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We have recently proved that the generators of the seconutiged centerless Virasoro (or
Witt)-Zamolodchikovws, algebra can be expressed in terms of the Renormalized Hiyhweers
of White Noise (RHPWN) and conjectured that this inclusiomyimiin fact be an identity, in the
sense that the converse is also true. In this paper we prewehis conjecture is true. We also
explain the difference between this result and the bosoreseptation of the centerless Virasoro
algebra, which realizes, in the 1-mode case (in particuiiiout renormalization), an inclusion
of this algebra into the full oscillator algebra. This ingllon was known in the physics literature
and some heuristic results were obtained in the directiothefextension of this inclusion to
the 1-mode centerless Virasoro (or Witt)—Zamolodchikoy-algebra. However, the possibility
of an identification of the second quantizations of these tigelmas was not even conjectured
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1. Introduction

DEFINITION 1. The standardi-dimensional Fock scalar white noiss defined
by a quadruple{H, b,, b;", ®}, wherer € R?, H is a Hilbert space® € H is a unit
vector called the Fock vacuum, ar, b,T are operator-valued Hida distributions
satisfying the boson commutation relatio[is,bj] = 38(t —s) and having the Fock

property b,® = 0 and the adjoint propert)(b;r)’r = b;, plus additional domain

properties (not specified here).

(1]
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THEOREM 1. Denoting by Sg the space of right-continuous step functions
f : R — C with compact support and satisfying(0) = 0, there exists ax-Lie
algebra with generatordB;(f) : k,n e N, f € So} (whose precise white noise form
is given in Eq.(1.2) below), involution given by(B}(f))" = BX(f), and brackets
given by
[B(2), BY (f)Irrpwn = (k N — K n) B¢ 1(2f).

Proof: The x-property is clear by construction. By direct calculatiomse shows
that the bracket$-, -lrupwn Satisfy the Jacobi relations. For details see [1] and [2].

The %-Lie algebra defined by the above theorem is calledReaormalized Higher
Powers of White NoiséRHPWN) x-Lie algebra. The following problems arise: (i)
Construct a concrete mathematical model for the abstratgijned RHPWNx-Lie
algebra; (i) Construct Hilbert space representations hef RHPWN x-Lie algebra;
(iii) Prove exponentiability of the symmetric generatofsttte RHPWN x-Lie algebra
in a given Hilbert space representation and identify theresponding Lie group.
Heuristic results in the physics literature (cf. [3]), artktresults presented in this
paper, suggest that a natural candidate for the correspgride group is the group
of area preserving diffeomorphisms on a (special) 2-méifghere are classical
realizations on the cylindeR x S'). The above given definition of the RHPWN
x-Lie algebra was motivated by the discovery that, if the powaf the Dirac delta
function are renormalized by the prescription

8t —5) =68(s)8(t — s), 1=23,.... (1.1)

then, forn, k > 0, the resulting renormalized higher powers of white noise
Bl (f) = fRd fb]" bk dt, (1.2)

where BJ(f) = fga f@)dt - 1 (multiple of the unique central element), which
are well defined as sesquilinear forms (matrix elements) hen algebraic span of
the number vectord]_; Bé(fi)CD of the usual boson Fock space, satisfy weakly
on that domain, the defining relations of the RHPWHMLie algebra in the sense
that the adjointB}(f)* of the sesquilinear formB}(f) is defined in the obvious
way, and the bracket (commutatdi; (), BY (g)] of the sesquilinear forms; (f)
and BY(g) is defined by bringing to normal order the produch (f) BY (g)
and BY(g) B/(f) by applying the RHPWN commutation relations, including the
renormalization prescription, and letting the resultingkmally ordered form act on
the 1-st order number vectors through the usual prescngtidhe family of these
sesquilinear forms is clearly a complex vector space with plointwise operations
and, with the above defined involution and brackets, it bexm representation of
the RHPWN x-Lie algebra introduced in Theorem 1.

LEMMA 1. Let A, be an arbitrary double sequence of complex numbers and
let f,. be an arbitrary double sequence ify. Then the sesquilinear form
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q:=  AniB}(fui) (1.3)
n,k

is well defined (weakly) on the algebraic span of the numbetove of the usual
boson Fock space.

Proof: For any pair of number vectors, y, the expression

q(x.y) =Y Apilx, BY(f)y)
n,k

is a finite sum of complex numbers. O

DEFINITION 2. On the space of all sesquilinear forms on the algebraio spa
the number vectors of the usual boson Fock space, we defin@paoty by the
semi—norms

g1x,y = 1g(x, y) (1.4)
where ¢ is a sesquilinear form and, y are number vectors.

