
Vol. 61 (2008) REPORTS ON MATHEMATICAL PHYSICS No. 1

RENORMALIZED HIGHER POWERS OF WHITE NOISE AND
THE VIRASORO–ZAMOLODCHIKOV– w∞ ALGEBRA

LUIGI ACCARDI

Centro Vito Volterra, Universit̀a di Roma Tor Vergata
via Columbia 2, 00133 Roma, Italy

(e-mail: accardi@volterra.mat.uniroma2.it)

and

ANDREAS BOUKAS

Department of Mathematics and Natural Sciences, American College of Greece
Aghia Paraskevi, Athens 15342, Greece

(e-mail: andreasboukas@acgmail.gr)

(Received April 3, 2007 – Revised November 14, 2007)

We have recently proved that the generators of the second quantized centerless Virasoro (or
Witt)–Zamolodchikov–w∞ algebra can be expressed in terms of the Renormalized HigherPowers
of White Noise (RHPWN) and conjectured that this inclusion might in fact be an identity, in the
sense that the converse is also true. In this paper we prove that this conjecture is true. We also
explain the difference between this result and the boson representation of the centerless Virasoro
algebra, which realizes, in the 1-mode case (in particular without renormalization), an inclusion
of this algebra into the full oscillator algebra. This inclusion was known in the physics literature
and some heuristic results were obtained in the direction ofthe extension of this inclusion to
the 1-mode centerless Virasoro (or Witt)–Zamolodchikov–w∞ algebra. However, the possibility
of an identification of the second quantizations of these two algebras was not even conjectured
in the physics literature.

Keywords: renormalized powers of white noise, second quantization,w∞-algebra, Virasoro
algebra, Zamolodchikov algebra, conformal field theory.
MSC (2000): 60H40, 81S05, 81T30, 81T40.

1. Introduction

DEFINITION 1. The standardd-dimensional Fock scalar white noiseis defined
by a quadruple{H, bt , b

+
t , 8}, where t ∈ Rd , H is a Hilbert space,8 ∈ H is a unit

vector called the Fock vacuum, andbt , b
†
t are operator-valued Hida distributions

satisfying the boson commutation relations[bt , b
†
s ] = δ(t − s) and having the Fock

property bt8 = 0 and the adjoint property(b†
t )

† = bt , plus additional domain
properties (not specified here).

[1]
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THEOREM 1. Denoting by S0 the space of right-continuous step functions
f : R −→ C with compact support and satisfyingf (0) = 0, there exists a∗-Lie
algebra with generators{Bn

k (f ) : k, n ∈ N, f ∈ S0} (whose precise white noise form
is given in Eq.(1.2) below), involution given by

(

Bn
k (f )

)∗
= Bk

n(f̄ ), and brackets
given by

[Bn
k (g), BN

K (f )]RHPWN := (k N − K n) Bn+N−1
k+K−1(gf ).

Proof: The ∗-property is clear by construction. By direct calculationsone shows
that the brackets[·, ·]RHPWN satisfy the Jacobi relations. For details see [1] and [2].�

The ∗-Lie algebra defined by the above theorem is called theRenormalized Higher
Powers of White Noise(RHPWN) ∗-Lie algebra. The following problems arise: (i)
Construct a concrete mathematical model for the abstractlydefined RHPWN∗-Lie
algebra; (ii) Construct Hilbert space representations of the RHPWN ∗-Lie algebra;
(iii) Prove exponentiability of the symmetric generators of the RHPWN∗-Lie algebra
in a given Hilbert space representation and identify the corresponding Lie group.
Heuristic results in the physics literature (cf. [3]), and the results presented in this
paper, suggest that a natural candidate for the corresponding Lie group is the group
of area preserving diffeomorphisms on a (special) 2-manifold (there are classical
realizations on the cylinderR × S1). The above given definition of the RHPWN
∗-Lie algebra was motivated by the discovery that, if the powers of the Dirac delta
function are renormalized by the prescription

