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Abstract: Induction of neo-angiogenesis is a fundamental step in many pathological conditions. The therapeutic value of 

inhibiting angiogenesis is an interesting area of research in oncology, with vascular endothelial growth factor (VEGF) be-

ing the most suitable anti-angiogenic target. In the last decade a number of anti-VEGF drugs have demonstrated, espe-

cially in combination with standard chemotherapy, clinical efficacy in the treatment of different solid tumor types. As data 

from clinical trials on anti-VEGF drugs are becoming available, it is increasingly recognized that VEGF, in addition to be-

ing a permeability, proliferation, and migration factor, is also a maintenance and protection factor for endothelial cells, be-

ing capable of regulating multiple biological functions, i.e. the production of vasoactive mediators and the expression of 

components of the thrombolytic and coagulation pathways. Consequently, the disturbance of vascular homeostasis by 

blocking VEGF may lead to endothelial dysfunction and adverse vascular effects, such as venous and arterial thromboem-

bolic events. In preclinical models angiogenesis and the increased expression of VEGF has been associated to altered ex-

pression of proinflammatory genes. These genes may be regulated in a biphasic manner, and it is possible that anti-VEGF 

therapy may disrupt a negative feedback loop that leads to potential in situ thrombus formation. Accordingly, combination 

treatment with bevacizumab and chemotherapy, compared with chemotherapy alone, was recently associated with an in-

creased risk of thromboembolism. 

The present review considers the biological mechanisms and clinical impact of thromboembolic complications during 

anti-angiogenic treatments in cancer patients. 
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BIOLOGICAL PROPERTIES OF THE ENDOTHE-

LIUM 

 The endothelium is a dynamic organ that plays a critical 
role in maintaining vascular homeostasis. The endothelial 
cell (EC), in fact, behaves as a receptor-effector structure 
which senses different physical or chemical stimuli that oc-
cur inside the vessel and, therefore, modifies the vessel shape 
or releases the mediators to counteract the effect of the 
stimulus and maintain homeostasis. The net effect is mainte-
nance of normal vascular tone, but the endothelium also 
maintains normal blood viscosity, prevents abnormal blood 
clotting, and prevents abnormal bleeding in terms of a bal-
ance between tissue plasminogen activator and its inhibitor. 
In addition, it limits inflammation of the vasculature and it 
can suppress smooth muscle cell proliferation. These are 
functions of the normal endothelium. The opposite occurs in 
the presence of a dysfunctional endothelium, in which ab-
normally functioning ECs cause vasoconstriction, increased 
inflammation and thrombosis (Fig. (1)) [1]. 

 Our increased understanding of the endothelium’s role 
began in the early eighties with the studies carried out by the 
Nobel Prize winner Furchgott, who hypothesized that the EC  
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had an important role in smooth muscle relaxation [2]. The 
findings obtained in this pioneering work represented a con-
siderable advance, because the causative compound called 
endothelial-derived relaxing factor (EDRF) had yet to be 
identified and, in fact, remained unidentified for years until 
its chemical structure was characterized as nitric oxide (NO). 

 NO is continuously synthesized by the endothelium and 
has a wide range of biological properties that maintain vas-
cular homeostasis. It is a potent vasodilator and inhibitor of 
platelet aggregation and thus has an important protective 
role. Accordingly, endothelial dysfunction is generally re-
garded as a decreased NO bioavailability [3]. 

 Oxidative stress also contributes to homeostasis in vascu-
lar cells [3]. Oxidant products [referred as reactive oxygen 
species (ROS)] are produced as a consequence of normal 
aerobic metabolism, but are highly reactive with other bio-
logical molecules. Under normal physiological conditions, 
ROS production is balanced by an efficient system of anti-
oxidants, molecules that are capable of neutralizing them and 
thereby preventing oxidant damage. In pathological states, 
ROS may be present in relative excess and this shift of bal-
ance in favor of oxidation (oxidative stress) may have detri-
mental effects on cellular and tissue function [3, 4]. 

