ; [a, h]CeHeis = E

(a)∗ = a† , h∗ = h , E∗ = E

Furthermore (boson representation of CeHeisC(1)):

(i) one can choose constants A,B,C,D ∈ C such that the elements

p2
CH :=

B a† − B̄ a
A B̄ − ĀB

qCH :=
Aa† − Ā a
A B̄ − ĀB

pCH := h/2iD
and the central element form a new set of generators of CeHeisC(1)

(ii) the map
(p2
CH , pCH , qCH , E) 7→ (p2, p, q, 1) ≡ (q2, q, p, 1)

extends to a ∗–Lie algebra isomorphism between CeHeisC(1) and the Galilei algebra (q2, q, p, 1).

Various realizations of the Galilei algebra were well known and studied both in the Mathematical and Physics
literature (Bourbaki [12], Feinsilver and Schott [14], Franz [16], Ovando [18], . . . ). The apparently new point
in the above theorem was the identification of this algebra with the unique nontrivial central extension of
the Heisenberg algebra.

The continuous extension of CeHeisC(1), i.e. the current algebra of this ∗–Lie algebra over R (all what we
say in the following remains valid for Rd for any d ∈ N), has generators (in the sense of operator valued
distributions, see [11])

{q2
s , qs , pt : s, t ∈ R}

with brackets and involution well defined and deduced from the corresponding brackets and involution of
the usual (linear) free boson field in momentum representation:

(1.2) [at, a†s] = δ(t− s) ; [a†t , a
†
s] = [at, as] = 0

(1.3) (as)∗ = a†s

Therefore, for the Galilei algebra, Problem (I) above is easily solved.

The solution of Problem (II) for this algebra, namely:

Can one construct a generalization of the Fock ∗–representations for the current algebra of CeHeisC(1) over
R?

was open and, by a result of Accardi and Boukas obtained in [2], was reduced to the proof of the infinite
divisibility of the vacuum distribution of the self–adjoint elements of CeHeisC(1).

This proof was recently obtained in a joint paper (cf. [10]) by L. Accardi, A. Boukas and J. Misiewicz and
in the following we outline the main steps of the argument.
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The first step is to compute the vacuum characteristic function of the self–adjoint elements of CeHeisC(1)
(see section 2 below). Then we split this characteristic function as a product of two factors, one of which
is the characteristic function of the Gamma distribution and, by a scaling argument we reduce the proof of
infinite divisibility to the proof that the remaining factor is also the characteristic function of some probability
distribution i.e., by Bochner’s theorem, that it is positive definite and continuous at 0. This last statement
is proved by adapting to our goals the Fock space characterization of infinitely divisible measures on Lie
groups as developed by Araki, Woods, Parthasarathy, Schmidt, Guichardet (see the monographs [19], [17]
and the bibliography therein).

In the Appendix of the present paper we give a synthetic re–formulation, with a few integrations, of the part
of the theory that is needed to deduce the above mentioned theorem.

2. Random variables in CeHeisC(1)

As explained in section (1) we suppose that p, q are realized in the one mode Schroedinger representation
where we know that the operators of the form

X := Lp2 +Bp+ Cq ; L,B,C ∈ R
are essentially self–adjoint, so that their vacuum characteristic functions

〈Φ, eisXΦ〉 ; s ∈ R
are well defined. In terms of {b+2, b2, b+b, b+, b, 1}, with the replacements

−L/4 → L ; B/2, C/2 → B,C

and with the notation
M := C + iB

we obtain
X = Lb+2 + Lb2 − 2Lb+b+ M̄b† +Mb− L

Our first goal is to compute the characteristic function of X. To achieve this goal we use the following
splitting formula proved in [2].

Lemma 1. (Splitting formula) Let L ∈ R and M,N ∈ C. Then for all s ∈ R such that 2Ls+ 1 > 0

(2.1) es (L b2+L b†
2−2L b† b−L+M b+N b†) Φ = ew1(s) b†

2

ew2(s) b† ew3(s) Φ

where

w1(s) =
Ls

2Ls+ 1
(2.2)

w2(s) =
L (M +N) s2 +N s

2Ls+ 1
(2.3)

(2.4) w3(s) =
(M +N)2 (L2 s4 + 2Ls3) + 3M N s2

6 (2Ls+ 1)
− ln (2Ls+ 1)

2

Putting N := M̄ in (2.4) we obtain

(2.5) esX Φ = es (−L b2−L b†2+2L b† b+L+M b+M̄ b†) Φ = ew1(s) b†
2

ew2(s) b† ew3(s) Φ

where

w1(s) =
Ls

2Ls+ 1
(2.6)

w2(s) =
2Re(M)Ls2 + M̄ s

2Ls+ 1
(2.7)



4 LUIGI ACCARDI, ANDREAS BOUKAS, AND JOLANTA MISIEWICZ

(2.8) w3(s) =
4B2(L2 s4 + 2Ls3) + 3|M |2 s2

6 (2Ls+ 1)
− ln (2Ls+ 1)

2

By analytic continuation (in s)

(2.9) ew3(is) = (1 + 2L is)−1/2e
4B2(L2 s4−2i L s3)−3|M|2 s2

6 (1+i2 L s)

In conclusion: the characteristic function of the vacuum distribution of the operator random variable

X = Lq2 +Bq + Cp

is

(2.10) 〈Φ, eis (Lq2+Bq+Cp) Φ〉 = (1− 2L is)−1/2e
4B2(L2 s4+2i L s3)−3|M|2 s2

6 (1−i2 L s)

=: (1− 2L is)−1/2eψL(s,M)

3. Infinite divisibility

Recall, from equation (2.10), the definition

(3.1) ψL(s,M) :=
4Re(M)2Ls3 (Ls+ 2i)− 3|M |2s2

6 (1− 2iLs)
and notice two important remarks

(i) (scaling property) for every t ∈ R+

(3.2) ψL(s,
√
tM) := t

4Re(M)2Ls3 (Ls+ 2i)− 3|M |2s2

6 (1− 2iLs)
= tψL(s,M)

(ii) for every L ∈ R and M ∈ C,

(3.3) ϕL,M (s) := (1− 2L is)−1/2eψL(s,M)

where ϕL(s,M), given by the left hand side of (2.10), is a characteristic function for every t ∈ R+ and for
every L ∈ R and M ∈ C.