δl(t − s) = δ(s) δ(t − s), l = 2, 3, . . . . (1.1)

then, for n, k ≥ 0, the resulting renormalized higher powers of white noise

Bn
k (f ) :=

∫

Rd
f (t) b†

t

n
bk

t dt, (1.2)

where B0
0(f ) :=

∫

Rd f (t) dt · 1 (multiple of the unique central element), which
are well defined as sesquilinear forms (matrix elements) on the algebraic span of
the number vectors

∏m
i=1 B1

0(fi) 8 of the usual boson Fock space, satisfy weakly
on that domain, the defining relations of the RHPWN∗-Lie algebra in the sense
that the adjointBn

k (f )∗ of the sesquilinear formBn
k (f ) is defined in the obvious

way, and the bracket (commutator)[Bn
k (f ), BN

K (g)] of the sesquilinear formsBn
k (f )

and BN
K (g) is defined by bringing to normal order the productsBn

k (f ) BN
K (g)

and BN
K (g) Bn

k (f ) by applying the RHPWN commutation relations, including the
renormalization prescription, and letting the resulting normally ordered form act on
the 1-st order number vectors through the usual prescriptions. The family of these
sesquilinear forms is clearly a complex vector space with the pointwise operations
and, with the above defined involution and brackets, it becomes a representation of
the RHPWN ∗-Lie algebra introduced in Theorem 1.

LEMMA 1. Let An,k be an arbitrary double sequence of complex numbers and
let fn,k be an arbitrary double sequence inS0. Then the sesquilinear form
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q :=
∑

n,k

An,kB
n
k (fn,k) (1.3)

is well defined (weakly) on the algebraic span of the number vectors of the usual
boson Fock space.

Proof: For any pair of number vectorsx, y, the expression

q(x, y) =
∑

n,k

An,k〈x, Bn
k (fn,k)y〉

is a finite sum of complex numbers. �

DEFINITION 2. On the space of all sesquilinear forms on the algebraic span of
the number vectors of the usual boson Fock space, we define a topology by the
semi–norms

|q|x,y := |q(x, y)| (1.4)

where q is a sesquilinear form andx, y are number vectors.

It follows from Lemma 1 that the completion of the RHPWN∗-Lie algebra with
respect to the family of seminorms (1.4) is the family of formal series of the form
(1.3). In the following when speaking of the RHPWN∗-Lie algebra we will mean
this larger family. Lemma 1 allows one to give a meaning to a rather general class
of functions of the renormalized white noise.

DEFINITION 3. Let F(b
†
t , bt) be a formal power series in the noncommutative

indeterminatesb†
t , bt . If, by applying the RHPWN commutation relations, including

the renormalization prescriptions, one can write this series in the form
∑

n,k An,kb
†n
t bk

t

where each coefficientAn,k is a complex number (in particular finite!), then we say
that the formal power seriesF(b

†
t , bt) definesa function ofb†

t , bt . The meaning of
this function is that by multiplying by test functionsfn,k(t) and integrating term
by term in dt , we obtain the sesquilinear form

∑

n,k An,kB
n
k (fn,k), which is well

defined by Lemma 1.

In the following we will produce concrete examples of functions of b
†
t , bt .

2. The centerless Virasoro (or Witt)–Zamolodchikov–w∞ ∗-Lie algebra

Following a completely different line of thought, people inconformal field theory
and in string theory were led to introduce another∗-Lie algebra (cf. [3, 5]).

THEOREM 2. There exists a∗-Lie algebra with generators{B̂n
k : n ∈ N, n ≥ 2,

k ∈ Z}, involution given by(B̂n
k )∗ = B̂n

−k, and brackets given by

[B̂n
k , B̂N

K ]w∞ = (k (N − 1) − K (n − 1)) B̂n+N−2
k+K .

Proof: See [3]. �
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DEFINITION 4. The ∗-Lie algebra defined in Theorem 2 is called thecenterless
Virasoro (or Witt)–Zamolodchikov-w∞ ∗-Lie algebra.