It follows from Lemma 1 that the completion of the RHPWH®MLie algebra with
respect to the family of seminorms (1.4) is the family of fatnseries of the form
(1.3). In the following when speaking of the RHPWH®MLie algebra we will mean
this larger family. Lemma 1 allows one to give a meaning to themageneral class
of functions of the renormalized white noise.

DEFINITION 3. Let F(bT, b;) be a formal power series in the noncommutative
indeterminatesb,T, b,. If, by applying the RHPWN commutation relations, incluglin
the renormalization prescriptions, one can write thisesem the form)_, , An,kbf”bﬂ‘
where each coefficienti, ; is a complex number (in particular finite!), then we say

that the formal power serieE(b,T,b,) definesa function ofb;r,b,. The meaning of
this function is that by multiplying by test functiong, () and integrating term
by term in dt, we obtain the sesquilinear forr[n,k An ik BE (fui), which is well
defined by Lemma 1.

In the following we will produce concrete examples of funot of b,T, b;.

2. The centerless Virasoro (or Witt)}-Zamolodchikov-w,., *-Lie algebra

Following a completely different line of thought, people donformal field theory
and in string theory were led to introduce anothetie algebra (cf. [3, 5]).

THEOREM 2. There exists ax-Lie algebra with generators{l?,’(1 :neN, n>2,
k € Z}, involution given by(B;)* = B”,, and brackets given by

(Bl B luse = k(N = 1) = K (n — 1)) BiT{ 2
Proof: See [3]. O
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DEFINITION 4. The x-Lie algebra defined in Theorem 2 is called tbenterless
Virasoro (or Witt)—Zamolodchikow,, *-Lie algebra.

Notice that no test functions appear in the above definitionour language, we
can say that the above-Lie algebra is the 1-mode version of the algebra we are
interested in, or equivalently, that the algebra we arerésted in, is a second
guantization of thew,, =-Lie algebra. As usual, the existence of such an object
has to be proved.

THEOREM 3. There exists a«-Lie algebra with generators{é,ﬁ'(f) neN, n>
2, keZ, f eS8}, involution given by

(BL(f)* =B () (2.1)
and brackets given by
[B/(8), BY (H)luse = k(N —1) — K (n — 1)) Bl TR (2. (2.2)
Proof: Clearly, for all test functionsf, g € So andn,k, N, K > 0,
[BR(2). BR (f)lus =0 and [BL(2). B} (H)lus = —[B} (), BY (9)]une-

To show that commutation relations (2.2) satisfy the Jadédéntity we must show
that for all test functionsf, g, h and n;, k; > 0, wherei =1, 2, 3,

Bk1 (f). B, 2(9), By S Tuog Jwes + (B, S(h), [B; LD, B, 2(8) Twoo Jus
+ By 2(8), (B, S(h), By (N Nuwsglwee =0,
i.e. that
{(ka(nz — 1) — k3(nz — 1)) (ka(nz +n3 — 3) — (k2 + k3)(n1 — 1))
+ (ki(n2 — 1) — ka(n1 — 1)) (ks(n1 + nz — 3) — (k1 + k2)(n3 — 1))
+ (ka(n1 — 1) — ke (ng — 1)) (ka(nz +n1— 3) — (ka+ ko) (na — 1)} BE2 037 (fgh) = 0,
which is true, since
(ko(ng — 1) — k3(nz — 1)) (ka(nz + ng — 3) — (k2 + k3)(n1 — 1))
+ (k1(n2 — 1) — ka(n1 — 1) (ks(n1 +nz — 3) — (k1 + k2)(nz — 1))
+ (ka(n1 — 1) — ka(ng — 1)) (ka(ng +n1 — 3) — (ks + k1)(n2 — 1)) =0
Finally, in order to show that, with involution defined by I}.
[BE (), BY ()T, = [(BR (&))", B{(/ )],

i.e. that . -
[B{(f), Bg (D], = [BY(2), B",(Hlue

we notice that both sides of the above equation are equal to
(k(N —1) — K(n — 1)) B"}" 3 (F9). O
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DEFINITION 5. The x-Lie algebra defined in Theorem 3 is called teecond
quantized centerless Virasoro (or Witt)-Zamolodchikavs =*-Lie algebra.

The term Zamolodchikov is due to the fact that, is a large N limit of
Zamolodchikov’'s Wy algebra (cf. [5, 6]). The term Virasoro is justified by the
following theorem.

THEOREM 4. The family of operators{ék2 1k € Z} forms ax-Lie subalgebra of
the w,, Lie algebra, with involution(B?)* = B2, and brackets
[BZ, BRlvir := (k — K) BY ¢
which are precisely the defining relations of the centerMisasoro (or Witt) algebra.
Proof: The proof follows directly from Theorem 2 for = N = 2. O

The following second quantized version of the above theoadso holds.

THEOREM 5. The family of operators{f?,f(f) . f € So; k € Z} forms a x-Lie
subalgebra of the second quantized,, Lie algebra, with involution(é,f(f))* =
B2,(f) and brackets

[B2(2), BR ()i := (k — K) B, (2/).
Proof: The proof follows directly from Theorem 3 fot = N = 2. O

DEFINITION 6. The x-Lie algebra defined in Theorem 5 is callede second
guantized centerless Virasoro (or Witt) algebra

3. The connection between the second quantized,, and the RHPWN x-Lie
algebras

The striking similarity between the brackets of the RHPWHMLie algebra

[B(g). BY (f)Irrpwn = (kN — K n) BiT¢ "1 (gf)
and the brackets of the second quantizeqd x-Lie algebra

(B (2), BY ()l = k(N —1) — K (n — 1)) BITN"%(gf)

strongly suggests that there should be a connection betwlentwo. However,
there are also strong dissimilarities. The sets, indeximg generators of the two
algebras, are differenttB;(f) : k,n € N,, f € Sp} for the RHPWN x-Lie algebra,
and {}§,’j(f) :neN,n>2kelZ, f eS8y for the second quantizea,, *-Lie
algebra . The following Theorem 6, obtained in [1], was thestfidefinite result
in the direction of establishing a connection between thePRM and w,, *-Lie
algebras.
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THEOREM 6. In the sense of formal power series the following identitydso

. t (b, + b " t
B]’(l(f) e /l%d f(t)eg(ht—b[)(%) e%(b[_ht)dt (31)

Proof: The proof can be found in [1]. O

The following Lemma (cf. [4]) on the generators of the Helseng—Weyl Lie
algebra, is the basic tool used in the proofs of Theorems &ealbmd 7, 9 below.

LEMMA 2. Letx, D andh satisfy the Heisenberg commutation relatigiys x] = &
and [D, h] =[x, h] = 0. Then, for alls,a,c € C,

, S a
es(x+aD+c/1) _ esxeAaD (sc+ v )h

and

esDeax _ eaxesDeash

3.1. The inclusion: analytic continuation of the second quantized w,, € RHPWN

The following theorem expresses the generatéf$f) of the second quantized
Ws *-Lie algebra as a series of the forﬁn)k An i B} (far) of the generatorsB!(f)
of the RHPWN x-Lie algebra. The considerations of the previous sectiaowsthat

this series has a meaning and that it is obtained from a fumaif b, and b,T, also
defined in that section.

THEOREM 7. Let n > 2 and k € Z. Then, for all f € So,

. 1 n—1 "
BI(f) =5 C )}j}j(bp——BﬁTMAﬂ, (3.2)
m=0 :

p=0 ¢=0

where convergence of infinite sums is understood in the dggolintroduced in
Definition 2, and the casek = 0 is interpreted as

. 1 = -1
By(f) = 5 (m)nlgﬁ
m=0

Proof: For fixedt, s € R, we will make repeated use of Lemma 2 with= b,,
x=>bl and h =§(t —s). We have

A + bs bT n—1 ‘
B/?(f) Z/ f(s)eg(bs_bS) (%) eg(bs_bs)ds

an—t i kot
/ f(l») e_?(bs—ht) —|w=Oew(bt+bS) e—?(bs—h[) 8(t _ S) dl ds
Rd JRA dwn—1

= 2n—1



RHPWN AND THE VIRASORO-ZAMOLODCHIKOVws, ALGEBRA 7

1 91! kot Tkt
—5(bg—bt) ,w(bt+bg) ,—7(bs—byt)
I R HNe 20s=0e s) e~ 2\s 8(t —s)dtds
2n-1 8w’1—1|w70 /Rd /Rd AL ( )