Denoting
ϕ(s) := (1− 2L is)−1/2

we have that

(3.4) ϕL,M (s) := ϕ(s)eψL(s,M)

Suppose that one can prove that, for every L ∈ R and M ∈ C, the function

eψL(s,M)

is a characteristic function. Then this characteristic function is infinitely divisible because the scaling prop-
erty implies that, for any t ≥ 0:

(eψL(s,M))t = etψL(s,M) = eψL(s,
√
tM)

which is a characteristic function because of our assumption.

Therefore the left hand side of (3.3), which is already known to be a characteristic function, is infinitely
divisible being the product of two infinitely divisible characteristic functions.

The proof that, for every L ∈ R and M ∈ C, the function eψL(s,M) is a characteristic function depends on
the following result.

Theorem 2. In the semigroup, for pointwise multiplication, of positive definite kernels on R (the choice of
R is irrelevant), the infinitely divisible positive definite kernels form a subgroup.
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The proof of this theorem follows from the general theory of infinitely divisible positive definite kernels as
developed in the monograph [19].

3.1. A particular case.

Theorem 3. If
B = Re(M) = 0⇔M ∈ iC

the vacuum characteristic functions given by (2.10) are infinitely divisible with cumulant generating function
given by

(3.5) −i |M |
2

4L
s−

∫ ∞
0

(1− eisu)
1/2
u
e−2Ludu− |M |

2

8L2

∫ ∞
0

(1− eisu)e−2Ludu

Remark: Formula (3.5) gives also the explicit form of the associated Levy measure.

Appendix: Infinitely divisible kernels

4. Kernels and matrices

Definition 1. Let S be a set, a function K : (x, y) ∈ S × S → k(x, y) ∈ C is called a C–valued kernel on
S (only kernel if no ambiguity is possible). If S is a finite set, then there exists a d ∈ N such that, up to
relabeling the elements of S can be identified to the subset {1, . . . , d} ⊆ N. With this identification a kernel
on S is identified to the d× d complex matrix

k(i, j) =: ki,j ; i, j ∈ {1, . . . , d}

4.1. Positive definite matrices. In the following C will be considered as a Hilbert space with scalar
product 〈x, y〉 := x̄y so that B(C) is identified to C acting on itself by multiplication. For d ∈ N and
k = (kij) ∈Md(C) and x1, · · · , xd ∈ C we will use the notation

x̄ikijxj :=
d∑

i,j=1

x̄ikijxj = 〈x, ky〉

(i.e. we assume summation over repeated indices) where 〈·, ·〉 denotes the hermitian scalar product on Cd

〈x, y〉 :=
d∑
j=1

x̄jyj ; x = (x1, · · · , xd) , y = (y1, · · · , yd) ∈ Cd

Rd is identified to the subspace of Cd obtained as range of the projection

x = (x1, · · · , xd) ∈ Cd 7→ Re(x) := (Re(x1), · · · , Re(xd))
The restriction on Rd of the hermitian scalar product on Cd is real valued. The d × d complex matrices
Md(C) act naturally on Cd; this action induces a action of the d× d real matrices Md(R) on Cd.
The adjoint k∗ of a matrix k = (kij) is defined by

〈kx, y〉 = 〈x, k∗y〉 ; x = (x1, · · · , xd) , y = (y1, · · · , yd) ∈ Cd

Thus
(k∗)ij = kji

Definition 2. A matrix k = (kij) ∈Md(C) is called:

(i) Hermitian if
〈x, kx〉 = x̄ikijxj ∈ R ; ∀x1, · · · , xd ∈ C

(ii) skew–Hermitian if
〈x, kx〉 = x̄ikijxj = 0 ; ∀x1, · · · , xd ∈ C
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(iii) symmetric if it is Hermitian and with real coefficients, i.e.

k = (kij) ∈Md(R)

(iv) symplectic if it is skew–Hermitian and with real coefficients, i.e.

k = (kij) ∈Md(R) ; 〈x, kx〉 = x̄ikijxj = 0 ; ∀x1, · · · , xd ∈ C

Lemma 2. A matrix k = (kij) ∈Md(C) is:

(i) Hermitian if and only if

(4.1) kji = kij ⇔ k = k∗ ; ∀x1, · · · , xd ∈ C
In particular k = (kij) ∈Md(C) is Hermitian if and only if its restriction on Rd is Hermitian.

(ii) skew–Hermitian if and only if its diagonal coefficients are zero and

(4.2) kji = −kij ⇔ k = −k∗ ; ∀x1, · · · , xd ∈ C ; i 6= j

(iii) symplectic if and only if ∀i, j ∈ {1, · · · , d}
kij = −kji

(iv) skew–Hermitian and Hermitian if and only if its diagonal coefficients are zero and its off–diagonal
coefficients are purely imaginary.

Proof. Let k = (kij) ∈Md(C). k is Hermitian if and only if ∀x1, · · · , xd ∈ C
〈x, kx〉 = x̄ikijxj = (x̄ikijxj)− = xik̄ij x̄j = x̄ik̄jixj

Since x1, · · · , xd ∈ C are arbitrary, this is equivalent to (4.1). The restriction to Rd of the above identity
gives

xikijxj = xik̄jixj

From this (4.1) follows by choosing ∀i0, j0 ∈ {1, · · · , d}
xj = δi0,i

; yi = δj0,j

k is skew–Hermitian if and only if ∀x1, · · · , xd ∈ C
0 = 〈x+ y, k(x+ y)〉 = 〈x, ky〉+ 〈y, kx〉 ⇔ 〈x, ky〉 = −〈y, kx〉

⇔ x̄ikijyj = −ȳjkjixi
Fixing i0, j0 ∈ {1, · · · , d} and choosing

xj = δi0,i ; yi = δj0,j

one finds
ki0j0 = −kj0i0

Finally k = (kij) ∈Md(C) is skew–Hermitian and Hermitian if and only if

kji = −kij = −k̄ji ; ∀i, j ∈ {1, · · · , d}
i.e. kii = 0 and kji is purely imaginary for i 6= j.

�

Lemma 3. A matrix h = (hij) ∈Md(C) is Hermitian if and only if the matrix Re(h) := (Re(hij)) ∈Md(R)
is symmetric, i.e.

(4.3) Re(hij) = Re(hji)

and the matrix Im(h) := (Im(hij)) ∈Md(R) is symplectic, i.e.