Notice that no test functions appear in the above definition.In our language, we
can say that the above∗-Lie algebra is the 1-mode version of the algebra we are
interested in, or equivalently, that the algebra we are interested in, is a second
quantization of thew∞ ∗-Lie algebra. As usual, the existence of such an object
has to be proved.

THEOREM 3. There exists a∗-Lie algebra with generators{B̂n
k (f ) : n ∈ N, n ≥

2, k ∈ Z, f ∈ S0}, involution given by

(B̂n
k (f ))∗ = B̂n

−k(f̄ ) (2.1)

and brackets given by

[B̂n
k (g), B̂N

K (f )]w∞ = (k (N − 1) − K (n − 1)) B̂n+N−2
k+K (gf ). (2.2)

Proof: Clearly, for all test functionsf, g ∈ S0 and n, k, N, K ≥ 0,

[B̂N
K (g), B̂N

K (f )]w∞ = 0 and [B̂N
K (g), B̂n

k (f )]w∞ = −[B̂n
k (f ), B̂N

K (g)]w∞ .

To show that commutation relations (2.2) satisfy the Jacobiidentity we must show
that for all test functionsf, g, h and ni, ki ≥ 0, where i = 1, 2, 3,

[B̂
n1
k1

(f ), [B̂
n2
k2

(g), B̂
n3
k3

(h)]w∞]w∞ + [B̂
n3
k3

(h), [B̂
n1
k1

(f ), B̂
n2
k2

(g)]w∞]w∞

+ [B̂
n2
k2

(g), [B̂
n3
k3

(h), B̂
n1
k1

(f )]w∞]w∞ = 0,

i.e. that

{(k2(n3 − 1) − k3(n2 − 1))(k1(n2 + n3 − 3) − (k2 + k3)(n1 − 1))

+ (k1(n2 − 1) − k2(n1 − 1))(k3(n1 + n2 − 3) − (k1 + k2)(n3 − 1))

+ (k3(n1−1)−k1(n3−1))(k2(n3+n1−3)− (k3+k1)(n2−1))} B̂
n1+n2+n3−4
k1+k2+k3

(fgh) = 0,

which is true, since

(k2(n3 − 1) − k3(n2 − 1))(k1(n2 + n3 − 3) − (k2 + k3)(n1 − 1))

+ (k1(n2 − 1) − k2(n1 − 1))(k3(n1 + n2 − 3) − (k1 + k2)(n3 − 1))

+ (k3(n1 − 1) − k1(n3 − 1))(k2(n3 + n1 − 3) − (k3 + k1)(n2 − 1)) = 0.

Finally, in order to show that, with involution defined by (2.1),

[B̂n
k (f ), B̂N

K (g)]∗w∞
=

[

(B̂N
K (g))∗, (B̂n

k (f ))∗
]

w∞
,

i.e. that
[B̂n

k (f ), B̂N
K (g)]∗w∞

= [B̂N
−K(ḡ), B̂n

−k(f̄ )]w∞,

we notice that both sides of the above equation are equal to

(k(N − 1) − K(n − 1)) B̂n+N−2
−(k+K)(fg). �
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DEFINITION 5. The ∗-Lie algebra defined in Theorem 3 is called thesecond
quantized centerless Virasoro (or Witt)–Zamolodchikov–w∞ ∗-Lie algebra.

The term Zamolodchikov is due to the fact thatw∞ is a large N limit of
Zamolodchikov’s WN algebra (cf. [5, 6]). The term Virasoro is justified by the
following theorem.

THEOREM 4. The family of operators{B̂2
k : k ∈ Z} forms a ∗-Lie subalgebra of

the w∞ Lie algebra, with involution(B̂2
k )

∗ = B̂2
−k and brackets

[B̂2
k , B̂

2
K ]Vir := (k − K) B̂2

k+K

which are precisely the defining relations of the centerlessVirasoro (or Witt) algebra.

