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Ibuprofen modulates allosterically NO dissociation from ferrous
nitrosylated human serum heme-albumin by binding to three sites
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Human serum albumin (HSA) is a monomeric allosteric protein. Here, the effect of ibuprofen on denitro-
sylation kinetics (koff) and spectroscopic properties of HSA-heme-Fe(II)-NO is reported. The kqg value
increases from (1.4 +0.2) x 10~*s71, in the absence of the drug, to (9.5 + 1.2) x 107257, in the presence
of 1.0 x 1072 M ibuprofen, at pH 7.0 and 10.0 °C. From the dependence of ko on the drug concentration,
values of the dissociation equilibrium constants for ibuprofen binding to HSA-heme-Fe(Il)-NO
(K;1=(3.1204)x 107" M, K =(1.7+0.2) x 107*M, and K3 = (2.2 £ 0.2) x 10> M) were determined. The
K3 value corresponds to the value of the dissociation equilibrium constant for ibuprofen binding to
HSA-heme-Fe(I[)-NO determined by monitoring drug-dependent absorbance spectroscopic changes
(H=(2.6+0.3) x 1073 M). Present data indicate that ibuprofen binds to the FA3-FA4 cleft (Sudlow’s site
II), to the FAG site, and possibly to the FA2 pocket, inducing the hexa-coordination of HSA-heme-Fe(II)-NO
and triggering the heme-ligand dissociation kinetics.

Thermodynamics
Allostery

© 2009 Elsevier Inc. All rights reserved.

Human serum albumin (HSA), the most abundant protein in
plasma, is characterized by an extraordinary ligand binding capac-
ity, providing a depot and carrier for many compounds. Moreover,
HSA affects pharmacokinetics of many drugs, holds some ligands in
a strained orientation, providing their metabolic modification, ren-
ders potential toxins harmless transporting them to disposal sites,
accounts for most of the antioxidant capacity of human serum, and
displays (pseudo-)enzymatic properties [1-16].

HSA displays a modular structure containing three homologous
domains (named I, II, and IIT). Each domain consists of two separate
helical sub-domains (named A and B) connected by random coils.
Terminal regions of sequential domains contribute to the forma-
tion of interdomain helices linking domain IB to IIA, and IIB to IlIA
(Fig. 1) [2,3,6,8,12,14,15,17-25].

Abbreviations: Hb, hemoglobin; HSA, human serum albumin; HSA-heme, heme-
albumin; HSA-heme-Fe(Il)-CO, ferrous carbonylated HSA-heme; HSA-heme-Fe(II)-
NO, ferrous nitrosylated HSA-heme; IHP, inositol hexakisphosphate; 1-Melm, 1-
methylimidazole.
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The structural organization of HSA provides a variety of ligand
binding sites (Fig. 1). In particular, heme binds to the D-shaped
fatty acid site 1 (FA1) located within the IB subdomain, contacting
the IB-IIA polypeptide linker and the long IB-IIA transdomain he-
lix. The heme binding cavity is limited by Tyr138 and Tyr161 that
provide m-7 stacking interaction with the porphyrin and supply a
donor oxygen (from Tyr161) coordinating the heme iron [23,25].
Moreover, His146 was suggested as the putative ligand able to
coordinate to the heme iron in the sixth position upon drug bind-
ing to Sudlow’s sites I and II [26-30].

Bulky heterocyclic molecules (e.g., warfarin) bind preferentially
to Sudlow’s site I, whereas Sudlow’s site Il is preferred by aromatic
carboxylates with an extended conformation (e.g., ibuprofen)
[1-3,5-14,26,31-36].