 Several enzyme systems contribute to production of ROS 
in vascular tissues. Among them, the NO synthase (NOS), 
and in particular the endothelial isoform of NOS (eNOS) is 
now recognized as an important source of superoxide in sev-
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eral clinical settings [5]. Furthermore, eNOS can generate 
superoxide rather than NO in response to pathogenic stimuli. 
These findings have led to the concept of “NOS uncou-
pling”, where the activity of the enzyme for NO production 
is decreased, in association with an increase in NOS-
dependent superoxide production, such that both superoxide 
and NO are produced simultaneously. Under this circum-
stance, eNOS may become a peroxynitrite generator, leading 
to a dramatic increase in oxidative stress, since peroxynitrite 
formed by the NO-superoxide reaction, has additional detri-
mental effects on vascular function [4]. 

 Beside their direct attack to various cellular targets (i.e. 
nucleic acids, lipids, etc.), ROS are also capable of activating 
other signaling molecules, such as protein kinase C (PKC) 
and nuclear transcription factor- B (NF- B) leading to tran-
scription of genes encoding cytokines, growth factors and 
adhesion molecules [6]. These molecular changes are ulti-
mately responsible for the phenotypic switch of the endothe-
lium from a non-adhesive, non-thrombogenic cellular inter-
face to one that expresses and secretes several adhesion 
molecules and chemoattractants capable of recruit and acti-
vate other vascular cell types [4, 6]. 

 In recent years it has become increasingly recognized that 
ROS can act as signaling molecules not only in the inflam-
matory response, but also in many aspects of growth factor-
mediated physiological responses. In fact, at moderate, non-
toxic concentrations, ROS act as physiological signal trans-
duction messengers, and a variety of natural stimuli works 
by changing the cellular redox (oxidation/reduction) state as 
a part of the normal intracellular signaling network [7]. 

VASCULAR ENDOTHELIAL GROWTH FACTOR 

(VEGF): ANGIOGENIC AND VASCULAR PROTEC-

TIVE ACTIONS 

 Recent reports suggest that ROS play an important role in 
angiogenesis [8]. The underlying molecular mechanism(s) 
remain largely unknown, but numerous reports have demon-
strated that the intracellular redox state is closely associated 
with the pattern of VEGF expression [9-12]. 

VEGFs and their Receptors  

 Angiogenesis and lymphangiogenesis are regulated pre-
dominantly by several different growth factors and their as-
sociated receptor tyrosine kinases. Foremost among these is 
the VEGF family, which consists of several members, 
mainly VEGF-A, VEGF-B, VEGF-C and VEGF-D, sharing 
a common structure of 8 characteristically spaced cysteine 
residues in a VEGF homology domain [13]. VEGF-A (here-
inafter referred to as VEGF), initially designated VPF (vas-
cular permeability factor), is essential for angiogenesis in 
health and pathophysiology, and it is currently a major focus 
for drug targeting in the development of novel treatments for 
different human diseases [13-16]. Other members of this 
family might be involved in inflammatory angiogenesis 
(VEGF-B) [17], or may act as lymphangiogenic growth fac-
tors (VEGF-C and VEGF-D) [17, 18]. VEGF signal in arte-
rial and venous ECs is transduced through 2 main receptors 
with tyrosine kinase activity, namely, VEGFR1 and 
VEGFR2 [19]. There is considerable evidence that VEGFR-
2 is the major mediator of VEGF-driven responses in endo-
thelial cells and it is a crucial signal transducer in both 

 

 

 

 

 

 

 

 

 

Fig. (1). An activating stimulus, such as cytokines, or a condition of increased oxidant stress, would lead to activation of endothelial cells 

(EC) and platelets, which causes a switch toward a pro-thrombotic, pro-inflammatory condition contributing to increased cardiovascular risk. 

EDHF: endothelium derived hyperpolarizing factor; NF- B: nuclear transcription factor- B; AP-1: activator protein-1; STATs: signal trans-

ducers and activators of transcription; PGI2: prostacyclin; PAI-1: plasminogen activator inhibitor-1. 
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physiologic and pathologic angiogenesis [20]. The VEGF 
gene has its expression regulated by ROS and additional data 
support the hypothesis that VEGF mRNA is up-regulated by 
hydrogen peroxide in a dose- and time-dependent manner 
[21, 22]. Furthermore, hydrogen peroxide is also capable of 
inducing a significant VEGFR2 expression [23]. 