Proof: The proof follows directly from Theorem 2 forn = N = 2. �

The following second quantized version of the above theoremalso holds.

THEOREM 5. The family of operators{B̂2
k (f ) : f ∈ S0; k ∈ Z} forms a ∗-Lie

subalgebra of the second quantizedw∞ Lie algebra, with involution(B̂2
k (f ))∗ =

B̂2
−k(f̄ ) and brackets

[B̂2
k (g), B̂2

K(f )]Vir := (k − K) B̂2
k+K(gf ).

Proof: The proof follows directly from Theorem 3 forn = N = 2. �

DEFINITION 6. The ∗-Lie algebra defined in Theorem 5 is calledthe second
quantized centerless Virasoro (or Witt) algebra.

3. The connection between the second quantizedw∞ and the RHPWN ∗-Lie
algebras

The striking similarity between the brackets of the RHPWN∗-Lie algebra

[Bn
k (g), BN

K (f )]RHPWN := (k N − K n) Bn+N−1
k+K−1(gf )

and the brackets of the second quantizedw∞ ∗-Lie algebra

[B̂n
k (g), B̂N

K (f )]w∞ = (k (N − 1) − K (n − 1)) B̂n+N−2
k+K (gf )

strongly suggests that there should be a connection betweenthe two. However,
there are also strong dissimilarities. The sets, indexing the generators of the two
algebras, are different:{Bn

k (f ) : k, n ∈ N, , f ∈ S0} for the RHPWN ∗-Lie algebra,
and {B̂n

k (f ) : n ∈ N, n ≥ 2, k ∈ Z, f ∈ S0} for the second quantizedw∞ ∗-Lie
algebra . The following Theorem 6, obtained in [1], was the first definite result
in the direction of establishing a connection between the RHPWN and w∞ ∗-Lie
algebras.
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THEOREM 6. In the sense of formal power series the following identity holds

B̂n
k (f ) =

∫

Rd
f (t) e

k
2(bt−b

†
t )

(

bt + b
†
t

2

)n−1

e
k
2(bt−b

†
t ) dt (3.1)

Proof: The proof can be found in [1]. �

The following Lemma (cf. [4]) on the generators of the Heisenberg–Weyl Lie
algebra, is the basic tool used in the proofs of Theorems 6 above and 7, 9 below.

LEMMA 2. Let x, D andh satisfy the Heisenberg commutation relations[D, x] = h
and [D, h] = [x, h] = 0. Then, for all s, a, c ∈ C,

es(x+aD+ch) = esxesaDe(sc+ s2a
2 )h

and
esDeax = eaxesDeash.

3.1. The inclusion: analytic continuation of the second quantized w∞ ⊆ RHPWN

The following theorem expresses the generatorsB̂n
k (f ) of the second quantized

w∞ ∗-Lie algebra as a series of the form
∑

n,k An,kB
n
k (fn,k) of the generatorsBn

k (f )
of the RHPWN∗-Lie algebra. The considerations of the previous section show that
this series has a meaning and that it is obtained from a function of bt and b

†
t , also

defined in that section.

THEOREM 7. Let n ≥ 2 and k ∈ Z. Then, for all f ∈ S0,

B̂n
k (f ) =

1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∞
∑

p=0

∞
∑

q=0

(−1)p
kp+q

p! q!
B

m+p

n−1−m+q(f ), (3.2)

where convergence of infinite sums is understood in the topology introduced in
Definition 2, and the casek = 0 is interpreted as

B̂n
0(f ) =

1

2n−1

n−1
∑

m=0

(

n − 1

m

)

Bm
n−1−m(f ).