(4.4) Im(hij) = −Im(hji)
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Proof. h = (hij) is Hermitian if and only if

Re(hij)− iIm(hij) = h̄ij = hji = Re(hji) + iIm(hji)

and this is equivalent to the identities (4.3) and (4.4).
�

Definition 3. A matrix (kij) ∈Md(C) is said to be positive definite if

(4.5)
d∑

i,j=1

x∗i kijxj ≥ 0

∀x1, . . . , xd ∈ C. If in addition

(4.6)
d∑

i,j=1

x∗i kijxj = 0⇔ x1 = · · · = xd = 0

then the matrix (kij) (i, j = 1, . . . , d) is called strictly positive definite.

Remark: Note that the diagonal elements of a positive definite matrix are positive because ∀x ∈ C

x∗kiix = |x|2kii ≥ 0

Lemma 4. k ∈Md(C) is PD if and only if for every skew–Hermitian matrix S ∈Md(C), k + S is PD

Proof. Clear from the definition of PD. �

Remark: If k is positive definite and Hermitian and S ∈ Md(C) is symplectic, then k + S is PD but it is
Hermitian if and only if S is. If this is the case, being also skew–Hermitian, S must be symplectic by Lemma
(2) hence its diagonal coefficients are zero and its off–diagonal coefficients are purely imaginary. Thus there
exist matrices which are positive definite but not Hermitian.

Lemma 5. A matrix k ∈Md(C) is positive definite and Hermitian if and only if there exist two Hermitian
matrices a, b ∈ Hermd(C) such that

(4.7) k = (a2 + b2) + i(ab− ba)

Remark: In particular any such k has the form

(4.8) k = kH,+ + ikS

with kH,+ PDH and kS skew adjoint. This decomposition is highly non unique , reflecting the no uniqueness
of the square root.

Proof. k is positive definite and Hermitian if and only if there exists a matrix x ∈Md(C) such that k = x∗x.
Writing

(4.9) x =
1
2

(x+ x∗) +
1
2

(x− x∗) =: a+ ib

by construction a and b are Hermitian. Therefore k is positive definite if and only if it has the form

k = (a+ ib)∗(a+ ib) = (a− ib)(a+ ib) = (a2 + b2) + i(ab− ba)

�
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Remark: Using the identity (4.9) any matrix k can be written in the form

(4.10) k = kH + ikS = Re(kH) + iIm(kH) + iRe(kS)− Im(kS)

where
kH = k∗H ; kS = k∗S

Re(kH), Re(kS) are Hermitian and Im(kH), Im(kS) are skew–symmetric.

Lemma 6. k = (kij) is positive definite if and only if, in the notation (4.10):

(4.11) Re(kS) = 0

(4.12) Re(kH) is positive definite Hermitian

k = (kij) is positive definite and Hermitian if and only if

(4.13) kS = 0

Remark: In particular any positive definite Hermitian k = (kij) has the form

(4.14) k = kR + ikI

where kR = Re(kH) is real PDH and kI = Im(kH) real Hermitian.

Proof. The decomposition (4.10) and the positive definiteness of k imply that

0 ≤ 〈x, kx〉 = 〈x,Re(kH)x〉+ 〈x, iIm(kH)x〉+ 〈x, iRe(kS)x〉 − 〈x, Im(kS)x〉

= 〈x,Re(kH)x〉+ i〈x,Re(kS)x〉
In particular the right hand side is real and, by Lemma (3), Re(kH) ∈Md(R) is symmetric, so that:

〈x,Re(kH)x〉+ i〈x,Re(kS)x〉 = 〈Re(kH)x, x〉 − i〈Re(kS)x, x〉 = 〈x,Re(kH)x〉 − i〈x,Re(kS)x〉

⇔ 〈x,Re(kS)x〉 = −〈x,Re(kS)x〉 ⇔ 〈x,Re(kS)x〉 = 0

But, since Re(kS) is real Hermitian, it can be symplectic if and only if it is zero, i.e. (4.11) holds. In this
case

0 ≤ 〈x,Re(kH)x〉
which is (4.12). Finally k = (kij) is positive definite and Hermitian if and only if

Re(kH) + iIm(kH)− Im(kS) = k = k∗ = Re(kH)∗ − iIm(kH)∗ − Im(kS)∗ =

= Re(kH) + iIm(kH) + Im(kS)⇔ Im(kS) = 0

�

Lemma 7. Any positive definite matrix k can be written in the form

(4.15) k = Re(kH) + iIm(kH)− Im(kS)

where Re(kH) is a real positive definite matrix and Im(kH) Im(kS) are real skew–symmetric. Conversely if
Re(kH), Im(kH) and Im(kS) have these properties, then the right hand side of (4.15) is a positive definite
matrix.

Proof. Clear from Lemma (6). �
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5. Positive definite kernels

Definition 4. A kernel k(·, ·) on S is called positive definite if ∀n ∈ N, ∀x1, . . . , xn ∈ S, ∀ ξ1, . . . , ξn ∈ N
(5.1) ξ∗kk(xk, xj)ξj ≥ 0

i.e. if the matrix (k(xi, xj)) is positive definite.

Remark: From (5.1) it is clear that PD kernels on S are a cone, closed under pointwise convergence.

Lemma 8. Given a kernel k on S, define the kernels k̄, k∗ respectively by

(5.2) k̄(x, y) := k(x, y)∗

(5.3) k∗(x, y) := k(y, x)∗

Then one of these kernels is PD (resp. CPD) if and only if the other two are PD.

Proof.
ξ∗j k
∗(xj , xk)ξk = ξ∗j k(xk, xj)∗ξk = (ξ∗kk(xk, xj)ξj)∗ ≥ 0⇔ ξ∗kk(xk, xj)ξj ≥ 0

Thus k is PD (resp. CPD) if and only if k∗ is. Similarly

ξ∗j k̄(xj , xk)ξk = ξ∗j k(xj , xk)∗ξk = (ξ∗kk(xj , xk, )ξj)∗ = (ξjk(xj , xk, )ξ∗k)∗ ≥ 0⇔
ξjk(xj , xk, )ξ∗k ≥ 0

Thus k is PD (resp. CPD) if and only if k̄ is.
�

Corollary 1. If k is a PD (resp. CPD) kernel then its real part defined by

Re(k)(x, y) :=
1
2

(k(x, y) + k(y, x)∗)

is PD.

Corollary 2. If k(f, g) is a positive definite kernel on S then, for any family tf ∈ C, also the kernel

t∗fk(f, g)tg
is positive definite. Conversely, if there exists a map

c : f ∈ G→ cf ∈ C \ {0}
(i.e. with all cf ’s invertible) such that the kernel

(5.4) H(f, g) := c∗fk(f, g)cg
is PD, then the kernel k(f, g) itself is PD.