 The binding of VEGF to 1 of its transmembrane tyrosine 
kinase receptors, which are predominantly found on endothe-
lial cells, results in receptor dimerisation, activation and 
autophosphorylation of the tyrosine kinase domain. This 
triggers a cascade of complex downstream signaling path-
ways (Fig. (2)). 

VEGF SIGNALING IN ENDOTHELIAL CELL BIO-

LOGY 

Regulation of Vascular Permeability  

 VEGF was originally identified as a factor which in-
creased vascular permeability [24, 25]. However, the signal-
ing mechanisms underlying this effect remain largely un-
known. Induction of endothelial fenestrations may be an 
important mechanism by which VEGF modulates vascular 
permeability [26]. The signaling pathways mediating VEGF-
induced fenestration are unclear, though a permissive envi-
ronment involving changes in the composition of the ex-

tracellular matrix may be required [26, 27]. VEGF-induced 
formation of fenestrations is associated with caveolae. These 
are a subset of lipid raft domains seen as morphologically 
distinct, flask-shaped invaginations that are particularly 
abundant and critical in the cardiovascular system [28]. In 
vascular endothelial cells, caveolae represent approximately 
95% of cell surface vesicles and have multiple functions in 
organizing and regulating signaling cascades, controlling cell 
motility, and serving as endocytic carriers [28]. 

 VEGF also induces the appearance of vesicular-vacuolar 
organelles [29, 30] and the role for NO in mediating VEGF-
induced vascular permeability is supported by the observa-
tions that the eNOS inhibitor L-NAME inhibited permeabil-
ity changes induced by VEGF in vivo [31]. Furthermore, the 
close coupling between activated VEGFR2 and eNOS is 
brought about by their colocalization within caveolae/lipid 
rafts and direct associations with caveolin-1. The activation 
of caveolar eNOS depends on caveolin-1 dissociation [re-
viewed in 28]. In the absence of VEGFR2 activation, caveo-
lin-1 tightly binds to a motif in the oxygenase domain of 
eNOS maintaining the enzyme in an inactive state within 
caveolae. VEGF stimulation leads to Src kinase–mediated 
phosphorylation of caveolin-1 [32]. Consequently, eNOS 
dissociates from caveolin-1 and becomes activated by bind-
ing to calmodulin, dynamin-2a, and several heat shock pro-

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Vascular endothelial growth factor (VEGF) signaling via its receptor (VEGFR2). VEGF binding to VEGFR2 initiates a number of 

signaling cascades leading to cell survival, migration, and proliferation of endothelial cells. NO: nitric oxide; PGI2: prostacyclin; eNOS: en-

dothelial NO synthase; PLC ; PKC: protein kinase C; ERK: extracellular regulated kinase; MAPK: mitogen activated protein kinase; FAK: 

focal adhesion kinase; PI3-K: phosphatidylinositol 3' kinase; Akt/PKB: protein kinase B; COX-1: cyclooxygenase-1; PLA2: phospholipase-2. 
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teins [33]. Taken together, the experimental data now avail-
able support a model in which endocytosis and trafficking 
contribute to the rapid and transient activation of eNOS. A 
detailed discussion of the events leading to internalization 
and recycling of VEGFR2 and NO is beyond the scope of 
this review and has been the objective of a recent article 
[28]. 

 Other molecules have been implicated as effectors of 
VEGF-induced venular permeability, such as PLC-  tyrosine 
phosphorylation, mobilization of intracellular calcium and 
PKC activation [34]. VEGF increased phosphorylation of 
components of intercellular endothelial adherens and tight 
junctions may mediate disruption of cell–cell adhesions, 
leading to increased vasopermeability [35-37]. Nonetheless, 
some evidence has been published against the involvement 
of VEGFR2 in the ability of VEGF to trigger vascular per-
meability [38]. Thus, the issue is still an open matter. 