Proof: For fixed t, s ∈ R, we will make repeated use of Lemma 2 withD = bt ,
x = b†

s and h = δ(t − s). We have

B̂n
k (f ) =

∫

Rd
f (s) e

k
2(bs−b

†
s )

(

bs + b†
s

2

)n−1

e
k
2(bs−b

†
s ) ds

=
1

2n−1

∫

Rd

∫

Rd
f (t) e

k
2(bt−b

†
s )

(

bt + b†
s

)n−1
e

k
2(bt−b

†
s ) δ(t − s) dt ds

=
1

2n−1

∫

Rd

∫

Rd
f (t) e− k

2(b
†
s −bt )

(

∂n−1

∂wn−1
|w=0e

w(bt+b
†
s )

)

e− k
2(b

†
s −bt ) δ(t − s) dt ds
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=
1

2n−1

∂n−1

∂wn−1
|w=0

∫

Rd

∫

Rd
f (t) e− k

2(b
†
s −bt )ew(bt+b

†
s ) e− k

2(b
†
s −bt ) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e− k

2 b
†
s e

k
2bt ew b

†
s ew bt e− k

2 b
†
s e

k
2 bt e( w2

2 − k2
4 ) δ(t−s) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e− k

2 b
†
s ew b

†
s e

k
2bt e− k

2 b
†
s ew bt e

k
2 bt e( w2

2 − k2
4 δ(t−s) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e(w− k

2) b
†
s e

k
2bt e− k

2 b
†
s e(w+ k

2) bt e( w2
2 − k2

4 ) δ(t−s) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e

(

w− k
2

)

b
†
s e− k

2 b
†
s e

k
2bt e(w+ k

2) bt e( w2
2 − k2

2 ) δ(t−s) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e(w−k) b

†
s e(w+k) bt e( w2

2 − k2
2 ) δ(t−s) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e(w−k) b

†
s e(w+k) bt

∞
∑

m=0

(

w2

2 − k2

2

)m

m!
δm(t − s) δ(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t) e(w−k) b

†
s e(w+k) bt

∞
∑

m=0

(

w2

2 − k2

2

)m

m!
δm+1(t − s) dt ds

=
1

2n−1

∂n−1

∂wn−1
|w=0

×

∫

Rd

∫

Rd
f (t)e(w−k)b

†
s e(w+k)bt

(

δ(t − s) +

∞
∑

m=1

(

w2

2 − k2

2

)m

m!
δ(s)δ(t − s)

)

dt ds
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=
1

2n−1

∂n−1

∂wn−1
|w=0

∫

Rd

∫

Rd
f (t) e(w−k) b

†
s e(w+k) bt δ(t − s) dt ds

since, by the assumptionf (0) = 0, all δ(s) δ(t − s) terms vanish. Thus, using
Leibniz’s rule, we obtain

B̂n
k (f ) =

1

2n−1

∂n−1

∂wn−1
|w=0

∫

Rd
f (s) e(w−k) b

†
s e(w+k) bs ds

=
1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∫

Rd
f (s)

∂m

∂wm
|w=0(e

(w−k) b
†
s )

∂n−1−m

∂wn−1−m
|w=0(e

(w+k)bs ) ds

=
1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∫

Rd
f (s) b†

s

m
e−k b

†
s bs

n−1−m ek bs ds

=
1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∫

Rd
f (s) b†

s

m
∞

∑

p=0

(−k)p

p!
b†

s

p
bs

n−1−m
∞

∑

q=0

kq

q!
bs

q ds

=
1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∞
∑

p=0

∞
∑

q=0

(−1)p
kp+q

p! q!

∫

Rd
f (s) b†

s

m+p
bs

n−1−m+q ds

=
1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∞
∑

p=0

∞
∑

q=0

(−1)p
kp+q

p! q!
B

m+p

n−1−m+q(f ). �

From the identity (3.2), it is clear that one can analytically continue the
parameterk, in the definition ofB̂n

k (f ), to an arbitrary complex numberk ∈ C and
n ≥ 1. After this extension the identity[B̂1

k (g), B̂1
K(f )]w∞ = 0 still holds. Moreover,

the proof of Theorem 7 immediately extends tok ∈ C and we have this result.

THEOREM 8. Let n ≥ 2 and z ∈ C. Then, for all f ∈ S0,

B̂n
z (f ) =

1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∞
∑

p=0

∞
∑

q=0

(−1)p
zp+q

p! q!
B

m+p

n−1−m+q(f ), (3.3)

where convergence of infinite sums is understood in the topology introduced in
Definition 2, and the casez = 0 is interpreted as

B̂n
0(f ) =

1

2n−1

n−1
∑

m=0

(

n − 1

m

)

Bm
n−1−m(f )

COROLLARY 1. For z ∈ C and k ∈ {0, 1, . . . },

∂k

∂zk
|z=0B̂

n
z (f ) :=

k
∑

m=0

(

k

m

)

2k+n−1

∫

Rd
f (t)(bt − b†

t )
m
(bt + b†

t )
n−1

(bt − b†
t )

k−m
dt (3.4)
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Moreover, for k ≥ 1

∂k

∂zk
|z=0B̂

n
z (f ) =

1

2n−1

n−1
∑

m=0

(

n − 1

m

) ∞
∑

p=0

(−1)p
(

k

p

)

B
m+p

n+k−m−1−p(f ) (3.5)

Proof: (3.4) is obtained from (3.1) with the use of Leibniz’s rule.Finally, (3.5)
follows from (3.3), by differentiating term-by-termk-times with respect toz, and
noticing that only the termsp + q = k make a nonzero contribution. �

3.2. The inclusion: RHPWN ⊆ analytic continuation of the second quantized w∞

In this subsection we will find the expression of the generators Bn
k (f ) of the

RHPWN ∗-Lie–algebra in terms of the generatorsB̂n
z (f ) of the analytically continued

w∞-∗-Lie–algebra. We will thus complete the identification of the two algebras.

THEOREM 9. Let n, k ∈ N ∪ {0}. Then, for all f ∈ S0,

Bn
k (f ) =

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ

2ρ+σ

∂ρ+σ

∂zρ+σ
|z=0 B̂k+n+1−(ρ+σ)

z (f ), (3.6)

where, as in Theorem7, convergence of infinite sums is understood in the topology
introduced in Definition2. Moreover, the right hand side of(3.6) is well defined
in the sense of Definition3.

Proof: For t, s ≥ 0, let pt,s := bt − b†
s and qt,s := bt + b†

s . Then

Bn
k (f ) =

∫

Rd
f (t) b†

t

n
bk

t dt

=
1

2n+k

∫

Rd

∫

Rd
f (s) (pt,s + qt,s)

n (qt,s − pt,s)
k δ(s − t) ds dt

=
1

2n+k

∫

Rd

∫

Rd
f (s)

∂n

∂λn
|λ=0(e

λ (pt,s+qt,s ))
∂k

∂µk
|µ=0(e

µ (qt,s−pt,s )) δ(s − t) ds dt

=
1

2n+k

∂n+k

∂λn µk
|λ=µ=0

∫

Rd

∫

Rd
f (s) eλ (pt,s+qt,s ) eµ (qt,s−pt,s ) δ(s − t) ds dt

which, using Lemma 2 withD = pt,s , x = qt,s and h = 2δ(s − t), is equal to

=
1

2n+k

∂n+k

∂λn µk
|λ=µ=0

∫

Rd

∫

Rd
f (s) eλpt,s eλ qt,s eµqt,s e−µpt,s e(λ2−µ2) δ(s−t) δ(s − t) ds dt

=
1

2n+k

∂n+k

∂λn µk
|λ=µ=0

∫

Rd

∫

Rd
f (s) eλpt,s e(λ+µ) qt,s e−µpt,s e(λ2−µ2) δ(s−t) δ(s − t) ds dt

which, again by Lemma 2, is equal to

=
1

2n+k

∂n+k

∂λn µk
|λ=µ=0

∫

Rd

∫

Rd
f (s) eλpt,s e−µpt,s e(λ+µ) qt,s e(λ+µ)2 δ(s−t) δ(s − t) ds dt
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=
1

2n+k

∂n+k

∂λn µk
|λ=µ=0

∫

Rd

∫

Rd
f (s) e(λ−µ) pt,s e(λ+µ) qt,s e(λ+µ)2 δ(s−t) δ(s − t) ds dt.

Since, as in the proof of Theorem 7, only the constant term 1 inthe exponential
seriese(λ+µ)2 δ(s−t) will eventually make a nonzero contribution, the above is equal
to

1

2n+k

∂n+k

∂λn µk
|λ=µ=0

∫

Rd

∫

Rd
f (s) e(λ−µ) pt,s e(λ+µ) qt,s δ(s − t) ds dt

which, using Leibniz’s rule first for the derivative with respect to µ and then for
the derivative with respect toλ, is equal to

=
1

2n+k

k
∑

ρ=0

(

k

ρ

)

(−1)ρ
∂n

∂λn
|λ=0

∫

Rd

∫

Rd
f (s) p

ρ
t,s eλpt,s q

k−ρ
t,s eλ qt,s δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∫

Rd

∫

Rd
f (s) p

ρ
t,s pσ

t,s q
k−ρ
t,s qn−σ

t,s δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∫

Rd

∫

Rd
f (s) p

ρ+σ
t,s q

k+n−(ρ+σ)
t,s δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∂ρ+σ

∂zρ+σ
|z=0

×

∫

Rd

∫

Rd
f (s) ez pt,s q

k+n−(ρ+σ)
t,s δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∂ρ+σ

∂zρ+σ
|z=0

×

∫

Rd

∫

Rd
f (s) e

z
2 pt,s e

z
2 pt,s q

k+n−(ρ+σ)
t,s δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ

×
∂ρ+σ

∂zρ+σ
|z=0

∫

Rd

∫

Rd
f (s) e

z
2 pt,s

∂k+n−(ρ+σ)

∂wk+n−(ρ+σ)
|w=0(e

z
2 pt,s ew qt,s ) δ(s − t) ds dt.

This, by Lemma 2, is equal to

1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∂ρ+σ

∂zρ+σ
|z=0

×

∫

Rd

∫

Rd
f (s) e

z
2 pt,s

∂k+n−(ρ+σ)

∂wk+n−(ρ+σ)
|w=0(e

w qt,s e
z
2 pt,s ew z δ(s−t)) δ(s − t) ds dt
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. Since, only the constant term 1 in the exponential seriesew z δ(s−t) will eventually
make a nonzero contribution, the above is equal to

1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∂ρ+σ

∂zρ+σ
|z=0

×

∫

Rd

∫

Rd
f (s) e

z
2 pt,s

∂k+n−(ρ+σ)

∂wk+n−(ρ+σ)
|w=0

(

ew qt,s e
z
2 pt,s

)

δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∂ρ+σ

∂zρ+σ
|z=0

×

∫

Rd

∫

Rd
f (s) e

z
2 pt,s q

k+n−(ρ+σ)
t,s e

z
2 pt,s δ(s − t) ds dt

=
1

2n+k

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ
∂ρ+σ

∂zρ+σ
|z=0

∫

Rd
f (t) e

z
2 pt,t q

k+n−(ρ+σ)
t,t e

z
2 pt,t dt

=

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ

2ρ+σ

∂ρ+σ

∂zρ+σ
|z=0 B̂k+n+1−(ρ+σ)

z (f ).

Finally, using (3.5), (3.6) becomes

Bn
k (f ) =

k
∑

ρ=0

n
∑

σ=0

(

k

ρ

)(

n

σ

)

(−1)ρ

2ρ+σ

1

2k+n−(ρ+σ)

k+n−(ρ+σ)
∑

m=0

(

k + n − (ρ + σ)

m

)

×

∞
∑

p=0

(−1)p
(

ρ + σ

p

)

B
m+p

n+k−m−p(f ). (3.7)

Sincen, k are fixed, we notice that for eachm andp the coefficient ofBm+p

n+k−m−p(f )

is finite. Thus (3.7) is meaningful in the sense of Definition 3. �
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