The heme pocket and Sudlow’s site I are allosterically-coupled.
Indeed, Sudlow’s site I ligands affect thermodynamics and/or
kinetics of heme binding to HSA and vice versa, thus affecting
the heme-Fe-atom spectroscopic properties and reactivity
[10-14,26-28,30,37-42]. Similarly, the secondary ibuprofen bind-
ing site (FA6) has been suggested to be allosterically-coupled with
the heme site [30,40,42]. Eventually, the FA2 site has been
described to account for the positive modulation of affinity of the
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Fig. 1. Ibuprofen-dependent denitrosylation of HSA-heme-Fe(II)-NO. (A) HSA struc-
ture highlighting heme (red) and ibuprofen (green) binding; the primary ibuprofen
binding site is located in Sudlow’s site II within domain III (red ribbon) whereas the
secondary ibuprofen binding site is located in FA6 within domain II (yellow ribbon).
Heme occupies the FA1 site. The putative modulatory and tertiary ibuprofen binding
site is labeled as FA2 at the interface between domain I (purple ribbon) and II (yellow
ribbon) and is occupied by a myristate ion (black). HSA and ibuprofen coordinates are
from PDB entry 2BXG; heme and myristate positions are obtained by superimposition
of domain I coordinates from PDB entry 1N5U. (B) Effect of the free ibuprofen
concentration (i.e., [ibuprofen]) on kog for HSA-heme-Fe(Il)-NO denitrosylation, at
pH=7.0 and 10.0 °C. The filled square indicates the value of k. in the absence of
ibuprofen. The analysis of data according Eq. (2) allowed to determine the following
parameters: ko' = (4.6 £0.5) x 1074571, koi?=(1.2£0.1) x 107 357!, ko =(9.4
11)x 107357, K;=(3.1204) x 1077 M, K, =(1.7+0.2) x 107 M, K3 = (2.2 £0.2) x
1073 M, and koi* = (1.4 +0.2) x 10~% s~ (C) Enlargement of panel B. The CO concen-
tration ranged between 1.0 x 10~ M and 5.0 x 10~* M. The dithionite concentration
was 1.0 x 102 M. (D) Effect of the free ibuprofen concentration (i.e., [ibuprofen]) on the
absorbance spectroscopic properties of HSA-heme-Fe(II)-NO, at pH = 7.0 and 10.0 °C.
The analysis of data according to Eq. (3) allowed to determine the value of
H=(2.6+0.3) x 10~ M. The HSA-heme-Fe(I)-NO concentration was 2.6 x 1075 M .
For details, see text. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

heme for the FA1 binding site, FA2 being the modulator site that
controls fatty acid-induced conformational switch [38,40].

Here, the effect of ibuprofen on denitrosylation kinetics and
absorbance spectroscopic properties of HSA-heme-Fe(II)-NO is re-
ported. It is important to outline that HSA-heme-Fe(II)-NO displays
a severe weakening of the proximal heme-Fe-atom bond, which is
restored upon binding of heterotropic ligands, such as bezafibrate,
clofibrate, ibuprofen and warfarin [26,27,30]. Ibuprofen modulates
NO dissociation kinetics and affects the absorbance spectroscopic
properties of HSA-heme-Fe(II)-NO by binding to three distinct sites
(i.e., Sudlow’s site II, formed by the FA3 and FA4 sites, the FAG6 re-
gion, and the FA2 pocket). This highlights the allosteric modulation
of HSA-heme-Fe(Il) reactivity by heterotropic effectors which ap-
pears to be linked to the coordination state of the HSA-heme-
Fe(Il)-atom.

Materials and methods

HSA (>96%, essentially fatty acid free), hemin (protoporphyrin
[X-Fe(Ill)) chloride, and ibuprofen were obtained from Sigma-Al-
drich (St. Louis, MO, USA). NO (from Aldrich Chemical Co., Milwau-
kee, WI, USA) was purified by flowing it through an NaOH column
in order to remove acidic nitrogen oxides. CO was purchased from
Linde AG (Hollriegelskreuth, Germany).

HSA-heme-Fe(Il) (=5.2 x 10~ M) was prepared by adding a 1.4-
molar excess of HSA to the heme-Fe(Il) solution (1.0 x 10~' M so-
dium phosphate buffer, pH 7.0), at 10.0 °C. HSA-heme-Fe(II)-NO
(=5.2 x 10°°M) was obtained, under anaerobic conditions, by
blowing purified NO over the ferrous heme-protein solution
(1.0 x 10~ M sodium phosphate buffer, pH 7.0) at 10.0 °C. Then,
the excess of NO was pumped off gently before recording kinetics
[26-28,39,41,43].

The ibuprofen stock solution (=2.0 x 1072 M) was prepared by
dissolving the drug in 1.0 x 10~' M phosphate buffer, at pH 7.0
and 20.0 °C [26].

The CO solution was prepared by keeping in a closed vessel the
1.0 x 10! M phosphate buffer solution (pH=7.0) under CO at
P =760.0 mm Hg anaerobically (T = 20.0 °C).

Values of the first-order rate constant for NO dissociation from
HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO; k.¢) were ob-
tained by mixing the HSA-heme-Fe(II)-NO (final concentration
2.6 x 1075 M) solution with the CO (final concentration, 1.0 x 10~*
M to 5.0 x 10~4 M) dithionite (final concentration, 1.0 x 1072 M)
solution under anaerobic conditions, at pH = 7.0 (1.0 x 10~' M so-
dium phosphate buffer)and 10.0 °C [41,44], in the absence and pres-
ence of ibuprofen (final concentration, 1.0x 107’M to
1.0 x 1072 M). Kinetics was monitored between 360 and 460 nm
(wavelength interval = 5 nm). Spectra were collected every 30 s.

The time course for HSA-heme-Fe(II)-NO denitrosylation was
fitted to a single-exponential process according to the minimum
reaction mechanism represented by Scheme 1 [41,44].