Cell Survival and Proliferation  

 A fundamental cellular mechanism by which VEGF 
promotes the formation of new blood vessels and maintains 
their integrity is the activation of EC survival or anti-
apoptotic signaling [39]. Long-term effects of VEGF on EC 
survival are mediated through upregulation of components of 
the anti-apoptotic cellular machinery. VEGF, in fact, is ca-
pable of inhibiting apoptosis by several mechanisms, includ-
ing activation of the anti-apoptotic kinase, Akt/PKB [22, 40, 
41], induction of the antiapoptotic proteins Bcl-2 and A1 
[42] and upregulation of survivin and the X-chromosome-
linked inhibitor of apoptosis (XIAP) [43]. VEGF also stimu-
lates DNA synthesis and proliferation through the activation 
of extracellular-regulated kinase (ERK), which is mediated 
by Ras-Raf-MEK-ERK pathway [44, 45]. The mitogen acti-
vated protein kinase (MAPK) pathway is also implicated in 
cell proliferation in response to VEGF [46]. All these phe-
nomena are mediated by VEGFR2 and VEGF binding to 
VEGFR1 is not involved in VEGF-mediated cell survival 
[22]. 

 Other signaling pathways may also play a role in endo-
thelial cell survival functions of VEGF. For example, in-
tegrins/cell adhesion receptors such as the endothelium spe-
cific adhesion molecule v 3 also play a role in VEGF sig-
nal transduction. The cell adhesion molecule VE-Cadherin 
interacts with VEGFR2 forming a complex with -catenin 
and PI3-Kinase to promote cell survival [47]. Surprisingly, 
the same part of VE-cadherin mediates effects that in one 
case support VEGFR2 signaling (antiapoptosis, survival ef-
fects) and in the other case inhibit VEGFR2 signaling (pro-
liferative effects) [48]. Furthermore, it has been recently 
demonstrated that semaphorin (sema) 3C promotes EC sur-
vival and proliferation and stimulates cell adhesion, migra-
tion, and tube formation in vitro by inducing 1 integrin ser-
ine phosphorylation and VEGF secretion via NP/plexin sig-
naling [49]. 

 VEGF-induced proliferation was reported to be depend-
ent on a NO-mediated reduction PKC  activity [50]. Nota-
bly, PKC  transduces a principal signal for the upregulation 
of vasohibin, a negative regulator of angiogenesis genetically 
programmed in ECs [51]. Vasohibin is dominantly expressed 
in ECs, induced by the stimulation with VEGF or fibroblast 

growth factor-2 (FGF-2), and selectively affects on ECs and 
inhibits angiogenesis. However, the mechanism of how 
vasohibin inhibits angiogenesis remains to be elucidated 
[recently reviewed in 52]. 

Cell Migration  

 VEGF induces cell migration by increasing tyrosine 
phosphorylation and focal adhesion association of FAK (fo-
cal adhesion kinase) [53-55] and also via the PI3 Kinase/Akt 
pathway. FAK activation is mediated by the c-terminal re-
gion of VEGFR2 [56]. VEGF activation of the p38/MAPK 
stress pathway is also implicated in cell migration and p38 
inhibitors decrease cell migration [57]. Using VEGF mutants 
it was determined that only VEGFR2 and not VEGFR1 re-
sulted in p38 phosphorylation suggesting that VEGFR2 is 
the main mediator of cell migration in ECs [58]. 

 Other mechanisms have been involved in EC migration. 
Among these, the capability of VEGF of inducing the ex-
pression of matrix-degrading metalloproteinases, which are 
likely to play an essential permissive role in VEGF-induced 
migration in vivo [59]. In addition, it has been suggested that 
NO production may play a role in VEGF-induced endothelial 
cell migration. It is well known that VEGF induces NO pro-
duction and NO is implicated in non-chemotactic scalar 
movement (podokinesis) of ECs and as a permissive factor in 
VEGF-induced endothelial cell migration [60, 61] and angi-
ogenesis [62, 63]. NO has been reported to regulate focal 
adhesion integrity and FAK tyrosine phosphorylation in en-
dothelial cells [61] and Akt-dependent phosphorylation of 
eNOS was shown to be required for VEGF-induced cell mi-
gration [64]. 