1 anfl
2n—1 awn—l

kot ok T kot ok w2 _ k2 )
x/ / F(t) e 2P e2bt oWhs Wbt o=3bs o2l (T =F)=) 5t — §) dt ds
R4 JRA

|w:0

1 9t

n—1 gyyn—1 lw=0

kot Tk kot k w2 _ k2
X f Ft) e 2bs Wbs o2l o720 oWh o201 (T =7 80— 5+ —5)dtds
Rd JRA

1 9t

2 Gy 110

kv, Tk kot k 2 g2
X / F(t) e g2t o=2bs (Wb (T =)= 5+ — 5y dtds
R4 JRA

1 an—l
2n—1 810”—1

K\l k.t ok k 2 2
x/ f(t)e(w Z)h‘Y e 205 g3l gt br (7 —T5)8(1=s) 8(t —s)dtds
R4 JRd

|w=0

1 9t
on—1 8lUn_1|w:0

-k b} k)b (B2 5(1—s)
X f®e s e Te'2 2 Yot —s)dtds
R JRA

1 anfl
21 Gy 1m0
! S5 (5 = 5)"
x/‘ f() e tbbe N222 20 s — ) §(t — 5) dt ds
Rrd Jrd — m!
1 9t

00 (w2 k2

m
+ w- __ k-
% / f(t) e(w—k)bs e(w-‘,—k)b; E 2 2) 5m+1(t _ S) dt ds
RY JRA

|
=0 m:

1 an—l
21 g1

00 gﬁ m
x/ fméwW%W“WGa—n+§ LL——LMQM%ﬂOdMS
RrRd JRd m!

m=1

NI
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1 8"71

+

_ (w—k)bg _(w+k) bt

=—— ——|u= t s 8(t —s)dtd
2}1—1 awn—1| 0 /d /d f( )e e ( S) N

since, by the assumptiorf(0) = 0, all §(s)8( — s) terms vanish. Thus, using
Leibniz’'s rule, we obtain

~ n—1 ‘
Be(H) =5 mlw:O / F(s) eWRbs p+bbs g
1 ot an—l—m "
Tl L ( ) / 1 )_|w o) i w0l ) ds
n—1

1 — n—1 m _ppt n—1—m
= o1 ( - )A‘z{d f(s)bI™ e7kbs pn=tom gkbs g

1 n— m ( k) >\ k4
_ T tPyp n—1-m ~
=5 0( )/ Fs)b! b7 b, E:q!bsqu

3
o

m q=0
1 n—1 _ o o0 [?+q
BFa (n )ZZH)” / F@ B b d
n— m
m=0 p=0 ¢=0
1 =2 (n — 1) i i kpta gt
== (~1” L ia () O
2 1m:0 m o plq! By1onq

From the identity (3.2), it is clear that one can analyticaiontinue the
parameterk, in the definition of B} (f), to an arbitrary complex numbédre C and

n > 1. After this extension the |dent|t[/Bk (2), BL % (N ]ws = 0 still holds. Moreover,
the proof of Theorem 7 immediately extends ke C and we have this result.

THEOREM 8. Let n > 2 and z € C. Then, for all f € Sy,

. 1 =l m
Bl =5 (” ) > Z( 1>" — Bn L g () (3.3)
m=0 !

p=0 ¢=0

where convergence of infinite sums is understood in the dggolintroduced in
Definition 2, and the case; =0 is interpreted as

R 1 S m-1
By =51 ( N )B,T_l_m(f)
m=0

COROLLARY 1. For ze C and k€ {0,1,...},

k
k— m

8" ~n (,]:,) m n—1
ale=oBl() = 3 fR PG = b b ) s (3.4)
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Moreover, fork > 1

o) = 5 ( )Z< o () B, @)

Proof: (3.4) is obtained from (3.1) with the use of Leibniz’s ruleinally, (3.5)
follows from (3.3), by differentiating term-by-term-times with respect taz, and
noticing that only the termg + ¢ = k make a nonzero contribution. O

3.2. The inclusion: RHPWN C analytic continuation of the second quantized w.,
In this subsection we will find the expression of the genesat®;(f) of the

RHPWN x-Lie—algebra in terms of the generatcﬁg(f) of the analytically continued
weo-*x-Lie—algebra. We will thus complete the identification okthwo algebras.

THEOREM 9. Let n, k € NU {0}. Then, for all f € So,

_lp 8P+‘7 N
£ 5 ()5 Sk, o

p=0 o=0

where, as in Theorend, convergence of infinite sums is understood in the topology
introduced in Definition2. Moreover, the right hand side of3.6) is well defined
in the sense of Definitior3.