Values of k.¢ have been determined from data analysis accord-
ing to Eq. (1) [45]:

[HSA-heme-Fe(Il)-NOJ, = [HSA-heme-Fe(II)-NOJ; x e kot (1)

Values of the dissociation equilibrium constants for ibuprofen
binding to HSA-heme-Fe(II)-NO (i.e., K;, K, and K3) were obtained
from the dependence of k. on the free ibuprofen concentration
(i.e., [ibuprofen]). Values of Kj, K>, and K3 were determined from
data analysis, according to Eq. (2) [45]:

koff
HSA-heme-Fe(II)-NO + CO — HSA-heme-Fe(II)-CO + NO

Scheme 1.
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kotr =(k,i' x ([ibuprofen]/(K; + [ibuprofen])
+ k,g* x [ibuprofen]/(K, + [ibuprofen])
+ kog® x [ibuprofen]/(Ks + [ibuprofen])) + ko * (2)

where k!, k2, and k> indicate values of ko occurring at
K; < [ibuprofen] < K> < K3, K; <K, < [ibuprofen] < K3, and K; <K; <
K3 < [ibuprofen], respectively, and k. ;" is the kos value obtained
in the absence of ibuprofen.

HSA-heme-Fe(II)-NO absorbance spectra were determined be-
tween 360 and 450 nm in the absence and presence of ibuprofen
(final concentration, 1.0 x 10~ M > [ibuprofen] > 1.0 x 1072 M)
and 10.0°C. The HSA-heme-Fe(I[)-NO concentration was
2.6 x 107 M [29].

The value of the dissociation equilibrium constant for ibuprofen
binding to HSA-heme-Fe(II)-NO (i.e., H) was obtained from the
dependence of molar fraction of the drug-bound HSA-heme-
Fe(II)-NO (i.e., Y) on the free ibuprofen concentration (i.e., [ibupro-
fen]), according to Eq. (3) [45]:

Y = [ibuprofen]/(H + [ibuprofen]) (3)

Results and discussion

Under all the experimental conditions, the time course for NO
dissociation from HSA-heme-Fe(II)-NO conforms to a single-expo-
nential decay for more than 90% of its course, in the absence and
presence of ibuprofen (Fig. 1). Values of the first-order rate con-
stant for NO dissociation from HSA-heme-Fe(II)-NO (i.e., ko) are
wavelength- and [CO]-independent in the presence of dithionite
excess (data not shown).

Values of ko for HSA-heme-Fe(Il)-NO denitrosylation increase
from (1.4+0.2) x 1074571, in the absence of ibuprofen (i.e., ko
in Eq. (2)), to (9.5£1.2)x10>s7!, in the presence of
1.0 x 1072 M ibuprofen (Fig. 1 and Table 1). The ko" value here re-
ported (=(1.4%0.2)x 10~%s~!, at pH 7.0 and 10.0°C) is closely
similar to that previously obtained (=(1.3 £0.2) x 10~*s~!, at pH
7.0 and 20.0 °C) [41]. The analysis of the dependence of k. on
the ibuprofen concentration (Fig. 1), according to Eq. (2), allowed
to determine the values of the dissociation equilibrium constants
for drug binding to HSA-heme-Fe(I)-NO (i.e., K;=(3.1+0.4) x
10°7M, K,=(1.7+02)x10*M, and K;=(22+0.2)x 103> M)
(Fig. 1).

Mixing of the HSA-heme-Fe(II)-NO and ibuprofen solutions
causes a shift of the optical absorption maximum of the Soret band
(i.e., Zmax) from 389 nm (i.e., HSA-heme-Fe(II)-NO) to 418 nm (i.e.,
ibuprofen-HSA-heme-Fe(II)-NO) and a change of the extinction
coefficient from €359 nm=6.4x 10*M~'cm™' (ie., HSA-heme-
Fe(I)-NO) to 418 nm=1.34 x 10° M 'cm™! (ie., ibuprofen-HSA-
heme-Fe(II)-NO). Values of /.x and ¢ for HSA-heme-Fe(II)-NO in
the absence of ibuprofen here obtained correspond to those

Table 1
Values of ko for denitrosylation of some heme-Fe(II)-NO systems and heme-Fe(Il)-NO
coordination state.