Proof. Let k(f, g) be positive definite. Then, for any family tf ∈ C, also the kernel

kt(f, g) := t∗fk(f, g)tg = k(f, g)t∗f tg
is PD, being the Schur product of two PD kernels. Conversely, if the kernel H(f, g), defined by (5.4) is PD
then, by the first part of the Lemma, also the kernel

k(f, g) = (c−1
f )∗H(f, g)c−1

g

is PD.
�

Definition 5. Two positive definite kernels on S, k1, k2 are called equivalent if for some function t : S →
C \ {0}

k1(f, g) = t∗fk2(f, g)tg
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5.1. Schur’s lemma.

Lemma 9. (Schur) If H = (Hjk), k = (kjk) are PD then their Schur product

H ◦ k := (Hjkkjk)

is PD. In particular the cone of PD kernels on S is a semigroup under Schur multiplication with identity
given by

1 ◦ 1∗ ; (1 ◦ 1∗)ij := 1 ; ∀i, j ∈ S

k =
∑
m

αmxmx
∗
m ; kjk := αmxmixmk

H =
∑
m

βmxmx
∗
m ; Hjk := βmxmixmk

αm, βn ≥ 0

λj(k ◦H)jkλk = λjkjkHjkλk = λjαmxmjxmkβnynjynkλk

= αmβm(λjxmjynj)(xmkynkλk) = αmβm|
∑
k

xmkynkλk|2 ≥ 0

Other proof:
a = (ajk) : b = (bjk)

By the spectral theorem for matrices

a = x∗x : b = y∗y

λiaikbikλk = λix
∗
ijxjky

∗
ilylkλk = λixjiylixjkylkλk = |xjkylkλk|2 ≥ 0

Lemma 10. The family of C–valued positive definite matrices (kernels on S) is closed under:
– pointwise multiplication (Schur’s Lemma)
– pointwise addition
– pointwise multiplication by a positive scalar
– pointwise limits
– integrals

Proof. From the definition of positive-definiteness. �

Definition 6. A Borel function f : C → C is called completely positive (Hermitian) if ∀d ∈ N and for any
positive definite (Hermitian) matrix A = (aij) the matrix

f ◦A := (f(aij))

is positive definite (Hermitian)

Remark: The above definition is equivalent to say that, for any set S and for any kernel k on S, the
composite kernel on S

f ◦ k =: f(k)

is positive definite (Hermitian).

Remark: An interesting open problem is to characterize the completely positive (Hermitian) Borel functions
f : C→ C.

Corollary 3. The exponential function on C is completely positive and Hermitian.
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Proof. We have to prove that, if k is a positive definite Hermitian kernel on S, then its exponential kernel
has these properties. By Schur’s Lemma ∀n ∈ N kn (Schur’s power) is positive definite. Lemma (10) implies
that ek is positive definite. Moreover ∀x, y ∈ S

(ek(x,y))∗ = ek(x,y) = ek(y,x)

Therefore ek is Hermitian. �

Remark: In fact we will see that the exponential function on C has a much stronger positivity property
(see Theorem (5) and Corollary (4)).

Definition 7. A kernel h is called exponential if it is of the form h = ek where k is a kernel on S. In this
case h is called the exponential kernel of k.

6. Functions of positive definite matrices

Theorem 4. Let A = (aij) be any Hermitian complex matrix. Then there exists an ε > 0 such that
∀ ε ∈ [−ε, ε]

1 + εA

is invertible and both 1 + εA and its inverse are PD and Hermitian.

Proof. Since, for any unitary matrix U , the properties of being PDH are invariant under the transformation
A 7→ U∗AU , we can suppose that A is diagonal, say A = diag(s1, . . . , sn), with the sj real. Then

1 + εA = diag(1 + εs1, . . . , 1 + εsn)

is Hermitian, PD and, for ε small enough, invertible. For the same ε:

(1 + εA)−1
ij = δij(1 + εsj)−1 ≥ 0

Thus (1 + εA)−1 is also positive and this proves the thesis.
�

Theorem 5. Let (aij) be an Hermitian matrix. Then ∀ t ∈ R the matrix (etaij ) is positive definite and
Hermitian.

Proof. Let (aij) be as in the statement and let ε > 0 be as in Theorem (4). Then, ∀ t ∈ R, the matrix etaij

is Hermitian and for all n ∈ N such that |t/n| < ε, the matrix(
1 +

taij
n

)n
is PD. It follows that

(etaij ) = lim
n→∞

(
1 +

taij
n

)n
is PD and Hermitian.

�

Corollary 4. Let (aij) be a positive definite Hermitian matrix. Then ∀ t ∈ R the matrix (eitIm(aij)) is
positive definite and Hermitian.

Proof. Let (aij) be a positive definite Hermitian matrix. From Lemma (7) we know that (Re(aij) is PD and
Hermitian hence, Theorem (5) implies that, ∀t ∈ R, both (e−tRe(aij)) and that (etaij ) are PD and Hermitian.
Therefore ∀t ∈ R

(etaij )(e−tRe(aij)) = (eitIm(aij))
is PD and Hermitian. �
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Corollary 5. Let (aij) be a positive definite Hermitian matrix such that

(6.1) Re(aij) > 0 ; ∀i, j

Then (
1
aij

)
is a positive definite Hermitian matrix.

Proof. By Theorem (4) (e−taij ) is PD Hermitian for any t > 0 and condition (6.1) implies that ∀i, j the
function t ∈ R+ 7→ e−taij is integrable. Therefore by Lemma (10) the matrix∫ +∞

0

e−taijdt =
∫ +∞

0

de−taij

−aij
=
e−taij

−aij

∣∣∣∣∞
0

=
1
aij

; ∀i, j

is PD Hermitian as an integral of PD Hermitian matrices. �

7. Functions of positive definite kernels

Theorem 6. ∀t ∈ R the functions

z ∈ C 7→ etz ; z ∈ C 7→ eitIm(z)

are completely positive and Hermitian.

Proof. Let S be a set and let k be a PD(H) kernel on S. Then, for any finite subset F ⊆ S, (k(x, y))x,y∈F
is a PD(H) matrix. Hence, ∀t ∈ R the matrices

etk(x,y) ; eitIm(k(x,y)) ; x, y ∈ F

are PD(H), i.e. the kernels
etk ; eitIm(k)

are PD(H) and this implies the thesis. �

Corollary 6. A kernel of the form h = ek with k positive definite Hermitian is Schur–invertible and its
inverse is also PDH.