NO and Prostacyclin (PGI2) Production  

 As reported above, VEGF increases both eNOS expres-
sion and NO and PGI2 production by ECs [31, 65-69]. 
VEGF-induced PGI2 production results from PKC-mediated 
ERK activation and ERK-mediated phosphorylation and 
activation of phospholipase A2 (PLA2) [65], a pathway that 
is unaffected by inhibitors of eNOS, suggesting that VEGF 
signaling leading to NO and PGI2 generation bifurcates up-
stream of ERK [70, 71]. 

 In common with other activators of eNOS, short-term 
NO production induced by VEGF probably involves calcium 
mobilization and activation of the constitutive isoform [71], 
but VEGF via activation of VEGFR2, is also capable of 
upregulating eNOS mRNA and protein expression [72-74] 
providing a mechanism for prolonged VEGF-induced NO 
production [71]. 

 NO and PGI2 are best known as vasodilators, but they 
have several vascular protective effects, including anti-
platelet actions, and in the case of NO, inhibition of leuko-
cyte adhesion [71]. Accordingly, VEGF may have similar 
vascular protective effects through enhanced NO and PGI 
production [71]. Evidence that VEGF has NO-dependent 
vascular protective effects independent of angiogenesis or 
endothelial cell proliferation, comes from preclinical and 
clinical studies addressing the role of this cytokine in athero-
sclerosis and its complications [75, 76]. Moreover, an anti-
thrombotic effect of VEGF may result both from NO and 
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PGI2-mediated inhibition of platelet aggregation, and from 
VEGF-induced expression and activation of the serine prote-
ases, urokinase and tissue type plasminogen activator [77], 
which cleave plasminogen to generate the key thrombolytic 
enzyme plasmin. As an apparent paradox, VEGF also has 
potentially pro-thrombogenic effects, including the induction 
of endothelial von Willebrand factor (vWF) secretion [71, 
78], which is not only essential for platelet adhesion to 
subendothelial collagen, but increases also endothelial cell 
adhesion, thus cooperating in the maintenance of endothelial 
integrity [25]. 

Vascular Protective Roles of VEGF in the Cardiovascu-

lar System 

 Increasing understanding of the multiplicity of actions 
exerted by VEGF has provided new insights in the compre-
hension of the vascular protective role of VEGF [10, 11] and 
might help to unravel the molecular mechanisms underlying 
vascular complications observed in patients using treatments 
that inhibit the VEGF signaling pathway. Although it is not 
yet fully elucidated how angiogenesis inhibitors upset nor-
mal hemostasis, it is likely that disruption of the function 
and/or integrity of vascular endothelium may lead to an in-
creased risk for thrombosis and/or hemorrhage [79, 80]. 

 In this context, the capability of VEGF of increasing NO 
production by ECs is of particular significance, considering 
that endothelial dysfunction is generally regarded as a de-
creased NO bioavailability and increased oxidative stress. Of 
particular interest are the findings by González-Pacheco et 
al. who suggested that, while high concentrations of hydro-
gen peroxide elicit clear-cut damaging effects, mild oxida-
tive stress might act as a protective mechanism in ECs [23]. 
These effects involved significant changes in VEGF and 
VEGFR2 gene expression, the latter being mainly driven 
through a nuclear factor B (NF- B)-dependent pathway 
[23]. In addition, the cytoprotective effect exerted by low 
doses of hydrogen peroxide was shifted to an EC-damaging 
pattern by means of specific VEGF blockade, therefore re-
vealing a major role of autologous VEGF and leading the 
authors to hypothesize that autocrine VEGF makes ECs 
more resistant to injury by oxidative agents [23]. Thus, one 
could postulate that the increased rate of thrombotic events 
observed in trials of combined anti-VEGF chemotherapeutic 
protocols might result from the blockade of such cytoprotec-
tive effect, which is even more crucial considering the in-
creased oxidative stress [81, 82] and haemostatic activation 
[83] generally associated to chemotherapy. 