Heme-Fe(II)-NO Effector kofr (s71)? Heme-Fe(Il)-atom
system coordination
Heme-FeP - 21x10°° 5¢
1-Melm 29x102% 6¢
HSA-heme-Fe — 1.4 x 1074 5¢¢
Ibuprofen® 9.5 x 1073¢  6¢¢
Abacavir! 8.6 x 1044 6¢cd
Warfarin® 8.6 x 1074 6¢¢
¢ For details, see Scheme 1.
> pH=7.4 and T=20.0 °C. From [42].
¢ pH=7.0 and T=10.0 °C. Present study.
d

pH =7.0 and T=20.0 °C. From [40].

reported in the literature [29] and they indeed correspond to those
obtained for ferrous nitrosylated penta-coordinated heme-proteins
[46]. Absorbance changes of HSA-heme-Fe(II)-NO on the ibuprofen
concentration follow a single equilibrium; the analysis of data
according to Eq. (3) (Fig. 1) allowed to determine the value of the
dissociation equilibrium constant for drug binding to HSA-
heme-Fe(II)-NO (i.e., H=(2.6+0.3) x 1073 M). The value of the
dissociation equilibrium constant for ibuprofen binding to HSA-
heme-Fe(II)-NO obtained by absorbance spectroscopy (i.e., H) is
in excellent agreement with that of K; determined from
drug-dependent kinetics of HSA-heme-Fe(II)-NO denitrosylation
(see Fig. 1).

Data reported in Fig. 1 indicate that ibuprofen binds to three
independent sites of HSA-heme-Fe(II)-NO modulating allosterical-
ly NO dissociation kinetics. However, only one binding site is spec-
troscopically-linked to the chromofore (i.e., the heme-Fe(IlI)-NO
atom).

Values of K; (=3.1 x 1077 M) and K5 (=1.7 x 10~* M) for ibupro-
fen binding to HSA-heme-Fe(II)-NO (present study) are higher than
those reported for drug binding to HSA-heme-Fe(IIl)
(K;=8.0x 108 M and K, = 5.0 x 107> M) [26,30,42], and are com-
parable to those reported for drug binding to heme-free HSA
(K;=37x10"7M and K,=4.0x10">M) [3,26,42,47]. These
findings indicate that the redox and the (un)ligated state of the
heme-Fe-atom affects allosterically ibuprofen binding to HSA-
heme-Fe. Moreover, only one ibuprofen binding site (characterized
by K;) appears to be allosterically-linked to the heme cleft (ie.,
FA1).

The analysis of data shown in Fig. 1, according to Egs. (2) and
(3), indicates that ibuprofen binds to three independent sites of
HSA-heme-Fe(Il)-NO, the value of the third site constant K3 (=H)
is 2.2 x 10~ M). Ibuprofen primary binding to Sudlow’s site II,
formed by the FA3 and FA4 sites, and secondary binding to the
FA6 region have been substantiated by X-ray crystallography
[13]. In order to account for a third, low affinity ibuprofen binding
site the modulatory FA2 site may be envisaged. Indeed, the FA2 site
acts as the modulatory site that controls fatty acid-induced confor-
mational switch and therefore may account for heme stabilization
within the FA1 binding site [38,40]. Actually, preliminary results
indicate a positive modulation of heme binding by high
(>1.0 mM) ibuprofen concentration that in turn could explain the
observed hexa-coordination of HSA-heme-Fe(Ill) at similar ibupro-
fen concentration [30].

Ibuprofen binding to FA2 reflects indeed the stabilization of the
six-coordinate derivative of the HSA-heme-Fe(II)-NO species,
which is instead predominantly five-coordinated in the absence
of allosteric effectors that increase heme affinity. Actually, ligand
binding to FA2 should affect the Phe149-Tyr150 dyad with a more
favorable orientation of Phe149 with respect to the Fe(Ill)heme
moiety (see [26-28,30,40,48]).

The increase of kog for NO dissociation from HSA-heme-Fe(II)-
NO upon stabilization of the six-coordinated heme-Fe(I)-NO-atom
is reminiscent with what reported for warfarin-induced six-coordi-
nation of HSA-heme-Fe(I[)-NO [41], and for 1-methyl-imidazole-
(1-Melm-) mediated six-coordination of the heme-Fe(II)-NO model
compound [43] (Table 1), clearly indicating that (unlike for the
heme-Fe-atom ligand CO [49]) penta-coordinated heme-Fe(II)-NO
is characterized by a slower NO dissociation rate than the hexa-
coordinated species.

Furthermore, values of k¢ for NO dissociation from ferrous nit-
rosylated heme-proteins may also reflect structurally-different sta-
bilization mode(s) of the heme-Fe(Il)-bound NO by heme distal
residue(s). In fact, the stabilization of the heme-bound ligand is
achieved by hydrogen bonding to the heme distal His residue in
human Hb [50]. In contrast, Arg145 may stabilize the HSA-heme-
Fe(II)NO complex by hydrogen bonding [41].



86 P. Ascenzi et al./Biochemical and Biophysical Research Communications 387 (2009) 83-86

As a whole, present data reinforce the idea that HSA could be ta-
ken as the prototype of monomeric allosteric proteins. Further-
more, HSA-heme represents a unique case within heme-proteins
since allosteric effectors modulate both heme binding to HSA and
the heme-Fe-atom reactivity.
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