Proof. Since k is positive definite Hermitian it follows that, ∀ t ∈ R, etk is PDH. In particular e−k = (ek)−1

is PDH. �

Corollary 7. If K is a positive definite Hermitian kernel on S then, for any a < b ∈ R+, the kernel on S

ebK(x,y) − eaK(x,y)

is positive definite Hermitian.

Remark: In particular the kernels
eK(x,y) − 1

sinh(tK(x, y)) ; ∀t ∈ R
are PD Hermitian (the PD and Hermitianity of cosh(tK(x, y)) follows from Lemma (10).

Proof. The kernels K(x, y) and (∀t ∈ R) are positive definite Hermitian. From this it follows that∫ b

a

K(x, y)etK(x,y)dt = ebK(x,y) − eaK(x,y)

is PD Hermitian. �
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Remark: The analogue of Theorem (4) in general is false. In fact, if K : S × S → C is an Hermitian kernel
on S, then for every finite subset F ⊆ S there exists an εF > 0 such that, ∀ ε ∈ [−εF , εF ] the kernel on S

(1 + εK)(x, y) := δx,y + εK(x, y)

is PD(H). The basic difference between the matrices (finite dimensional case) and kernels (infinite dimensional
case) is that in the above εF depends on the finite set F . The result is true if k is bounded in L∞–norm.

8. Conditionally positive definite kernels

Semigroups of positive definite matrices play an important role in several fields of mathematics. In this
section we characterize their generators. We begin with some necessary conditions.

Lemma 11. If, ∀t ∈ R+ the kernel (etkij ) is PD, then the kernel (kij) is such that for any finite family of
complex numbers (λj) satisfying

(8.1)
∑
j

λj = 0

one has:

(8.2)
∑
j,k

λikijλj ≥ 0

Such a k admits a unique representation of the form

(8.3) k = k0 + S

with k0 = k∗0 is positive definite and S real symplectic.

In the representation (8.3), S = 0 if and only if ∀t ∈ R+ the kernel (etkij ) is PD and Hermitian,

Proof. We begin proving (8.2). Suppose that ∀t ∈ R+ the kernel (etkij ) is PD, i.e. that ∀t ∈ [0, T ]

λie
tkijλj ≥ 0

then, whenever condition (8.1) is satisfied, one has, ∀t ∈ [0, T ], assuming summation over repeated indices:

0 ≤ λietkijλj = λie
tkijλj − λiλj

therefore, for t ≥ 0:

(8.4) 0 ≤ λi
(etkij − 1)

t
λj

and, letting t ↓ 0, (8.2) follows.

Finally if, ∀t ∈ R+ the kernel (etkij ) is Hermitian, then
d

dt
|t=0(etkij )∗ = (

d

dt
|t=0e

tkij )∗ = ki,j =
d

dt
|t=0e

tkj,i = kj,i

i.e. k is self–adjoint, which implies S = 0.

To prove the hermitianity of the kernel k = (kij) denote ∀i, j ∈ S

(8.5) kij =: Re(kij) + iIm(kij) =: kH,ij + ikS,ij =: kH(ij) + ikS(ij)

with kH,jj , kS,jj ∈ R. Since ∀t ∈ R+ the kernel (etkij ) is PD, by a previous Remark,

etkjj = etkH,jj (cos(tkS,jj) + i sin(tkS,jj) ≥ 0 ; ∀j ∈ S ; ∀t ≥ 0

which is possible if and only if ∀t ≥ 0 and ∀j ∈ X
sin(tkS,jj) = 0 ⇔ kS,jj = 0
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and this proves that

(8.6) kii ∈ R ; ∀i ∈ S
Finally condition (8.2) implies in particular that ∀λ ∈ C and ∀i, j ∈ X

0 ≤ λ̄k(i, i)λ+ λk(j, j)λ̄− λ̄k(i, j)λ− λ̄k(j, i)λ

and, since kS(i, i) = 0 because of (8.6), putting λ = 1, this becomes

0 ≤ k(i, i) + k(j, j)− k(i, j)− k(j, i) = kH(i, i) + kH(j, j)− kH(i, j)− kH(i, j)− i(kS(i, j) + kS(j, i))

Thus

(8.7) kS(i, j) + kS(j, i) = 0⇔ kS(i, j) = −kS(j, i)

Thus we can write

kij = kH,i,j + ikS,i,j =
1
2

(kH,i,j + kH,j,i) +
1
2

(kH,i,j − kH,j,i) + ikS,i,j

and defining

k0,i,j :=
1
2

(kH,i,j + kH,j,i) + ikS,i,j = k0,j,i

Si,j :=
1
2

(kH,i,j − kH,j,i)

we see that k0 is self–adjoint, S real symplectic and (8.3) is satisfied. If k = k′0 +S′ is another representation
of the form (8.3), then

k + S = k′0 + S′ ⇔ k − k′0 = S′ − S
This implies that

Im(k − k′0) = 0⇔ Im(k) = Im(k′0)
Re(k − k′0) = S′ − S

But the left hand side is symmetric and the right hand side is anti–symmetric. Hence both sides must be
zero and the representation (8.3) is unique.

�

Definition 8. In the notations of Lemma (11) a complex matrix (kij) ∈ Md(C) is said to be conditionally
positive definite (CPD) if it satisfies the necessary conditions of Lemma (11), i.e. it has the form (8.3) and

(8.8)
∑
j,k

λikijλj ≥ 0

for any finite family of complex numbers (λj) such that

(8.9)
∑
j

λj = 0

If in addition k is Hermitian, we say that k is CPD Hermitian.

Remark: From (8.3) it follows that, if k is CPD then its diagonal elements are real.

Remark: If f : S → C is any function, the kernels

k(x, y) := f(x) + f(y) ; f(x)− f(y)

are CPD and the kernel
k(x, y) := f(x) + f(y)

is CPD Hermitian. All these kernels are called trivial.

Definition 9. A kernel k(·, ·) on E is called conditionally positive definite if ∀n ∈ N, ∀x1, . . . , xn, the
matrix (k(xi, xj)) is conditionally positive definite.
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Lemma 12. Let k be a CPD kernel on X and, for any pair of functions α, β : X → C, define the kernel

(8.10) h(x, y) := k(x, y) + α(x) + β(y)

Then the kernel (8.10):

(i) always satisfies condition (8.8) for any finite family of complex numbers (λj) satisfying (8.9)

(ii) is CPD if and only if there exist real valued functions

(8.11) a, b, γ : x ∈ S → a(x), b(x), γ(x) ∈ R
such that

(8.12) α(x) = a(x)− iγ(x) ; β(x) = b(x) + iγ(x)

(iii) is CPD Hermitian if and only if S is trivial

(iv) if k is Hermitian, h is Hermitian if and only if for some constant c ∈ R one has

(8.13) β(x) = α(x) + c

In this case, denoting

α0(x) :=
1
2
c+ α(x)

one has

(8.14) h(x, y) := k(x, y) + α0(x) + α0(y)

and h is CPD if and only if k is.

Proof. (i) It is clear that, if k is CPD, then for any choice of the functions α and β, the right hand side of
(8.10) satisfies condition (8.8) for any finite family of complex numbers (λj) satisfying (8.9).

(ii) From the decomposition (8.3) of k one deduces that, for h to be CPD, one must have the identity

(8.15) h(x, y) = k0(x, y) + S(x, y) + α(x) + β(y) = h0(x, y) + S0(x, y)

for some h0 = h∗0 and S0 real symplectic. This is equivalent to

k0(x, y)− h0(x, y) = S0(x, y)− S(x, y)− α(x)− β(y)

Taking adjoints this gives

k0(x, y)− h0(x, y) = S0(x, y)− S(x, y)− α(x)− β(y)

Since h0 and k0 are Hermitian, this implies that

S0(x, y)− S(x, y)− α(x)− β(y) = k0(x, y)− h0(x, y) = k0(y, x)− h0(y, x) =

= S0(y, x)− S(y, x)− α(y)− β(x) = −S0(x, y) + S(x, y)− α(y)− β(x)⇔
⇔ 2S0(x, y)− 2S(x, y) = α(x)− α(y) + β(y)− β(x)

exchanging the roles of x and y one has

2S0(y, x)− 2S(y, x) = 2S(x, y)− 2S0(x, y) = α(y)− α(x) + β(x)− β(y)

Thus the right hand sides of the two equations must be opposite:

α(x)− α(y) + β(y)− β(x) = −α(y) + α(x)− β(x) + β(y)⇔

⇔ 0 = (α(y)− α(y)) + (α(x)− α(x)) + (β(x)− β(x)) + (β(y)− β(y))
Putting x = y gives

0 = 2(α(x)− α(x)) + 2(β(x)− β(x)) = 4iIm(α(x)) + 4iIm(β(x))⇔
⇔ Im(β(x)) = −Im(α(x)) =: −γ(x)
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⇔ α(x)) = a(x)− iγ(x) ; β(x) = b(x)− iγ(x) ; a(x), b(x), γ(x) ∈ R
and this proves (8.12). Conversely, if (8.11) and (8.12) are satisfied, then

h(x, y) = k0(x, y) + a(x) + b(y) + i(γ(y)− γ(x)) + S(x, y)

= k0(x, y) +
1
2

(a(x) + a(y)) +
1
2

(b(y) + b(x)) + i(γ(y)− γ(x)) +
1
2

(a(x)− a(y)) +
1
2

(b(y)− b(x)) + S(x, y)

Thus defining

h0(x, y) := k0(x, y) +
1
2

(a(x) + a(y)) +
1
2

(b(y) + b(x)) + i(γ(y)− γ(x))

S0(x, y) :=
1
2

(a(x)− a(y)) +
1
2

(b(y)− b(x)) + S(x, y)

one has

h0(x, y) := k0(x, y) +
1
2

(a(x) + a(y)) +
1
2

(b(y) + b(x))− i(γ(y)− γ(x)) =

= k0(y, x) +
1
2

(a(y) + a(x)) +
1
2

(b(x) + b(y)) + i(γ(x)− γ(y)) = h0(y, x)

S0(y, x) :=
1
2

(a(y)− a(x)) +
1
2

(b(x)− b(y)) + S(y, x)

= −1
2

(a(x)− a(y))− 1
2

(b(y)− b(x))− S(x, y) = −S0(x, y)

hence h0 is Hermitian and S0 is symplectic, so that h is CPD.

(iii) is CPD Hermitian if and only if

0 = S0(x, y) :=
1
2

(a(x)− a(y)) +
1
2

(b(y)− b(x)) + S(x, y)⇔

⇔ S(x, y) =
1
2

(a(x)− b(x))− 1
2

(a(y)− b(y)) =: f(x)− f(y)

i.e. S is trivial.

(iv) h is Hermitian if and only if

h(x, y) = h(y, x)

Given (8.10) this is equivalent to

k(x, y) + α(x) + β(y) = k(y, x) + α(y) + β(x)

If k is Hermitian, this is equivalent to

(8.16) α(x) + β(y) = α(y) + β(x)⇔ α(x)− β(x) = α(y)− β(y)

Since x, y ∈ S are arbitrary, there exists a constant a ∈ C such that

α(x)− β(x) =: a

is independent of x ∈ S. Moreover, from (8.16) with x = y, we see that a must be real. Therefore

(8.17) β(x) = α(x)− a

which is (8.13) with c = −a. Therefore h can be written in the form (8.14) and from this it is clear that h
is CPD if and only if k is. �
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Theorem 7. Let X be a set, k a kernel on X and x0 ∈ X an element of X. Then the following statements
are equivalent:

i) k is conditionally positive definite and

(8.18) k(x0, x0) ≤ 0

ii) the kernel

(8.19) 〈x, y〉 := k(x, y)− k(x, x0)− k(x0, y)

is positive definite on X.

Proof. For any finite set F ⊆ S and any choice of λx ∈ C (x ∈ F ) define

(8.20) λx0 := −
∑
x∈F

λx

so that ∑
x∈F∪{x0}

λx = 0

Now consider the quantity

(8.21)
∑
x,y∈F

λ̄x(k(x, y)− k(x, x0)− k(x0, y))λy =

=
∑
x,y∈F

λ̄xk(x, y)λy − (
∑
x

λx)−
∑
y∈F

k(x0, y)λy −
∑
x∈F

λ̄xk(x, x0)(
∑
x

λy)

=
∑
x,y∈F

λ̄xk(x, y)λy + λ̄x0

∑
y∈F

k(x0, y)λy +
∑
x∈F

λ̄xk(x, x0)λx0 =

=
∑
x,y∈F

λ̄xk(x, y)λy + λ̄x0

∑
y∈F

k(x0, y)λy +
∑
x∈F

λ̄xk(x, x0)λx0 + λ̄x0k(x0, x0)λx0 − λ̄x0k(x0, x0)λx0 =

=
∑

x,y∈F∪{x0}

λ̄xk(x, y)λy − λ̄x0k(x0, x0)λx0

If k is conditionally positive definite, then this is

≥ −λ̄x0k(x0, x0)λx0

and if (8.18) holds, this is ≥ 0.