Proof: For t,5 >0, let p,, := b, —b! and g, := b, + b!. Then

BI(f)= / Fayb!" vl r

2n+k / / f(s) (plA +qts) (CIH pm) S(s —t)dsdt

2n+k / / f( Py A (prstar, 5)) | _O(EM(%S pt, S))S(S _ f) ds dt

1 8n+k " o ( :
Pt,sTqt,s) L, qt,s—DPt,s _
2n+k 8)\.” |)» =u=0 \/I‘Qd \/]Rd f(S)e ! 1s) o t t S(S t)dsdt

which, using Lemma 2 withD = p,,, x = ¢, and h = 28(s —t), is equal to

1 an+k

2n+k R |)L = 0/ / f(s)ekpz:e/\qtseuqzse uprse(k —u?)8(s— I)S(S—t)dsdt
1 an+k

2n+k 8)\,, |)L = 0/ / f(s)e)uptse()ﬁ‘l/-)l]tse MPrse()» —u )S(S Z)S(S t)det

which, again by Lemma 2, is equal to

1 3n+k
2n+k 8)\.”

|A —1=0 / / f(s) et Prs oM Prs o) drs e()»-HL) 3(s—1) 8(s —t)ds dt
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1 ot 2
|A —1=0 £(s) e Prs fOF1) 415 ,(AF)78(s—1) 8(s — 1) ds dr.
2n+k 8)»” Rd JRA

Since, as in the proof of Theorem 7, only the constant term hé exponential
seriese®+W?86=0 will eventually make a nonzero contribution, the above isiaq

to 1 an+k
2n+k BA" |A —u=0 / / f(s) e(k W) Pt,s e(Hu)qm S(s — 1) ds dt

which, using Leibniz’s rule first for the derivative with pect to « and then for
the derivative with respect ta, is equal to

1 [k 0 9" o Ap Y
= 2, (17 o || FO phier gl s —ndsdr

2n+k Z(:)2(:)( )( >( 1)’0/ / f(s)ptspzsqts qlSGS(s—t)dsdt
p=0 o
2n+k Z()Z(:J( )( >( 1)p / f(s)pp—w‘]tk_sm (p+g)5(S—t)det
p=0 o
8p+”
LEEO0)

x / / f(s) e gt =Pt §(s — 1y ds dr

ap+a
= ok ZZ( )( >(— D s =0

p=0 0=0

X / f(S) e%l’t,s e%ﬂt,s qtk;f‘"_(;o'i‘a) 5(5‘ _ t) ds dt
R JRA ’

e 23 (5) ()

p=0 0=0

ap+f’ ktn—(p+o) i
X e Of f S ) €2 oy =027 € 91) §(s — 1) ds dr.

This, by Lemma 2, is equal to

n ap+cr
2n+k Z Z ( )(0) (=17 9zP+o l-=0

p=0 oc=0

Y e z
X / f(S) e2Pts mlwzo(ewqt"Y e2Pts esz(s—t)) 8(S - f) ds dt
Rd JRA w -
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. Since, only the constant term 1 in the exponential serteS¢=" will eventually
make a nonzero contribution, the above is equal to

s 2 (0) ()i

p=0 o=0

. k(o) .
X /d o f(s)ezPrs WM:o <€wq”“‘ e?pt“") 8(s —t)dsdt
R

n 3ﬂ+<7
2n+k Z Z( )(O’) (_1)p dzrto |Z:0

p=0 o=0

x / F(s) e2Prs gk m=0Fo) o3 pes s(s — 1) ds dt
Rd JRA ’

n grto . P
2n+k Z Z( )(0>(_1)p dzpto lz=0 /Rd f@)yezr qtk? 0Fo) o5 Pt gy

p=0 o=0

203 1)° grte A
N Z Z ( )( )(2p+2r W'Z:O Bf+"+l*(/)+a)(f)'

p=0 0=0

Finally, using (3.5), (3.6) becomes

n\ (=1)” 1 0tk 4n— (p+0)
Bk (f)= Z Z ( )(G) 2p+0  Dk+n—(p+o) Z ( m )

p=0 0=0 =0
<3 1y (‘“;“) B (). (3.7)
p=0

Sincen, k are fixed, we notice that for each and p the coefficient ofBZ’J:;”_m_p(f)
is finite. Thus (3.7) is meaningful in the sense of Definition 3 O
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