EXISTENCE OF THE FOCK REPRESENTATION FOR CURRENT ALGEBRAS OF
THE GALILEI ALGEBRA

LUIGI ACCARDI, ANDREAS BOUKAS, AND JOLANTA MISIEWICZ

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

The investigation of the 3 problems stated below has led, in the past 10 years, to a multiplicity of new results
and to the discovery of several unexpected connections between different fields of mathematics and physics:

Problem I: construct a continuous analogue of the x—Lie algebra (and associative x—algebra) of differential
operators in d variables with polynomial coefficients

DOPC(RY) := { Z P, (2)0" ; z € RY; P, complex polynomials in d real variables}
neNd

where continuous means that the space
R¢ = {functions {1,...,d} — R}

is replaced by some function space
{functions R — R}

Since, for d = 1, this algebra can be canonically identified to the universal enveloping algebra of the one—
mode Heisenberg algebra Heisc(1), this problem is equivalent to the old standing problem of constructing
a theory of nonlinear quantum (boson) fields: hence its connections with the renormalization problem.

Problem II: construct s—representations of this algebra (typically a generalization of the Fock representa-
tion) as operators acting on some domain in a Hilbert space H

Problem III: prove the unitarity of these representations, i.e. that the skew symmetric elements of this
x—algebra can be exponentiated, leading to strongly continuous 1-parameter unitary groups.

The combination of the constructive results obtained in this direction with the no—go theorems have made
clear since the early developments of this programme, that the algebra DOPC(R?) is too large to allow a
nontrivial realization of this programme and that one has to restrict one’s attention to appropriately chosen
subalgebras of it (see the survey paper [7]).

The investigation of the connections of the renormalization problem with the problem of central extensions
of *—Lie algebras has led to the discovery that the one-mode Heisenberg algebra Heisc(1) admits a unique
non trivial central extension and to its boson representation.

More precisely: let a, a', h (central element) denote the generators of the one-mode Heisenberg algebra
Heisc(1), with relations

[a, aT]Heis =h ; [a, h]Heis = [ha aT}Heis =0
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Here and in what follows all omitted commutators are assumed to be equal to zero. We define p and ¢ by
the equations

(1.1) af=p+igq ; a=p—igq

and we suppose that af,a, h,p,q are realized in the Schroedinger representation, where the powers of all
these operators are well defined. The following result was proved in [6] and [2], see also [8] and [9].

Theorem 1. Up to isomorphisms there exists a unique nontrivial central extension of the Heisenberg algebra
Heisc(1), denoted CeHeisc(1), with generators a,a’, h, E (central element) and relations

[aaaT]CGHGis =h ; [ha aT]CeHeis =F 5 [aa h]CeHcis =F
(a)*=a" | h*=h E*=E
Furthermore (boson representation of CeHeisc(1)):

(i) one can choose constants A, B,C, D € C such that the elements

9 Ba' — Ba

Per = 4B _AB

o Aat — Aa

wen =I5 _AB
PCcH ‘= h/QZD

and the central element form a new set of generators of CeHeisc(1)
(ii) the map
(pQCvaCH7 qcH, E) = (p27pa q, 1) = (q2a q,p, 1)
extends to a x—Lie algebra isomorphism between CeHeisc(1) and the Galilei algebra (g%, q,p,1).

Various realizations of the Galilei algebra were well known and studied both in the Mathematical and Physics
literature (Bourbaki [12], Feinsilver and Schott [14], Franz [16], Ovando [18], ...). The apparently new point
in the above theorem was the identification of this algebra with the unique nontrivial central extension of
the Heisenberg algebra.

The continuous extension of CeHeisc (1), i.e. the current algebra of this *-Lie algebra over R (all what we
say in the following remains valid for R? for any d € N), has generators (in the sense of operator valued
distributions, see [11])

{q? y s 5 Pt ¢ S,th}
with brackets and involution well defined and deduced from the corresponding brackets and involution of
the usual (linear) free boson field in momentum representation:

(1.2) [ag,al] = 6(t — s) ; [al,al] = [ar,as] =0

(1.3) (as)" = a;r,
Therefore, for the Galilei algebra, Problem (I) above is easily solved.
The solution of Problem (II) for this algebra, namely:

Can one construct a generalization of the Fock x—representations for the current algebra of CeHeisc(1) over
R?

was open and, by a result of Accardi and Boukas obtained in [2], was reduced to the proof of the infinite
divisibility of the vacuum distribution of the self-adjoint elements of CeHeisc(1).

This proof was recently obtained in a joint paper (cf. [10]) by L. Accardi, A. Boukas and J. Misiewicz and
in the following we outline the main steps of the argument.
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The first step is to compute the vacuum characteristic function of the self-adjoint elements of CeHeisc(1)
(see section 2 below). Then we split this characteristic function as a product of two factors, one of which
is the characteristic function of the Gamma distribution and, by a scaling argument we reduce the proof of
infinite divisibility to the proof that the remaining factor is also the characteristic function of some probability
distribution i.e., by Bochner’s theorem, that it is positive definite and continuous at 0. This last statement
is proved by adapting to our goals the Fock space characterization of infinitely divisible measures on Lie
groups as developed by Araki, Woods, Parthasarathy, Schmidt, Guichardet (see the monographs [19], [17]
and the bibliography therein).

In the Appendix of the present paper we give a synthetic re-formulation, with a few integrations, of the part
of the theory that is needed to deduce the above mentioned theorem.

2. RANDOM VARIABLES IN CeHeisc(1)

As explained in section (1) we suppose that p,q are realized in the one mode Schroedinger representation
where we know that the operators of the form

X:=ILp*+Bp+Cq L,B,CeR

are essentially self-adjoint, so that their vacuum characteristic functions
(®,e*XD) seR

are well defined. In terms of {672 b2, b*b,bT, b, 1}, with the replacements

—-L/4 - L ; B/2,C/2 — B,C
and with the notation

M:=C+1B

we obtain

X = Lb™? + Lb* — 2LbTb + Mb' + Mb— L
Our first goal is to compute the characteristic function of X. To achieve this goal we use the following

splitting formula proved in [2].