 Predisposition to thrombosis after inhibition of VEGF 
signaling may, indeed, reflect the multiplicity of actions of 
VEGF on vascular walls and perhaps on components of the 
coagulation system. VEGF not only stimulates endothelial 
cell proliferation, but also promotes ECs survival and helps 
maintain vascular integrity [84]. Inhibition of VEGF could 
thereby diminish the regenerative capacity of ECs and cause 
defects that expose pro-coagulant phospholipids on the lumi-
nal plasma membrane or underlying matrix, leading to 
thrombosis or haemorrhage [85]. In addition, the loss of an-
tiplatelet activity due to reduced NO and PGI2 after inhibi-
tion of VEGF signaling may predispose to thromboembolic 
events. 

 Although the prevailing rationale for thrombosis in 
antiangiogenic therapies is that VEGF blockade leads to vas-
cular inflammation and clotting, yet another mechanism by 
which anti-VEGF treatment may predispose to arterial 
thrombosis relies in the possibility that monoclonal antibod-
ies targeting VEGF can induce platelet aggregation, degranu-
lation and thrombosis through complex formation with 
VEGF and activation of the platelet FcgammaRIIa receptor 
[86]. 

 Platelets are an important in vivo source of VEGF, both 
in health [87] and cancer [88-90], and thrombin generation 
plays a central role being capable of activating platelets, thus 
causing VEGF release, and ECs, thus increasing their ex-
pression of VEGFR2 and proinflammatory cytokines (Fig. 
(3)) [91]. Moreover, activation of thrombin produces 
prothrombin fragment 1+2 (F1+2) that act to dampen the 
positive feedback effect of thrombin to help finely control 
the angiogenic response [92]. Disruption of these regulatory 
mechanisms is of utmost importance especially during can-
cer chemotherapy, since changes in serum VEGF usually 
coincide with drug-induced thrombocytopenia and the sub-
sequent rebound of platelets might have an unwanted effect 
of tumor through chemotherapy-induced endothelial damage, 
platelet activation and further VEGF release, supporting re-
growth of the tumor during the second half of the cycle [88]. 
To avoid the undesired effects of VEGF delivered by plate-
lets, especially during their rebound, there might be a place 
for drugs preventing platelet activation and aggregation dur-
ing platelet recovery, as already described in other clinical 
settings [93]. 

Thromboembolic Events in Patients Treated with Anti-

Angiogenic Drugs 

Bevacizumab-Based Therapies 

 The pivotal role of VEGF in cancer development and 
dissemination has begun to be elucidated since the late eight-
ies. Several publications have demonstrated [94-96] that 
VEGF block can induce tumor shrinkage and prevent metas-
tases. The next logical step has been to design specific 
VEGF pathway inhibitors to interfere with tumor angiogene-
sis. The first drug proved to have antineoplastic properties by 
selectively inhibiting VEGF function has been a humanized 
monoclonal immunoglobulin G targeting soluble VEGF-A 
(bevacizumab, Avastin

®
). 

 Bevacizumab is currently approved in combination with 
fluoropyrimidine-based chemotherapy for the treatment of 
patients with metastatic colorectal cancer in both first and 
second-line regimens [97-101]. It is also approved for the 
first-line treatment of patients with metastatic breast cancer 
in combination with paclitaxel [102], of patients with metas-
tatic non-squamous non-small cell lung cancer in addition to 
platinum-based chemotherapy [103, 104] and of patients 
with metastatic renal cell cancer in combination with inter-
feron alfa-2a [105]. 

 In the pivotal phase III trial of first-line metastatic colo-
rectal cancer treatment, bevacizumab in combination with 
standard irinotecan/fluorouracil chemotherapy gave a 10% 
increase in tumor response rate and a significant lengthening 
of progression-free and overall survival times (4.4 and 4.7 
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month improvement, respectively, as median survival times) 
[97]. In this study, an increased incidence of thrombotic 
events was found in bevacizumab arm (393 patients) com-
pared to the control arm (397 patients), but this was not sig-
nificant (19.4% vs. 16.2%, respectively) [97]. 

 Since the first approval for clinical use in metastatic colo-
rectal cancer patients in 2004, bevacizumab has been proven 
effective in several cancer types other than colorectal, and its 
indications, as above-mentioned, have been broadened now 
to include renal, breast and lung cancer (www.fda.gov, 
www.emea.europa.eu). 