Conversely, if the kernel (8.19) is PD, then the quantity (8.21) is positive for any finite set F ⊆ S and any
choice of λx ∈ C (x ∈ F ). In particular, if the λx ∈ C are chosen so that∑

x∈F
λx = 0

then the identity (8.21) gives

0 ≤
∑
x,y∈F

λ̄x(k(x, y)− k(x, x0)− k(x0, y))λy =

=
∑
x,y∈F

λ̄xk(x, y)λy − (
∑
x

λx)−
∑
y∈F

k(x0, y)λy −
∑
x∈F

λ̄xk(x, x0)(
∑
x

λy) =

=
∑
x,y∈F

λ̄xk(x, y)λy

i.e. the kernel k(x, y) is CPD.
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Finally, if the kernel (8.19) is PD, then choosing x0 = x = y one finds:

0 ≤ 〈x0, x0〉 = k(x0, x0)− k(x0, x0)− k(x0, x0) = −k(x0, x0)

which is equivalent to (8.18).
�

Theorem 8. The following statements are equivalent::

(i) There exists an interval [0, T ] such that ∀t ∈ [0, T ] the kernel (etkij ) is PD

(ii) ∀t ∈ R+ the kernel (etkij ) is PD

(iii) the kernel (kij) is CPD

Proof. (i) ⇒ (ii). By Schur’s theorem, ∀s, t ∈ [0, T ] the kernel

eskijetkij = e(s+t)kij

is PD and from this (ii) follows.

Since clearly (ii) ⇒ (i), it follows that (i) ⇔ (ii).

(ii) ⇒ (iii). This is the content of Lemma (11).

(iii) ⇒ (i) (in fact we will prove that (iii) ⇒ (ii)). Suppose that (kij) is CPD. Then, by a previous Remark,
its diagonal elements are real. Therefore one can find a function α, : i ∈ X → αi ∈ C such that the kernel

hij := kij − αi − αj
which is CPD by Lemma (12), satisfies

hii = kii − αi − αi = kii − 2Re(αi) ≤ 0 ; ∀i ∈ S

By Theorem (7) for any i0 ∈ X the kernel

hij − hii0 − hi0j = kij − αi − αj − kii0 + αi + αi0 − ki0j + αi0 + αj

= kij − kii0 − ki0j + αi0 + αi0 =: kij − βi + βj

with
βi := kii0 − αi0

is PD. Therefore, by Theorem (4) ∀t ≥ 0

et(kij−βi−βj) = e−tβietkije−tβj = e−tβietkij (e−tβj )∗

is PD hence, by Corollary (2), also
etkij

is PD ∀t ≥ 0 and this proves (ii) hence (i).
�

Lemma 13. For two Hermitian Kernels h, k the following are equivalent:

(i) ∀u0 ∈ X the positive definite kernels

(8.22) k(u, v)− k(u, u0)− k(u0, v) ; h(u, v)− h(u, u0)− h(u0, v)

differ by an additive real constant c.

(ii) There exists a function α : X → C such that

h(u, v) = k(u, v) + α(u) + α(v) + c
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Proof. If the kernels (8.22) differ by an additive real constant c,
then ∀u, u0, v ∈ X

k(u, v)− k(u, u0)− k(u0, v) = h(u, v)− h(u, u0)− h(u0, v) + c

⇔ (k − h)(u, v) = (k − h)(u, u0) + (k − h)(u0, v) + c

defining
α(u) := (k − h)(u, u0)

the Hermitianity of h and k implies that

α(v) := (k − h)(u0, v)

Conversely let h be of the form
h(u, v) = k(u, v) + α(u) + α(v) + c

then
h(u, v)− h(u, u0)− h(u0, v) =

k(u, v) + α(u) + α(v) + c− k(u, u0)− α(u)− α(u0)− c− k(u0, v)− α(u0)− α(v)− c =
= k(u, v)− k(u, u0)− k(u0, v)− α(u0)− α(u0)− c

= k(u, v) + k(u, u0) + k(u0, v)− Re(α(u0)) + c

i.e. the positive definite kernels (8.22) differ by an additive real constant c. �

9. Infinitely divisible kernels

Definition 10. A (positive definite) kernel

k : X ×X → C
is called infinitely divisible, if ∀n ∈ N there exists a (positive definite) kernel kn such that

knn = k

where knn denotes the n–th Schur power of kn.

Lemma 14. For a PD kernel the following statements are equivalent:

(i) k is infinitely divisible

(ii) ∀n ∈ N and ∀x, y ∈ X there exists a choice of the n–th root of k(x, y) such that the kernel

k1/n(x, y) := (k(x, y))1/n

is PD (iii) For each t ≥ 0 the kernel
kt(x, y) := k(x, y)t

is PD.

Proof. By definition if k is infinitely divisible then for each n and for some PD kernel knn,

knn = k ⇔ kn(i, j)n = k(i, j) ; ∀i, j
Therefore, denoting log(k(i, j)) the principal determination of the logarithm of k(i, j) one has

log(kn(i, j)) = (1/n) log(k(i, j))

Thus, defining
k(i, j)1/n := e(1/n) log(k(i,j))

one has
kn(i, j) = k(i, j)1/n

hence k(i, j)1/n is PD. Therefore for each k ∈ N

k(i, j)k/n
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is also PD. Finally, defining kt by continuity, one has that kt is PD ∀t ≥ 0. �

10. The Kolmogorov decomposition theorem for C–valued PD kernels

Remark: The following theorem shows that every positive definite kernel can be seen as a scalar product
in some Hilbert space.

Definition 11. A pre–Hilbert space is a vector space H, over the real or complex numbers, with an antilinear
embedding into its algebraic dual H∗

ξ ∈ H 7→ ξ∗ ∈ H∗

such that the kernel on H defined by

〈ξ, η〉 := ξ∗(η)

is positive definite.

Theorem 9. (Kolmogorov decomposition for positive definite kernels) Let X be a set. If k is a C–valued
positive definite kernel on X, then there exists an Hilbert space H and a map

v : X → H

such that:

(10.1) k(x, y) = 〈v(x), v(y)〉 = v(x)∗v(y) ; ∀x, y ∈ X

{v(x) : x ∈ X} is total in H

If {v0,H0} is another pair with these properties, then there exists a unitary operator U : H → H0 such that
Uv = v0.

In particular a positive definite kernel on S always satisfies the inequality

(10.2) |K(f, g)|2 ≤ K(f, f)K(g, g)

Proof. The atomic measures {δx : x ∈ X} are linearly independent probability measures on X hence the
map

(δx, δy) 7→ k(x, y)

uniquely extends, by sesquilinearity, to a pre–scalar product on the complex vector space X̃ generated by
them. Denote H the completion of the pre–Hilbert space obtained in this way and

η : X̃ → H

the quotient map. Denote v the restriction of η on X. Then the map v : X → H satisfies

〈v(x), v(y)〉 = 〈η(δx), η(δy)〉 = k(x, y)

The remaining statements are clear. �

Definition 12. A pair {v,H}, defined by Theorem (9), is called a Kolmogorov representation of the kernel
K : X ×X → C.
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11. Boson Fock spaces

Let H be an Hilbert space. Its scalar product 〈 · , · 〉 is a positive definite kernel on H hence, by Theorem
(4), also the kernel exp〈 · , · 〉 is.

Definition 13. The Kolmogorov decomposition of the PD kernel exp〈 · , · 〉 on H is denoted

{eH, v = e ·}
and called the exponential space (or Boson Fock space over H).

The total set
exp(H) := v(H) := {ef = vf ∈ eH : f ∈ H}

is called the set of exponential vectors of eH.

Remark: Recall that by definition of Kolmogorov decomposition the characterizing property of the expo-
nential vectors is

(11.1) 〈ef , eg〉 = 〈vf , vg〉 = e〈f,g〉 ; ∀f, g ∈ H

12. Infinitely divisible kernels and Boson Fock spaces

Definition 14. Let S be a set. A kernel k on S is called exponentially PD if there exists a PD kernel q
such that k is equivalent to eq, i.e. if there exists a function c : f ∈ S → cf ∈ C \ {0} such that

(12.1) c∗fk(f, g)cg = eq(f,g) = eq(f,g)−κ∗f−κg ; f, g ∈ S

Theorem 10. For a kernel k on a set S the following statements are equivalent.

(i) k(f, g) is exponentially PD

(ii) there exists a CPD kernel q0 such that k has the form

(12.2) k(f, g) = eq0(f,g) ; f, g ∈ S

(iii) k(f, g) is infinitely divisible, i.e. k(f, g)t is PD, ∀t ≥ 0

(iv) there exists a PD kernel q on S and a map f ∈ S 7→ κf ∈ C such that, denoting {H, v} (resp. {K, u})
the Kolmogorov decomposition of k (resp. q), then the map

(12.3) eκf vf ∈ H 7→ euf ∈ Γ(K)

extends to a unitary isomorphism between H and the Fock space Γ(K) over K.

Proof. (i)⇒ (ii). If k is an exponentially PD kernel then it has the form (12.1) with q( · , · ) PD. Therefore,
defining

κf := Logcf

where Logcf denotes the principal determination of the logarithm of cf one has

cf =: eκf

and the identity (12.6) holds with

(12.4) q0(f, g) := q(f, g)− κ∗f − κg
From Lemma (12) we know that the kernel q0(f, g) is CPD because q(f, g) is PD hence a fortiori CPD.

(ii)⇔(iii). k(f, g) has the form (12.6), for some CPD kernel q0, if and only if ∀t ≥ 0

(12.5) k(f, g)t = etq0(f,g)
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and, since q0(f, g) is CPD, the right and side is PD by Theorem (8). This is equivalent to say that k(f, g)
is infinitely divisible.

(iii)⇒ (iv) If k is infinitely divisible then, by Theorem (8), it has the form (12.6) for some CPD kernel q0.
Then by Theorem (7), and up to replacing q0 by an equivalent CPD Hermitian kernel, ∀f0 ∈ S the kernel

q1(f, g) := q0(f, g)− q0(f, f0)− q0(f0, g)

is PD.

By construction the Kolmogorov decomposition {H, v}, of k, satisfies

〈vf , vg〉 = k(f, g) = eq0(f,g)

Therefore
〈e−q0(f,f0)∗vf , e

−q0(f0,g)vg〉 = 〈e−q0(f0,f)vf , e
−q0(f0,g)vg〉 =

= e−q0(f,f0)eq0(f,g)e−q0(f0,g) = e−q1(f,g)

and (iv) follows by choosing
κf := q0(f0, f)

(iv) ⇔ (i). Suppose that (iv) holds and define

cf := eκf

the unitary isomorphism (12.3) implies that

c∗fk(f, g)cg = 〈eκf vf , e
κgvg〉 = 〈euf , eug 〉 = e〈uf ,ug〉 = eq(uf ,ug)

this means that k(f, g) is exponentially PD, i.e. (i) holds.
�

Theorem 11. Let S be a set. The infinitely divisible Hermitian kernels on S are a group under pointwise
multiplication.

Proof. According to Theorem (10) (ii), k is an infinitely divisible Hermitian kernel on S if and only if on S
there exists a CPDH kernel q0 such that k has the form

(12.6) k(f, g) = eq0(f,g) ; f, g ∈ S
Up to replacing q0 by an equivalent CPDH kernel one can assume that there exists f0 ∈ S such that

q0(f0, f0) = 0

In fact, for any f0 ∈ S, if α : C→ C is any function such that

q0(f0, f0) = 2Re(αf0)

then the CPDH kernel defined by
q′0(f, g) := q0(f, g)− αf − αg

by construction is equivalent to q0 and such that q′0(f0, f0) = 0.

By Theorem (7) the kernel
q(f, g) := q0(f, g)− q0(f, f0)− q0(f0, g)

is PDH hence, by Theorem (6), for any t ∈ R, the kernel etq is PDH. In particular e−q, which is the pointwise
inverse of eq, is PDH and for any t ∈ R+ one has

(e−q)t = e−tq

so that the kernel (e−q)t is PDH, i.e. the kernel e−q is infinitely divisible. �
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