Lemma 1. (Splitting formula) Let L € R and M, N € C. Then for all s € R such that2Ls+1>0

(2.1) e (L2+Lb"°—2L bt b—L+M b+ N b1) P — i) bi? ew2() T Jwals) g
where
Ls
2.2 = —
(2:2) w1 (s) SLst1
L(M+N)s>+ Ns
(2.3) wa(s) = 2 Lst1
(2.4) w(S)_(M+N)2(L234+2L33)+3MN32_ln(2Ls—|—1)
' s 6(2Ls+1) 2

Putting N := M in (2.4) we obtain

(2.5> esX P = ¢’ (=Lb>—L b2 42 L bl b+ L+M b+ 11 b > = ewl(s) bi? er(S) bf 611;3(3) P
where
Ls
2.6 = ——-
(2.6) wi(s) 2Ls+1

2Re(M)L s> + M s

(2.7) wa(s) = 5511
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AB2([?2s* +2Ls*) +3|M|2s2 In(2Ls+1
. wne) — 1 )+ 3MPs?  Wm(2Ls+1)
6(2Ls+1) 2

By analytic continuation (in s)

4B2(12 s*—2i L s%)—3|Mm |2 52

(2.9) ews() = (142 Lis)~ 2% T+ L9
In conclusion: the characteristic function of the vacuum distribution of the operator random variable
X =L¢*+Bg+Cp

18
4B2(L2 s%42i L s3)—3|M|2 52

(2.10) (D, ¢’ (La*+Ba+0p) @) — (1 — 2 Lis) /e e
=: (1 —2Lis)~Y/2eve(s:M)

3. INFINITE DIVISIBILITY
Recall, from equation (2.10), the definition
4Re(M)?Ls® (Ls + 2i) — 3| M|?s?
6(1—2iLs)

(3.1) Yr(s, M) :=

and notice two important remarks
(i) (scaling property) for every ¢t € R
4Re(M)?Ls® (Ls + 2i) — 3| M|?s>

(3.2) Yls, VIM) =t 6(1—2iLs)

= t’l/)L(S, M)

(ii) for every L € R and M € C,
(3.3) erm(s)=(1- 2Lis)71/26wL(s’M)

where @ (s, M), given by the left hand side of (2.10), is a characteristic function for every ¢t € R, and for
every L € R and M € C.

Denoting
o(s) = (1 —2Lis)~1/?

we have that

(3.4) pra(s) = p(s)elr (M)
Suppose that one can prove that, for every L € R and M € C, the function
e¥r(s,M)

is a characteristic function. Then this characteristic function is infinitely divisible because the scaling prop-
erty implies that, for any ¢ > 0:

(eVr (MY — e (s,M) _ gbr (s,v/EM)
which is a characteristic function because of our assumption.

Therefore the left hand side of (3.3), which is already known to be a characteristic function, is infinitely
divisible being the product of two infinitely divisible characteristic functions.

The proof that, for every L € R and M € C, the function e¥2(>M) is a characteristic function depends on
the following result.

Theorem 2. In the semigroup, for pointwise multiplication, of positive definite kernels on R (the choice of
R is irrelevant), the infinitely divisible positive definite kernels form a subgroup.
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The proof of this theorem follows from the general theory of infinitely divisible positive definite kernels as
developed in the monograph [19].

3.1. A particular case.

Theorem 3. If

B=Re(M)=0& M €iC
the vacuum characteristic functions given by (2.10) are infinitely divisible with cumulant generating function
given by

M > sus 1/2 M2 [~ _
(3.5) 7i|4l|/ s 7/0 (1 _ ewu)%€72l’udu— |8L‘2 /O (1 _ ezsu)672Ludu

Remark: Formula (3.5) gives also the explicit form of the associated Levy measure.

APPENDIX: INFINITELY DIVISIBLE KERNELS
4. KERNELS AND MATRICES

Definition 1. Let S be a set, a function K : (x,y) € S x S — k(z,y) € C is called a C-valued kernel on
S (only kernel if no ambiguity is possible). If S is a finite set, then there exists a d € N such that, up to
relabeling the elements of S can be identified to the subset {1,...,d} C N. With this identification a kernel
on S is identified to the d x d complex matrix

]ﬂ(l,j) = ki,j ; 27]6{1,7(1}
4.1. Positive definite matrices. In the following C will be considered as a Hilbert space with scalar

product (z,y) := Zy so that B(C) is identified to C acting on itself by multiplication. For d € N and
k= (kij) € My(C) and z1,--- ,zq € C we will use the notation

d
fikijscj = Z jikijzj = <‘Taky>

ij=1

(i.e. we assume summation over repeated indices) where (-, -) denotes the hermitian scalar product on C?
d
- d
<$,y> :Zx]yj ; aj:(x17"'amd)7y:(yla"'ayd)e(c
j=1

R? is identified to the subspace of C? obtained as range of the projection
= (21, - ,2q) € C¢— Re(x) := (Re(x1),- - , Re(xq))
The restriction on R? of the hermitian scalar product on C? is real valued. The d x d complex matrices
M4(C) act naturally on C¢; this action induces a action of the d x d real matrices My(R) on C?.
The adjoint k* of a matrix k = (k;;) is defined by
(ke,y) = (z,k"y) : w=(21,-,2a) , y= (1, ,ya) €C?
Thus
(k")i; = kji

Definition 2. A matriz k = (k;;) € M4(C) is called:
(i) Hermitian if

(x, kx) = T;kjjx; € R ; Vi, - ,xq € C
(ii) skew—Hermitian if

(x,kx) = Zik;jo; =0 ; Vi, -+ ,xq € C
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(iii) symmetric if it is Hermitian and with real coefficients, i.e.
k= (kfu) S Md(R)

(i) symplectic if it is skew—Hermitian and with real coefficients, i.e.

k= (k;;) € Mg(R) ; (x, kx) = Zikijz; =0 ; Vi, - ,xq € C
Lemma 2. A matric k = (k;j) € Mq(C) is:
(i) Hermitian if and only if
(4.1) kji =kij & k=k* ; Vi, - ,xq € C
In particular k = (k;;) € Mq(C) is Hermitian if and only if its restriction on R? is Hermitian.
(i) skew—Hermitian if and only if its diagonal coefficients are zero and

(4.2) ki =—kij & k=—k* ; Va1, - ,24€C; i#]j

(ii1) symplectic if and only if Vi, j € {1,--- ,d}
kij = —kj;
(iv) skew—Hermitian and Hermitian if and only if its diagonal coefficients are zero and its off-diagonal
coefficients are purely imaginary.
Proof. Let k = (k;;) € My(C). k is Hermitian if and only if Vaq,--- ,2q € C
(x,kz) = Zikijr; = (Zikijz;)” = xikix; = Tikjix;
Since 1, -- ,x4 € C are arbitrary, this is equivalent to (4.1). The restriction to R? of the above identity

gives

wikijxj = ZL’ik‘ji.’Ej
From this (4.1) follows by choosing Yig, jo € {1,--- ,d}
Tj=0i,, ; Yi=0j,
k is skew—Hermitian if and only if Vz1,--- ;24 € C
& Tikijy; = —y;kjici
Fixing g, jo € {1, -+ ,d} and choosing

Tj = 51'0,1‘ v Y = 5j0,j
one finds
kiojo = _kjoio
Finally k = (k;;) € M4(C) is skew—Hermitian and Hermitian if and only if
kji = _kij = _];ji ) VZ,] S {]., s ,d}

i.e. ki = 0 and kj; is purely imaginary for ¢ # j.
|

Lemma 3. A matriz h = (h;j) € My(C) is Hermitian if and only if the matriz Re(h) := (Re(h;;)) € Mq(R)
15 symmetric, i.e.

(4.3) Re(h;j) = Re(hj;)

and the matriz Im(h) := (Im(h;;)) € Ma(R) is symplectic, i.e.

(4.4) Im(h;;) = —Im(h;;)
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Proof. h = (h;;) is Hermitian if and only if

and this is equivalent to the identities (4.3) and (4.4).

Definition 3. A matriz (k;;) € My(C) is said to be positive definite if

d
(45) Z x:»‘kijxj Z 0

ij=1

Vzi,...,2q € C. If in addition

d
(46) mek”xJ:O@m::md:O

i,j=1
then the matriz (kij) (4,5 =1,...,d) is called strictly positive definite.
Remark: Note that the diagonal elements of a positive definite matrix are positive because Vz € C
¥k = |x|2k“ >0
Lemma 4. k € M4(C) is PD if and only if for every skew—Hermitian matriz S € My(C), k+ S is PD
Proof. Clear from the definition of PD. |

Remark: If k is positive definite and Hermitian and S € M,4(C) is symplectic, then k + .S is PD but it is
Hermitian if and only if S is. If this is the case, being also skew—Hermitian, S must be symplectic by Lemma
(2) hence its diagonal coefficients are zero and its off-diagonal coefficients are purely imaginary. Thus there
exist matrices which are positive definite but not Hermitian.

Lemma 5. A matriz k € My(C) is positive definite and Hermitian if and only if there exist two Hermitian
matrices a,b € Hermq(C) such that

(4.7) k= (a® +b*) +i(ab — ba)

Remark: In particular any such k£ has the form
(4.8) k=kgy+ + ks

with kg + PDH and kg skew adjoint. This decomposition is highly non unique , reflecting the no uniqueness
of the square root.

Proof. k is positive definite and Hermitian if and only if there exists a matrix € My(C) such that k& = 2*x.
Writing

1 1
(4.9) xzi(x+x*)+§(x—a:*) =:a+1ib

by construction a and b are Hermitian. Therefore k is positive definite if and only if it has the form

k= (a+ib)*(a +ib) = (a — ib)(a + ib) = (a® + b*) +i(ab — ba)
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Remark: Using the identity (4.9) any matrix k& can be written in the form
(4.10) k = kg +iks = Re(kp) + ilm(kp) + iRe(ks) — Im(ks)
where

ky =kl ; ks =kj
Re(ky), Re(ks) are Hermitian and Im(kg), Im(kg) are skew—symmetric.
Lemma 6. k = (k;j) is positive definite if and only if, in the notation (4.10):
(4.11) Re(ks) =0

(4.12) Re(kp) is positive definite Hermitian
k = (ki;) is positive definite and Hermitian if and only if
(4.13) ks =0

Remark: In particular any positive definite Hermitian k& = (k;;) has the form
(4.14) k=kr+iks
where kp = Re(ky) is real PDH and k; = Im(ky) real Hermitian.

Proof. The decomposition (4.10) and the positive definiteness of k& imply that
0 < (x,kx) = (z,Re(kg)z) + (x,ilm(ky)z) + (z,iRe(ks)z) — (x,Im(ks)x)
= (x,Re(km)z) + i{z,Re(ks)x)
In particular the right hand side is real and, by Lemma (3), Re(kg) € M4(R) is symmetric, so that:
(x,Re(km)z) + i(z,Re(ks)x) = (Re(kn)x,x) — i(Re(ks)z, z) = (x,Re(kg)x) — i{x, Re(ks)x)
< (x,Re(ks)x) = —(z,Re(ks)z) < (x,Re(ks)z) =0

But, since Re(kg) is real Hermitian, it can be symplectic if and only if it is zero, i.e. (4.11) holds. In this
case

0 < (x,Re(km)z)
which is (4.12). Finally k = (k;;) is positive definite and Hermitian if and only if
Re(ky) + ilm(ky) — Im(ks) = k = k* = Re(kg)™ — ilm(ky)* — Im(ks)* =

= Re(kp) + ilm(kgy) + Im(ks) < Im(kg) =0

Lemma 7. Any positive definite matriz k can be written in the form
(4.15) k = Re(kp) + iIm(kg) — Im(ks)

where Re(kp) is a real positive definite matriz and Im(ky) Im(ks) are real skew-symmetric. Conversely if
Re(kpr), Im(kp) and Im(ksg) have these properties, then the right hand side of (4.15) is a positive definite
matriz.