 Until now six large randomized phase III studies specifi-
cally exploring the advantage of adding bevacizumab to 
standard treatment have been fully published [97, 98, 104-
106], and data on thrombotic events have been reported for 
all the studies. The increased risk of thromboembolic events 
with bevacizumab use is now well-recognized (Table 1). 
However, except for the study by Hurwitz et al., their inci-
dence remains relatively low with P values not reaching sig-
nificance. 

 To specifically address questions on bevacizumab-related 
thromboembolic risk, Genentech provided 2 subset analyses: 
the first has been recently published and refers to a retro-
spective pooled analysis of 5 randomized Genentech trials 
regarding different solid cancer types [107], the second one 
has been presented at the 2007 American Society of Clinical 
Oncology Annual Meeting and is a pre-planned analysis of 

the BRiTE study
1
, an observational cohort study involving 

248 study sites in 49 states where bevacizumab had to be 
used as first line treatment for metastatic colorectal cancer 
patients in combination with a chemotherapy regimen chosen 
at investigator’s discretion. 

 In the former study, adverse events analysis was per-
formed on 1745 patients (782 treated with bevacizu-
mab+chemotherapy, 963 with chemotherapy only) pooled 
from the phase III study by Hurwitz et al. [97] and from 4 
other randomized phase II studies, 2 involving colorectal 
cancer patients [108, 109], 1 lung cancer patients [110] and 1 
breast cancer patients [106]. Overall incidence of thrombotic 
events was calculated for the control and bevacizumab group 
and the possible impact of pre-existent risk factors for car-
diovascular morbidity were evaluated. While no relevant 
differences were found for venous events (VTEs) between 
the 2 treatment groups, a nearly 2-fold increase of arterial 
thromboembolic events (ATEs) was demonstrated for pa-
tients receiving bevacizumab (3.8 % vs. 1.7%) with a Hazard 
Ratio (HR) of 2.0 (95% CI 1.05-3.75, P= 0.031) in favor of 
chemotherapy-only group. ATEs were considered as 1 of the 
following 7 events: angina pectoris, arterial thrombosis, 
cerebral infarct, cerebral ischemia, cerebrovascular accident, 
myocardial infarction or myocardial ischemia. When base-

                                                
1 Sugrue MM. Serious arterial thromboembolic events (sATE) in patients (pts) with 

metastatic colorectal cancer (mCRC) treated with bevacizumab (BV): Results from the 

BRiTE registry. 2007 ASCO Annual Meeting. Abstract No: 4136. 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Tumor cells may induce a procoagulant status either directly, through exposure of tissue factor (TF) or indirectly, through VEGF 

production and endothelial cell activation. Moreover, tumor cell and/or host cell produced cytokines [i.e., interleukin-1  (IL-1 ) or tumor 

necrosis factor-  (TNF- )] will sustain a pro-inflammatory, prothrombotic environment leading to further rounds of activation, release of 

platelet VEGF, or TF exposure and cytokine release by monocytes or tumor associated macrophages. Coagulation activation will ultimately 

lead to generation of thrombin, which may promote additional tumor VEGF mRNA induction. 
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line risk factors for thrombotic events (age, sex, hyperten-
sion, asymptomatic atherosclerosis, diabetes and history of 
arterial thromboembolism, myocardial infarction, stroke, 
transient ischemic attack, or venous thrombosis) were in-
cluded in a multivariate analysis together with bevacizumab 
use, variables independently influencing the risk of ATEs 
remain bevacizumab use, age older than 65 years and history 
of other ATEs at study entry (HR 1.95 p = 0.04, HR 2.17 p = 
0.01, HR 3.65 p < 0.001, respectively). Furthermore, the 
majority of ATEs occurred within 3 months of treatment 
[107]. 

 Impact of aspirin use was also analyzed. Consumers of 
more than 325 mg/day aspirin were excluded from the trial, 
while lower doses were allowed. In the pooled population 
only a minority of patients were taking low dose aspirin 
(13%) and no significant differences in terms of ATEs were 
detected in this subset of patients between subjects receiving 
bevacizumab and subject treated with chemotherapy only, 
however the incidence was higher in the bevacizumab arm 
despite the use of a concomitant anti-thrombotic drug (1.2% 
vs. 5.1%, p = 0.159) [107]. 

 Of note the incidence of ATEs in the breast cancer trial 
was low and did not differ between control and bevacizumab 
arms (1 event per arm) [106]. However, the proportion of 
premenopausal women, a well-known low risk subpopula-
tion for arterial cardiovascular diseases, and presence of 
other potentially protective hormonal factors were not speci-
fied in the analysis. 

 Similar results have been achieved in the “less-
controlled” prospective BRiTE trial, where bevacizumab was 
prevalently given in combination with fluorouracil/ ox-

aliplatin regimen (60.7% of patients). In the ATEs analysis 
of BRiTE registry similar definitions of ATEs and baseline 
risk factors, respect to Genentech study, were applied, with 
small differences (addition of “hypercholesterolemia requir-
ing medication” in risk factors). 

 In the BRiTE trial, unlike Genentech study and other 
prospective bevacizumab trials, patients with a recent history 
(< 12 months) of myocardial infarction (MI) and cerebrovas-
cular accidents (CVA) were not excluded. Overall incidence 
of ATEs in BRiTE was 1.8%, with the majority events being 
MI and CVA (74%). Most ATEs occurred within the first 6 
months of therapy. Multivariate risk factors analysis con-
firmed history of ATEs at study entry, together with ECOG 
performance status  1, to be an independent risk factor of 
developing ATEs during study treatment with bevacizumab, 
with a HR of 2.46 (p = 0.025). 

 The BEATrial
2
 was a similarly designed prospective ob-

servational study, conducted in Europe, that enrolled 1,915 
patients from 40 countries for whom the most commonly 
used chemotherapy regimen in combination with bevacizu-
mab was oxliplatin/fluoruracil-based (47%). Final efficacy 
and safety data have recently been presented at the 2008 
American Society of Clinical Oncology (ASCO) annual 
meeting. Reported incidence of ATEs was comparable to 
that of BRiTE registry (1.3%). 

 As far as VTEs are concerned, a detailed analysis of their 
occurrence in patients pooled from the studies by Kabbi-

                                                
2 Berry SR, Van Cutsem E, Kretzschmar A, et al. Final efficacy results for bevacizu-

mab plus standard first-line chemotherapies in patients with metastatic colorectal 

cancer: First BEAT. 2008 ASCO Annual Meeting. Abstract No: 4025. 

Table 1. Incidence of Thromboembolic Events in Randomized Phase III Studies 

Study Regimen No. of Patients TE Incidence VTE Incidence ATE Incidence 

Hurwitz 2004 [98] IFL+BEV 

vs. 

IFL 

402 

411 

19.4% 

16.2% 

- - 

Miller 2005 [107] Capecitabine/BEV 

vs. 

Capecitabine 

229 

215 

7.4% 

5.6% 

- - 

Sandler 2006 [105] Carboplatin/Paclitaxel/BEV 

vs. 

Carboplatin/Paclitaxel 

434 

444 

- - - 

Escudier 2007 [106] Interferon alfa-2a/BEV 

vs. 

Interferon alfa-2a 

325 

316 

- 3% 

1% 

1.5% 

0.7% 

Miller 2007 [103] Paclitaxel/BEV 

vs. 

Paclitaxel 

365 

346 

2.2% 

1.4% 

- - 

Saltz 2008 [99] Oxaliplatin/fluoropirimidin/BEV 

vs. 

Oxaliplatin/fluoropirimidin 

694 

675 

- 8% 

5% 

2% 

1% 

TE (any thromboembolic event), VTE (venous thromboembolic events), ATE (arterial thromboembolic events), BEV (bevacizumab), IFL: irinotecan/fluorouracil based chemother-

apy. 
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navar et al. [109] and Hurwitz et al. [97] was presented at 
the 2004 ASCO Annual Meeting by Novotny et al

.3
. Overall, 

no substantial differences were detected in VTEs rate be-
tween bevacizumab-containing and chemotherapy-only 
groups, with 74 VTEs in the 492 bevacizumab-treated pa-
tients and 74 VTEs in the 500 chemotherapy-only treated 
patients (15% for both). