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Comparatively recently, it was discovered that the
Yang–Mills equations are equivalent to the Laplace
equation with Laplacian virtually coinciding with the
operator introduced at the beginning of the past century
by Paul Levy (see [1–3] and the references therein). In
[1–3], some modifications of the Laplace–Levy opera-
tors were also introduced. In what follows, we refer to
the operators introduced by Levy as classical Levy
Laplacians and to their modifications, as nonclassical
Laplacians. In this paper, we describe a general method
for defining and studying both types of operators,
which makes it possible to extend results on Levy
Laplacians to nonclassical Laplacians (of course, with
natural modifications).

We define an infinite family of Laplacians, whose
elements are classical Levy Laplacians and the nonclas-
sical Laplacian related to the Yang–Mills equations (it
is natural to call the remaining elements nonclassical
Laplacians of corresponding orders) and describe the
relationship between these Laplacians and quantum
random processes. The suggested constructions use
functionals on a space of operators, which we call
Cesàro traces and define by using suitable Cesàro
means. Simultaneously, we consider Volterra Lapla-
cians and find analogies between them and Levy Lapla-
cians.

1. DEFINITIONS AND TERMINOLOGY

Let 

 

E

 

 be a separable locally convex space (LCS)
admitting continuous Hilbert norms; suppose that 

 

p

 

 is
one of such norms, 

 

H

 

 is the Hilbert space obtained by
completing 

 

E

 

 with respect to the norm 

 

p

 

,

 

 and 

 

(

 

·

 

, 

 

·

 

)

 

H

 

 is
inner product in this space; we denote the norm gener-
ated by inner product by the same symbol 

 

p

 

. Suppose
also that 

 

E

 

*

 

 is the space of continuous linear function-
als on 

 

E

 

 endowed with the locally convex topology
compatible with the duality between 

 

E

 

*

 

 and 

 

E

 

. Then,

the canonical embedding of the LCS 

 

E

 

 into the Hilbert
space 

 

H

 

 is continuous and has dense image (in fact, this
image is 

 

E

 

 itself). It follows that the mapping 

 

H

 

*

 

 → 

 

E

 

*

 

dual to this embedding (

 

H

 

*

 

 denotes the Hilbert dual to
the space 

 

H

 

) is also a continuous embedding with dense
image. Therefore, identifying the spaces 

 

H

 

 and 

 

H

 

*

 

, we
obtain a rigged Hilbert space 

 

E

 

 

 

⊂ 

 

H

 

 = 

 

H

 

* 

 

⊂

 

 

 

E

 

*

 

.

 

1

 

 If 

 

K

 

 is
an LCS, then the expression 

 

E

 

 

 

⊂

 

 

 

K

 

 

 

⊂

 

 

 

E

 

*

 

 means that the
corresponding embeddings are continuous. Note that if

 

x

 

 

 

∈ 

 

E

 

 and 

 

g

 

 

 

∈

 

 

 

H

 

 

 

⊂ 

 

E

 

*

 

, then we have, in natural nota-
tion, (

 

x

 

, 

 

g

 

)

 

H

 

 = 

 

〈

 

g

 

, 

 

x

 

〉 

 

(

 

≡

 

g

 

(

 

x

 

)

 

). If 

 

g

 

 

 

∈ 

 

E

 

*

 

 and 

 

x

 

 

 

∈ 

 

E

 

*

 

, then
the symbol 

 

〈

 

g

 

, 

 

x

 

〉

 

 is also used in the case where 

 

x

 

belongs to the completion of 

 

E

 

 in the continuous norm
with respect to which the functional 

 

g

 

 is continuous; in
this case, 

 

〈

 

g

 

, 

 

x

 

〉

 

 denotes the value at 

 

x

 

 of the extension
of 

 

g

 

 to this completion.

Finally, let 

 

e

 

 = (

 

e

 

n

 

)

 

 be an orthonormal basis in 

 

H

 

consisting of elements of the space 

 

E

 

. We assume that
the linear span of the basis 

 

e

 

 is dense in 

 

E

 

. The objects
defined in what follows depend on the choice of the
norm 

 

p

 

 (which determines the embedding of 

 

E

 

 into 

 

E

 

*

 

)
and of the basis 

 

e

 

, but we do not mention this as a rule.

The further exposition is partly formal, and some
analytic assumptions are omitted.

2. TRACES AND CESÀRO INNER PRODUCTS

For LCS 

 

G

 

1

 

 and 

 

G

 

2

 

, the symbol 

 

L

 

(

 

G

 

1

 

, 

 

G

 

2

 

)

 

 denotes
the vector space of all linear continuous mappings
from 

 

G

 

1

 

 to 

 

G

 

2

 

; instead of 

 

L

 

(

 

G

 

, 

 

G

 

)

 

, we write 

 

L

 

(

 

G

 

)

 

. The
terms “operator” and “linear mapping” are considered
as synonyms; thus, an operator is a linear mapping
from one LCS to another. Let 

 

D

 

 be a linear mapping
from 

 

E

 

 to 

 

E

 

*

 

.

 

1

 

In the definition of a rigged Hilbert space, it is usually assumed in
addition that 

 

E

 

 is a nuclear countably Hilbert space, i.e., 

 

E

 

 is a
nuclear Fréchet space whose topology is determined by a (count-
able) family of pairwise comparable compatible Hilbert norms.
Note that there exist non–countably Hilbert nuclear Fréchet
spaces admitting continuous (Hilbert) norms.
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Definition 1. If A ∈ L(E, E*), then the trace trDA of
an operator A generated by an operator D is defined as

In particular, if A is the restriction to E of an operator
A0 ∈ L(H) and D is the identity mapping (on the space
E), then trDA coincides with the usual trace of the oper-
ator A0 on the Hilbert space H.

Definition 2. If A ∈ L(E, E*), then the Cesàro trace

A of an operator A generated by an operator D is
defined as

In particular, the Cesàro trace generated by the identity
operator coincides with the Levy trace defined in [4].

Remark 1. If A is a linear operator on a Hilbert
space H and (en) is an orthonormal basis in H contained
in the domain of A, then the Cesàro trace trA of the
operator A on H (with respect to the basis (en)) is
defined by

where (·) is inner product in H. Thus, if E = H = H* =
E*, e = (en), and A ∈ L(H), then this Cesàro trace coin-
cides with the above Cesàro trace generated by the
identity operator.

Remark 2. Cesàro traces generated by nonidentity
operators are said to be nonclassical. In fact, we used
such traces in [4] to define operators which we called
exotic Levy Laplacians.

Definition 3. The inner product generated by an
operator D is the function denoted by (·, ·)D and defined
as follows. The domain dom(·, ·)D of this function is the
Cartesian square of the vector subspace

of the space E*; if (a, b) ∈ dom(·, ·)D, then

trDA ADe j De j,〈 〉 .
j 1=

∞

∑=

trD
C

trD
C A

1
k
--- ADe j De j,〈 〉 .

j 1=

k

∑
k ∞→
lim=

trA
1
k
--- Aen en,( ),

j 1=

k

∑
k ∞→
lim=

a E*: a De j,〈 〉 2

j 1=

∞

∑∈ ∞<
⎩ ⎭
⎨ ⎬
⎧ ⎫

a b,( )D a De j,〈 〉 b De j,〈 〉 .
j 1=

∞

∑=

Definition 4. The Cesàro inner product generated by

an operator D is the function denoted by (·, ·  and
defined as follows. The domain of this function is the

subset dom(·, ·  of the space E* × E* determined by the

equality dom(·, ·  = {(a, b) ∈ E* × E*: the sequence
(〈a, Dej〉〈b, Dej〉) has Cesàro mean}; if (a, b) ∈

dom(·, · , then (a, b  = a, Dej〉〈b, Dej〉.

Remark 3. It can be shown that the set of those a ∈
E* for which the Cesàro inner square (a, a  is defined
(and finite) is not a linear space; therefore, for Cesàro
inner product, the analogue of Definition 3 is incorrect.

Example 1. If a, b ∈ E* and A = a ⊗ b, then A =

(a, b .

3. LAPLACE–LEVY AND LAPLACE-VOLTERRA 
OPERATORS

In this section, we define the operators mentioned in
the title and consider their simplest properties. The
exposition is organized so as to emphasize the similar-
ity between these operators rather than the difference
between them. In the same way as usual traces (includ-
ing those generated by nonidentity operators) deter-
mine Volterra Laplacians (which are known also as
Gross Laplacians), Cesàro traces determine Laplace–
Levy operators.

A real-valued function f on E is said to be differen-
tiable in a direction h ∈ E*\E at a point x ∈ E if it is
Gáteaux differentiable at this point and there exists an
LCS K such that E ⊂ K ⊂ E*, h ∈ K, and the derivative
f '(x) is continuous in the topology induced on E by the
topology of the space K. In this case, the derivative of
the function f in the direction h ∈ E*\E at the point x ∈
E is defined as the value at h of the continuous exten-
sion of f '(x) to K; this derivative is denoted by f '(x)h.
Let C2(E) be the vector space of all twice Gáteaux dif-
ferentiable (real-valued) functions on E; by domD we
denote the vector subspace of this space consisting of
all functions f such that, for every x ∈ E, trD f ''(x) exists,

and  is the vector subspace consisting of all func-

tions f such that, for every x ∈ E, f ''(x) exists.

Definition 5. The Laplace-Levy operator on C2(E)
determined by an operator D is the (linear) mapping

 from  to the function space on E defined by

)D
C

)D
C

)D
C

)D
C )D

C 1
k
--- 〈

j 1=

k

∑
k ∞→
lim

)D
C

trD
C

)D
C

domD
L

trD
C

∆D
L domD

L

∆D
L f( ) x( ) trD

C f '' x( ).=
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The Levy–Laplace operator determined by the identity
operator is said to be classical; it is denoted by ∆L.

Definition 6. The Laplace–Volterra operator on C2(E)
determined by an operator D is the (linear) mapping ∆D

from domD to the function space on E defined by

Remark 4. The above definitions of operators
depend on the choice of the norm p determining the
rigged Hilbert space structure, although the notation
does not indicate this.

Remark 5. The Laplace–Volterra operators deter-
mined by nonidentity operators D have been considered
earlier, although, apparently, their properties discussed
below have not been mentioned explicitly.

Many properties of Laplace–Levy and Laplace–Vol-
terra operators determined by nonidentity operators are
similar to those of operators determined by the identity
operator, which were described in [4]. In this paper, we
state only two propositions.

Proposition 1 (the chain rule). If g ∈ C2(E) and f ∈
C2(�1), then

and

Proposition 2 (Leibniz’ formula). If g, f ∈ C2(E),
then

and

The following proposition and example describe a
relationship between the classical and nonclassical
Laplace–Levy operators. Their statements do not
include any assumptions about the domains of these
operators.

Proposition 3. If F ∈ C2(E), then ∆LF(x) = (F °
D–1)(x).

Example 2. Suppose that H = L2(0, π), E is the space
of infinitely differentiable functions on [0, π] vanishing
at zero endowed with the topology of uniform conver-
gence of functions and their derivatives of any order,

∆D f( ) x( ) trD f '' x( ).=

∆D
L f  ° g( ) x( ) f '' g x( )( ) g' x( ) g' x( ),( )D

C=

+ f ' g x( )( ) ∆D
L g( ) x( )

∆D f  ° g( ) x( ) f '' g x( )( ) g' x( ) g' x( ),( )D=

+ f ' g x( )( ) ∆Dg( ) x( ).

∆D
L f g⋅( ) x( ) g x( ) ∆D

L f x( ) f x( ) ∆D
L g x( )⋅+⋅=

+ 2 f ' x( ) g' x( ),( )D
C

∆D f g⋅( ) x( ) g x( ) ∆D f x( ) f x( ) ∆Dg x( )⋅+⋅=

+ 2 f ' x( ) g' x( ),( )D.

∆D
L

and the elements of an orthonormal basis e are deter-

mined by the equalities en(t) = sint. Suppose also

that functions Fj (j = 1, 2) on E and an operator D are
defined by

Then, for any x ∈ E,

and, therefore, by the preceding proposition,

(at the same time, F1(x) = 0 for all x and F2 does

not belong to the domain of the operator ∆L).

4. LAPLACIANS AND QUANTUM RANDOM 
PROCESSES

By definition, a quantum random process is a func-
tion defined on a part of the real line and taking values
in some space of operators.2 In what follows, it is not
necessary to choose a particular space of this kind.

2 For example, in Hida calculus (which is also known as white
noise analysis), these operators act from a space of test functions
defined on a suitable space of generalized functions endowed
with the Gaussian measure to a space of distributions (on the
space of generalized functions). The relationship between the
classical (Kolmogorov) theory of random functions, the Gelfand–
Ito theory of generalized random functions, and Hida calculus
can be described as follows. To pass from a classical random
function, that is, a function f of two arguments (time and an ele-
ment of the probability space) to a generalized random function,
we must allow f to be a generalized function of the first argument,
and to pass to a random function in the sense of Hida calculus, we
must allow f to be generalized in the second argument (and, in
addition, assume the probability space to be chosen in a special
way). Any ordinary random function locally integrable with prob-
ability 1 can be identified with a generalized random function
(over the space �), but not any generalized random function can
be assigned a value at every moment of time (an example is the
derivative of a Wiener process). In Hida calculus, any random
process (including all derivatives of a Wiener process) has values
at every moment of time, but these values are distributions on an
infinite-dimensional vector space (with Gaussian measure) rather
than random variables, and not every ordinary random function
can be assigned to a random process in the sense of Hida.

2
π
---

F1 x( ) f 1 t( ) x t( )( )2 t,d

0

π

∫=

F2 x( ) f 2 t( ) x' t( )( )2 t, Dg( ) t( )d

0

π

∫ g' t( ).= =

∆LF1 x( ) 2 f 1 t( ) td

0

π

∫=

∆
D

1–
L F2 x( ) 2 f 2 t( ) td

0

π

∫=

∆
D

1–
L
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For h ∈ E*, by b(h) we denote the operator of differ-
entiation in the direction h, which acts on a function
space on E. Thus, if z ∈ C2(E) and x ∈ E*, then
b(h)(z)(x) = z'(x)h.

In what follows, we assume that the assumptions of
Example 2 hold. If h = δt, then we write b(t) instead of
b(h); if h is the shift θt by t of the Heaviside function θ,
then we write bθ(t) instead of b(h).

The symbols

are defined by the equalities (here and in what follows,
we consider integrals of functions taking values in
spaces of generalized functions or of operator-valued
functions on [0, π])

and

We also use other similar notations.

For each positive integer n, the symbols b(n)(t) and

 denote the derivatives of the corresponding orders

of the functions b(·) and δ(·); we set b0(t) = b(t) and

 = δt; for each negative integer n, we define b(n)(t) =

(τ)dτ and  = dτ (in particular,

b(−1)(t) = bθ(t)).

δt

0

π

∫ δt t2d⊗  ⊗ δt
2 t2,d

0

π

∫≡

 ⊗ θt
2 t2, b t( )2 t2d

0

π

∫d

0

π

∫ b t( )b t( ) t2, bθ t( )2 t2d

0

π

∫d

0

π

∫≡

 ⊗ δt
2 t2d

0

π

∫ δt δs t s,dd⊗
t s– �; t s, 0 π,[ ]∈<{ }

∫� 0→
lim=

 ⊗ θt
2 t2d

0

π

∫ θt θs t s,dd⊗
t s– �; t s, 0 π,[ ]∈<{ }

∫� 0→
lim=

b t( )2 t2d

0

π

∫ b t( )b s( ) t s,dd

t s– �; t s, 0 π,[ ]∈<{ }
∫� 0→

lim=

bθ t( )2 t2d

0

π

∫ bθ t( )bθ s( ) t s.dd

t s– �; t s, 0 π,[ ]∈<{ }
∫� 0→

lim=

δt
n( )

δt
0( )

b n 1+( )

0

t

∫ δt
n( ) δτ

n 1+( )

0

t

∫

Proposition 4. For any integer n,

in particular,

where d is the Gáteaux differentiation operator.

Theorem 1. For any integer n,

in particular,

Theorem 2. For any integer n,

in particular,

Remark 6. If the space H is endowed with the
canonical Gaussian measure, then the functions t � θt

and t � δt describe a Wiener process and its derivative,
i.e., the so-called white noise. If the spaces on which
the operators bθ(t) and b(t) act and the adjoint operators
(bθ(t))* and (b(t))* are defined in an appropriate way,
then the functions t � (bθ(t), (bθ(t))* and t � (b(t),
(b(t))* are a quantum Wiener process and a quantum
white noise, respectively (cf. [10]).

Thus, in the situation under consideration, the repre-
sentations of classical Laplacians use quantum white
noise, while those of nonclassical Laplacians use its
derivatives or integrals, in particular, the Wiener pro-
cess.

Theorems 1 and 2 contain results obtained of [4] on
representations of classical Laplacians (they corre-
spond to n = 0).

b n( ) t( )2 t2d

0

π

∫ δt
n( )

0

π

∫ δt
n( )dt2

 ° d
2;⊗=

bθ t( )2 t2d

0

π

∫ θt

0

π

∫ θtdt2
 ° d

2,⊗=

∆
D

n b n( ) t( )b n( ) t( ) t;d

0

π

∫=

∆
D

1– bθ t( )2 t.d

0

π

∫=

∆
D

n
L b n( ) t( )b n( ) t( ) t2;d

0

π

∫=

∆
D

1–
L bθ t( )2 t2.d

0

π

∫=
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