Proof. Clear from Lemma (6). O
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5. POSITIVE DEFINITE KERNELS
Definition 4. A kernel k(-,-) on S is called positive definite if Vn € N, Vaq,...,x, € S, V&1,..., & €N

(5.1) §ik(r, 25)65 = 0
i.e. if the matriz (k(x;,x;)) is positive definite.

Remark: From (5.1) it is clear that PD kernels on S are a cone, closed under pointwise convergence.

Lemma 8. Given a kernel k on S, define the kernels k, k* respectively by

(5.2) k(z,y) = k(x,y)*
(5.3) k*(2,y) == k(y, )"
Then one of these kernels is PD (resp. CPD) if and only if the other two are PD.

Proof.
Thus k is PD (resp. CPD) if and only if k* is. Similarly
§ k(g 2x)e, = E k(xj, a) & = (Gik(a), Tr,)&)" = (§k(2s, 21,)E0)" > 0 &
Gk, )€ > 0
Thus k is PD (resp. CPD) if and only if k is.

Corollary 1. If k is a PD (resp. CPD) kernel then its real part defined by

Re(k)(z,y) = %(k(x,y) + k(y, z)")

is PD.
Corollary 2. If k(f,g) is a positive definite kernel on S then, for any family t; € C, also the kernel
t}k(fa g)tg
is positive definite. Conversely, if there exists a map
c:feG—cyeC\{0}
(i.e. with all cy’s invertible) such that the kernel
(5.4) H(f,9) := cik(f,9)cq
is PD, then the kernel k(f,g) itself is PD.
Proof. Let k(f,g) be positive definite. Then, for any family ¢; € C, also the kernel
ki(f,g) :=t3k(f, 9)tg = k(f, 9)t}ty

is PD, being the Schur product of two PD kernels. Conversely, if the kernel H(f, g), defined by (5.4) is PD
then, by the first part of the Lemma, also the kernel

k(f.g) = (7)) H(f, g)ey
is PD.
O

Definition 5. Two positive definite kernels on S, ki,ks are called equivalent if for some functiont : S —
C\{o}
kl(f7 g) = t}kQ(fv g)tg
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5.1. Schur’s lemma.
Lemma 9. (Schur) If H = (H,i), k = (k;i) are PD then their Schur product
H (¢] k = (ijkjk)

is PD. In particular the cone of PD kernels on S is a semigroup under Schur multiplication with identity
given by

lo1* : (1ol%);; =1 : Vi,j €S
k= Z QT T, ; kjk = amTmiTmk
m
H= Zﬁmxmx:q ) ij = 5mxmi§mk
m
O, B >0

Xj(k o H)jk/\k = XjkijjkAk = XjamirmjfmkﬂnynjynkAk

= amPm (ijmjynj)(fmkynk)‘k) = am6m| mekynk/\kF >0

k
Other proof:
a=(ax) b= (b)
By the spectral theorem for matrices
a=zx"x : b=1vy"y

Ni@irbip A = XixfjxjkyfzylkAk = NTU0Z kYN = |[TjeyumAe|® >0

Lemma 10. The family of C—valued positive definite matrices (kernels on S) is closed under:
— pointwise multiplication (Schur’s Lemma)

- pointwise addition

— pointwise multiplication by a positive scalar

— pointwise limits

— integrals

Proof. From the definition of positive-definiteness. O

Definition 6. A Borel function f : C — C is called completely positive (Hermitian) if ¥d € N and for any
positive definite (Hermitian) matriz A = (a;5) the matric

foA:=(f(ay))
is positive definite (Hermitian)

Remark: The above definition is equivalent to say that, for any set S and for any kernel k on S, the
composite kernel on S

is positive definite (Hermitian).

Remark: An interesting open problem is to characterize the completely positive (Hermitian) Borel functions

f:C—C.

Corollary 3. The exponential function on C is completely positive and Hermitian.
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Proof. We have to prove that, if k is a positive definite Hermitian kernel on S, then its exponential kernel
has these properties. By Schur’s Lemma Vn € N k™ (Schur’s power) is positive definite. Lemma (10) implies
that e* is positive definite. Moreover Va,y € S

(ek(z,y))* = F@y) — k(yz)

Therefore e* is Hermitian. O

Remark: In fact we will see that the exponential function on C has a much stronger positivity property
(see Theorem (5) and Corollary (4)).

Definition 7. A kernel h is called exponential if it is of the form h = e where k is a kernel on S. In this
case h is called the exponential kernel of k.
6. FUNCTIONS OF POSITIVE DEFINITE MATRICES

Theorem 4. Let A = (a;;) be any Hermitian complex matriz. Then there exists an € > 0 such that
Ve € [—g,g]
14+cA

18 invertible and both 1 + €A and its inverse are PD and Hermitian.

Proof. Since, for any unitary matrix U, the properties of being PDH are invariant under the transformation
A — U*AU, we can suppose that A is diagonal, say A = diag(s1,...,Sy), with the s; real. Then

1+eA=diag(l+es1,...,14+¢es,)
is Hermitian, PD and, for € small enough, invertible. For the same &:
(1 + EA);jl = (Sij(l + ESj)_l >0

Thus (1 + eA)~! is also positive and this proves the thesis.
O

Theorem 5. Let (a;j) be an Hermitian matriz. Then ¥t € R the matriz (€'%7) is positive definite and
Hermitian.

Proof. Let (a;;) be as in the statement and let € > 0 be as in Theorem (4). Then, V¢ € R, the matrix e'®ii
is Hermitian and for all n € N such that |t/n| < g, the matrix

(e5)
n

tai; \"
(e'7) = lim <1+aj>
n

is PD. It follows that

n—oo

is PD and Hermitian.
O

Corollary 4. Let (a;;) be a positive definite Hermitian matriz. Then ¥t € R the matriz (e™™(®i)) s
positive definite and Hermitian.

Proof. Let (a;;) be a positive definite Hermitian matrix. From Lemma (7) we know that (Re(a;;) is PD and
Hermitian hence, Theorem (5) implies that, V¢ € R, both (e~*#¢(@i1)) and that (e'®) are PD and Hermitian.
Therefore V¢t € R

(etaij ) (e—tRe(aij)) — (eitlm(aij))

is PD and Hermitian. O
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Corollary 5. Let (a;;) be a positive definite Hermitian matriz such that

(61) Re(aij) >0 ) Vi, j

Then
1
aij

Proof. By Theorem (4) (e~'*) is PD Hermitian for any ¢ > 0 and condition (6.1) implies that Vi,j the
function t € Ry +— e~'%J is integrable. Therefore by Lemma (10) the matrix

+o0 100 Je—tai; —ta;; |°°
—ta;; e "t [ 1
/ et dt = / =
0 0 —Qij — iy

= — 3 V’L,]
is PD Hermitian as an integral of PD Hermitian matrices. t

is a positive definite Hermitian matriz.

0o @ij

7. FUNCTIONS OF POSITIVE DEFINITE KERNELS
Theorem 6. Vt € R the functions
2 €C s e? ; z € C o tIm(®)
are completely positive and Hermitian.

Proof. Let S be a set and let k be a PD(H) kernel on S. Then, for any finite subset F' C S, (k(z,¥))z,yer
is a PD(H) matrix. Hence, ¥t € R the matrices

oth(@,y) ; eitIm(k(z,y)) : x,y e F

are PD(H), i.e. the kernels
tk . eitlm(k)

are PD(H) and this implies the thesis. O

Corollary 6. A kernel of the form h = e* with k positive definite Hermitian is Schur—invertible and its
tnverse is also PDH.

Proof. Since k is positive definite Hermitian it follows that, V¢ € R, e** is PDH. In particular e % = (e¥)~!
is PDH. O

Corollary 7. If K is a positive definite Hermitian kernel on S then, for any a < b € Ry, the kernel on S

DK (zy) _ paK(z,y)

is positive definite Hermitian.

Remark: In particular the kernels
eK@y) _q

sinh(tK (x,y)) ; vt e R
are PD Hermitian (the PD and Hermitianity of cosh(tK (x,y)) follows from Lemma (10).

Proof. The kernels K (z,y) and (V¢ € R) are positive definite Hermitian. From this it follows that
b
/ K(z, Z/)etK(I’y)dt — ebK(zy) _ paK(z.y)
a

is PD Hermitian. O
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Remark: The analogue of Theorem (4) in general is false. In fact, if K : S x S — C is an Hermitian kernel
on S, then for every finite subset F' C S there exists an £r > 0 such that, Ve € [, Zp| the kernel on S

(1+eK)(z,y) :=0z,y +eK(z,y)
is PD(H). The basic difference between the matrices (finite dimensional case) and kernels (infinite dimensional

case) is that in the above €r depends on the finite set F'. The result is true if k is bounded in L>-norm.

8. CONDITIONALLY POSITIVE DEFINITE KERNELS

Semigroups of positive definite matrices play an important role in several fields of mathematics. In this
section we characterize their generators. We begin with some necessary conditions.

Lemma 11. If, Vt € Ry the kernel (e'*ii) is PD, then the kernel (k;;) is such that for any finite family of
complex numbers (X\;) satisfying

(8.1) dA=0

one has:
(8.2) > Xikijh; >0
ik

Such a k admits a unique representation of the form

(8.3) k=ko+S

with ko = kg 1s positive definite and S real symplectic.

In the representation (8.3), S = 0 if and only if Vt € R the kernel (e**i) is PD and Hermitian,

Proof. We begin proving (8.2). Suppose that V¢ € Ry the kernel (e‘*ii) is PD, i.e. that V¢ € [0, 7]

Teian, > 0

then, whenever condition (8.1) is satisfied, one has, Vt € [0, T], assuming summation over repeated indices:
0 < Nie*ii )\ = Net*ii N — N

therefore, for ¢t > 0:

(etkis — 1)

(8.4) 0< N\ ;

Aj
and, letting ¢ | 0, (8.2) follows.
Finally if, V¢ € Ry the kernel (e'*ii) is Hermitian, then

d

£|t=0(6

i.e. k is self-adjoint, which implies S = 0.

_4d
Cdt

- d g -
)= (%h:oetk”)* = ki =o€ = kj;

To prove the hermitianity of the kernel k = (k;;) denote Vi,j € S

(8.5) kij =t Re(kij) + itIm(kij) =: kpij + ks, = ku(ij) + tks(ij)
with kp jj, ks ;; € R. Since Vt € Ry the kernel (e'*i7) is PD, by a previous Remark,
ethii = etf1.ii (cos(tks j;) +isin(ths ;) >0 ; Vi€ S; V>0
which is possible if and only if V¢ > 0 and Vj € X
sin(tks j;) =0 < kg ;=0
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and this proves that
(8.6) ki, €eR ; VieS
Finally condition (8.2) implies in particular that YA € C and Vi, j € X
0 < Ak(i, )\ + Ak(§, )N — Me(d, )X — Mk (4,9)\
and, since kg(%,7) = 0 because of (8.6), putting A\ = 1, this becomes
0 < k(i i) + k(j, J) — k(i) = k(jy8) = k(i) + ki (j.3) — ki (is ) — kar(6,5) — i(ks (6, 5) + ks ()
Thus
(8.7) k(i) + ks (1) = 0 ks(i,5) = —ks(j,i)
Thus we can write
kij = kn,ij + tks,i; = %(kH,i,j + ki) + %(kH,z’,j —knji) +iks,i;
and defining

1 .
kosij = 5 (kiig + krja) +iks,ij = ko,
1
Sij = 5(kmig — ki)

we see that kg is self-adjoint, S real symplectic and (8.3) is satisfied. If k = k{, + S’ is another representation
of the form (8.3), then
k+S=k+S <k—k=5-S5
This implies that
Im(k — k) =0< Im(k) = Im(kj)
Re(k —ky) =S — S
But the left hand side is symmetric and the right hand side is anti-symmetric. Hence both sides must be

zero and the representation (8.3) is unique.
O

Definition 8. In the notations of Lemma (11) a complex matriz (k;;) € Mq(C) is said to be conditionally
positive definite (CPD) if it satisfies the necessary conditions of Lemma (11), i.e. it has the form (8.3) and

(8.8) > Xikijh; =0
gk

for any finite family of complex numbers (\;) such that
(8.9) > A=0
J

If in addition k is Hermitian, we say that k is CPD Hermitian.

Remark: From (8.3) it follows that, if k£ is CPD then its diagonal elements are real.
Remark: If f:.S — C is any function, the kernels

k(z,y):=fl@)+ fly) 5 fl@)-f)
are CPD and the kernel -

E(x,y) = f(z) + f(y)

is CPD Hermitian. All these kernels are called trivial.

Definition 9. A kernel k(-,-) on E is called conditionally positive definite if Vn € N, Vxq,...,x,, the
matriz (k(x;,x;)) is conditionally positive definite.
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Lemma 12. Let k be a CPD kernel on X and, for any pair of functions a, 3 : X — C, define the kernel
(8.10) h(z,y) = k(z,y) + a(z) + B(y)

Then the kernel (8.10):

(i) always satisfies condition (8.8) for any finite family of complex numbers (X;) satisfying (8.9)

(i) is CPD if and only if there exist real valued functions

(8.11) a,b,y:x €S —a(zx),b(z),y(x) eR
such that
(8.12) a(z) =a(z) —iv(z) ; Blz)=>bz)+iv(z)

(iii) is CPD Hermitian if and only if S is trivial
() if k is Hermitian, h is Hermitian if and only if for some constant ¢ € R one has
(8.13) Blz) =a(z) +c
In this case, denoting
1
ap(x) == zc+ a(x)

2
one has

(8.14) ha,y) = k(z,y) + ao(z) + o(y)
and h is CPD if and only if k is.

Proof. (i) It is clear that, if k is CPD, then for any choice of the functions « and 3, the right hand side of
(8.10) satisfies condition (8 8) for any finite family of complex numbers (\;) satisfying (8.9).

(ii) From the decomposition (8.3) of k one deduces that, for h to be CPD, one must have the identity
(8.15) W, y) = ko(z,y) + S(2,y) + az) + B(y) = ho(2,y) + So(z,y)
for some hg = h{ and Sp real symplectic. This is equivalent to
ko(z,y) — ho(z,y) = So(z,y) — S(x,y) — a(x) — B(y)
Taking adjoints this gives

kO(‘ray) - h0($7y) = SO(‘T77J) - S($, y) - Oé(l') - (y)

Since hy and kg are Hermitian, this implies that
So(z,y) = Sz, y) — alx) — By) = ko(x,y) — ho(z,y) = ko(y, ) — ho(y,z) =
= So(y,x) = S(y, @) — aly) — B(x) = =So(x,y) + S(z,y) — aly) — B(z) &

& 250(z,y) — 25(z,y) = alz) — aly) + B(y) - B(z)

exchanging the roles of z and y one has
2So(y, ) — 25(y,x) = 25(2,y) — 250(z,y) = a(y) — a(z) + B(z) — B(y)

Thus the right hand sides of the two equations must be opposite:

a(z) = aly) + By) - Bx) = —aly) + a(z) = Blz) + By) &

& 0= (a(y) - a(y)) + (a(z) - a(x)) + (B(z) - B(z)) + (B(y) - By))

Putting x = y gives

0 = 2(a() — a(@)) + 2(8(z) — B(@)) = 4ilm(a(x)) + 4ilm(B(z)) <
& Im(B(z)) = ~Im(a(z)) = —y()
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& a(r) = a(x) —iy(x) 5 Ble)=blz)—iy(x) ; a(z)bz),(zr) R
and this proves (8.12). Conversely, if (8.11) and (8.12) are satisfied, then
W, y) = ko(x,y) + a(z) + b(y) +i(y(y) — () + S(z,y)

= ko) + 5(a(x) +a(y) + 5 (b(y) +b(x)) +i(3(y) — 7(w)) + 5alz) — alw)) + 3 ((y) ~ b(x)) + S(a,v)

2
Thus defining
ho(ay) = kol ) + 3 (al@) + aly)) + 3 (b(y) +b(z)) +i(x(y) ~1(x))

Solir,y) = 5 (ale) — aly)) + 5 (b(y) ~ b(z)) + S(ay)

one has

hot,9) += Fol,) + 5 (a(a) + o)) + 5 (b(y) + () — i(3(y) ~ (x)) =

S0, ) = 5(aly) — ale)) + 3 (b(x) ~ b(y)) + S(y,)
= —5(a(e) — aly) ~ 30(y) ~ b(x)) ~ S(a,9) = ~So(a9)

hence hg is Hermitian and Sy is symplectic, so that i is CPD.

(iii) is CPD Hermitian if and only if

(b(y) = b(x)) + S(z,y) <

| =

0= So(a,y) = 5 (alx) — aly)) +

& S(a,y) = 3 (ala) ~ b(a)) — 5(aly) — b)) = F(z) ~ F(5)
i.e. S is trivial.

(iv) h is Hermitian if and only if

h(z,y) = h(y, z)

Given (8.10) this is equivalent to
k(z,y) +a(z) + Bly) = k(y. z) + aly) + B(z)

If k£ is Hermitian, this is equivalent to
(8.16) a(x) + B(y) = aly) + B(z) & a(z) — Bz) = aly) - By)
Since z,y € S are arbitrary, there exists a constant a € C such that

a(z) - B(z) = a
is independent of z € S. Moreover, from (8.16) with = y, we see that a must be real. Therefore
(8.17) Blx) =a(z) —a

which is (8.13) with ¢ = —a. Therefore h can be written in the form (8.14) and from this it is clear that h
is CPD if and only if k is. O
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Theorem 7. Let X be a set, k a kernel on X and xg € X an element of X. Then the following statements
are equivalent:

i) k is conditionally positive definite and

(8.18) k‘(.’lﬁo,l‘o) S 0

ii) the kernel

(819) <Z‘,y> = k(l‘,y) - k(xva) - k(x07y)
is positive definite on X.

Proof. For any finite set F' C S and any choice of A\, € C (z € F) define

(8.20) A == D A

el
so that
> =0
zeEFU{zo}
Now consider the quantity
(8.21) > Aalk(@,y) — k(x,20) — k(z0,y)) Ay =
Tyl
= D Mak(@y)Ay — Qo A)” D k(zo,y)hy — D Aak(z,20) (Y Ay)
r,yel T yeF z€F T
= Z Ask (2, y) Ny + Az Z k(zo,y) Ay + Z Aok(x, 20) Ay =
z,yeF yeF zeF
= Z ek (2, )Ny + Aag Z k(zo,y) Ay + Z Aok (2, 20) Azg + Auo k(T0, T0) Azg — Auo k(T0, T0) Azg =
z,yEF yeFr zeF
= Z Aok (@, Y) Ny — Aao k(205 T0) Aag
z,ye FU{zo}

If k is conditionally positive definite, then this is
Z 75\10143(1’07 xO)Amo
and if (8.18) holds, this is > 0.

Conversely, if the kernel (8.19) is PD, then the quantity (8.21) is positive for any finite set ' C S and any
choice of A\, € C (z € F). In particular, if the A\, € C are chosen so that

Z)\xzo

zEF
then the identity (8.21) gives

0< > Nalk(w,y) — k(x,20) — k(wo, y))Ay =

z,yeF
= D Akl Ay = QM) D k(wo,y)hy — Y Aekla,z0)(D_Ay) =
z,yeF T yeF zeF T
= Z Aok (z,9) Ay
z,yel

i.e. the kernel k(x,y) is CPD.
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Finally, if the kernel (8.19) is PD, then choosing x¢g = x = y one finds:
0 < (20, 20) = k(zo,20) — k(20, z0) — k(20, x0) = —k(20, T0)

which is equivalent to (8.18).

Theorem 8. The following statements are equivalent::

(i) There exists an interval [0, T) such that ¥t € [0,T] the kernel (et*i) is PD
(ii) V¥t € Ry the kernel (et*ii) is PD

(iii) the kernel (ki;) is CPD

Proof. (i) = (ii). By Schur’s theorem, Vs,t € [0, 7] the kernel

esklij e

thiy — p(s+t)ki
is PD and from this (ii) follows.

Since clearly (ii) = (i), it follows that (i) < (ii).

(ii) = (iil). This is the content of Lemma (11).

(iii) = (i) (in fact we will prove that (iii) = (ii)). Suppose that (k;;) is CPD. Then, by a previous Remark,
its diagonal elements are real. Therefore one can find a function «,: ¢ € X — a; € C such that the kernel

hij == kij — oy — @
which is CPD by Lemma (12), satisfies
hii = kis — a; —@; = ki — 2Re(a;) <0 : VieS
By Theorem (7) for any ig € X the kernel
hij = hisg = higj = kij — @ — @ — Kigy + o + @y — Kigj + a4y + @5
= kij — kiig — Kigj + Qi + @iy =2 kij — Bi + 5,
with
Bi = ki, — 0y
is PD. Therefore, by Theorem (4) V¢t > 0
etkig=Bi=B;) — o= thi gthij o —t8; — o—thi gthij (=18 )*
is PD hence, by Corollary (2), also

etkij

is PD Vt > 0 and this proves (ii) hence (i).

Lemma 13. For two Hermitian Kernels h, k the following are equivalent:

(i) Yug € X the positive definite kernels

(8.22) E(u,v) — k(u, uo) — k(ug,v) ; h(u,v) — h(u,up) — h(ug,v)
differ by an additive real constant c.

(i) There exists a function o : X — C such that

h(u,v) = k(u,v) + a(u) + a(v) + ¢
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Proof. If the kernels (8.22) differ by an additive real constant c,
then Vu, ug,v € X
k(u,v) — k(u,uo) — k(ugp,v) = h(u,v) — h(u,ug) — h(ug,v) + ¢
< (k= h)(u,v) = (k= h)(u,up) + (k — h)(ug,v) + ¢

defining

a(u) == (k= h)(u,up)
the Hermitianity of A and k implies that

a(v) = (k — h)(ugp,v)

Conversely let h be of the form

h(u,v) = k(u,v) + a(u) + a(v) + ¢
then
h(u,v) — h(u,up) — h(ug,v) =
E(u,v) + a(u) + av) + ¢ — k(u, ug) — a(u) — a(ug) — ¢ — k(ug,v) — aug) — a(v) — ¢ =
= k(u,v) — k(u, ug) — k(ug,v) — a(ug) — a(ug) — ¢
= k(u,v) + k(u,uo) + k(up,v) — Re(a(ug)) + ¢
i.e. the positive definite kernels (8.22) differ by an additive real constant c.

9. INFINITELY DIVISIBLE KERNELS

Definition 10. A (positive definite) kernel

k: XxX—>C
is called infinitely divisible, if Vn € N there exists a (positive definite) kernel k,, such that
k, =k

where k! denotes the n—th Schur power of k.

Lemma 14. For a PD kernel the following statements are equivalent:
(i) k is infinitely divisible
(i) Vn € N and Vx,y € X there exists a choice of the n—th root of k(x,y) such that the kernel
KV (,y) = (k(a,y)) "
is PD (iii) For each t > 0 the kernel
k' (2, y) = k(z,y)"
is PD.
Proof. By definition if k is infinitely divisible then for each n and for some PD kernel &,
kr=k < kn(i,)" = k(i,5) ; Vi, j
Therefore, denoting log(k(i, 7)) the principal determination of the logarithm of k(i, j) one has
log(kn(i,5)) = (1/n)log(k(i, j))

Thus, defining
k(i, )" = e(1/m) 108 (k(i.1))

one has
Fon (i) = (3, )"
hence k(i,5)'/™ is PD. Therefore for each k € N
k(i )"

19
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is also PD. Finally, defining k! by continuity, one has that k* is PD V¢ > 0. |

10. THE KOLMOGOROV DECOMPOSITION THEOREM FOR C—VALUED PD KERNELS

Remark: The following theorem shows that every positive definite kernel can be seen as a scalar product
in some Hilbert space.

Definition 11. A pre—Hilbert space is a vector space H, over the real or complex numbers, with an antilinear
embedding into its algebraic dual H*

EeH—E& eH”
such that the kernel on H defined by
(&m) =¢&"(n)
is positive definite.

Theorem 9. (Kolmogorov decomposition for positive definite kernels) Let X be a set. If k is a C—valued
positive definite kernel on X, then there exists an Hilbert space H and a map

v: X —H
such that:

(10.1) k(z,y) = (v(x),v(y)) = v(@)v(y) 5  VeyeX

{v(z): 2 € X} s total in H

If {vo, Ho} is another pair with these properties, then there exists a unitary operator U : H — Ho such that
Uv =yg.

In particular a positive definite kernel on S always satisfies the inequality

(10.2) \K(f,9)]> < K(f,[)K(g,9)

Proof. The atomic measures {4, : x € X} are linearly independent probability measures on X hence the
map

(02, 0y) = k(z,y)

uniquely extends, by sesquilinearity, to a pre—scalar product on the complex vector space X generated by
them. Denote H the completion of the pre—Hilbert space obtained in this way and

n:X —>H
the quotient map. Denote v the restriction of 7 on X. Then the map v : X — H satisfies
(v(z),v(y)) = (n(d2),n(0y)) = k(z,y)

The remaining statements are clear. (Il

Definition 12. A pair {v, H}, defined by Theorem (9), is called a Kolmogorov representation of the kernel
K:XxX—C.
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11. BOSON FOCK SPACES

Let H be an Hilbert space. Its scalar product ( -, - ) is a positive definite kernel on H hence, by Theorem
(4), also the kernel exp( -, - ) is.

Definition 13. The Kolmogorov decomposition of the PD kernel exp( - , - ) on H is denoted
{e"v=rec"}
and called the exponential space (or Boson Fock space over H ).

The total set
exp(H) :==v(H) = {e/ =vsce™ : feH}

is called the set of exponential vectors of et.

Remark: Recall that by definition of Kolmogorov decomposition the characterizing property of the expo-
nential vectors is

(11.1) (ef,e9) = (vp,v,) = 9 ; Vf,ge™H

12. INFINITELY DIVISIBLE KERNELS AND BOSON FOCK SPACES

Definition 14. Let S be a set. A kernel k on S is called exponentially PD if there exists a PD kernel q
such that k is equivalent to e?, i.e. if there exists a function c¢: f € S — ¢y € C\ {0} such that

(12.1) Chh(f,g)cy = 109 = eth9)=rs=rg . fge g
Theorem 10. For a kernel k on a set S the following statements are equivalent.
(i) k(f,g) is exponentially PD

(i) there exists a CPD kernel qo such that k has the form

(12.2) k(f.g)=e®9 o fges

(iii) k(f,g) is infinitely divisible, i.e. k(f,g)t is PD, Vt >0

(i) there exists a PD kernel ¢ on S and a map f € S — ky € C such that, denoting {H,v} (resp. {K,u})
the Kolmogorov decomposition of k (resp. q), then the map

(12.3) ey e Hio et e T(K)
extends to a unitary isomorphism between H and the Fock space T'(K) over K.

Proof. (i)= (ii). If k is an exponentially PD kernel then it has the form (12.1) with ¢( -, - ) PD. Therefore,
defining

kg = Logcy
where Logcy denotes the principal determination of the logarithm of c; one has

cy =:e"

and the identity (12.6) holds with
(12.4) a(f,9) = aq(f,9) — K} — Ky
From Lemma (12) we know that the kernel ¢o(f,g) is CPD because ¢(f, g) is PD hence a fortiori CPD.
(ii)<(iii). k(f,g) has the form (12.6), for some CPD kernel qq, if and only if V¢ > 0

(12.5) k(f,g)t = el9(f9)
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and, since qo(f,g) is CPD, the right and side is PD by Theorem (8). This is equivalent to say that k(f,g)
is infinitely divisible.

(iii)= (iv) If k is infinitely divisible then, by Theorem (8), it has the form (12.6) for some CPD kernel gq.
Then by Theorem (7), and up to replacing go by an equivalent CPD Hermitian kernel, Vf, € S the kernel

a(f,9) == q(f,9) — qo(f, fo) — q0(fo, 9)

is PD.
By construction the Kolmogorov decomposition {H, v}, of k, satisfies

(05, v9) = k(f,9) = e

Therefore

<e*qo(f~,fo)*vf, e*IIo(foqg)Ug> <efqo(fo,f)vf’ e*Qo(f()’g)Ug)
— ¢~ 90(f:f0) g0 (f,9) g =a0(fo,9) — c—a1(f.9)
and (iv) follows by choosing
kg :=qo(fo, f)
(iv) & (i). Suppose that (iv) holds and define
cf =€

the unitary isomorphism (12.3) implies that

RS, 9)ey = (¢ up, €500) = (6%, %) = lurms) = catur

this means that k(f, g) is exponentially PD, i.e. (i) holds.
O

Theorem 11. Let S be a set. The infinitely divisible Hermitian kernels on S are a group under pointwise
multiplication.

Proof. According to Theorem (10) (ii), & is an infinitely divisible Hermitian kernel on S if and only if on S
there exists a CPDH kernel gy such that k has the form

(12.6) k(fog)=e®U9) o fges
Up to replacing gp by an equivalent CPDH kernel one can assume that there exists fy € S such that
q0(fo, fo) =0

In fact, for any fy € S, if a: C — C is any function such that

q0(fo, fo) = 2Re(ay,)

then the CPDH kernel defined by
a0 (f9) = qo(f,9) —ay —ag
by construction is equivalent to ¢o and such that g (fo, fo) = 0.
By Theorem (7) the kernel
a(f,9) = ao(f,9) — a0 ([, fo) — q0(fo, 9)
is PDH hence, by Theorem (6), for any ¢ € R, the kernel e*? is PDH. In particular e~¢, which is the pointwise
inverse of e, is PDH and for any ¢ € R, one has
()= e

so that the kernel (e~%)" is PDH, i.e. the kernel e~ is infinitely divisible. O
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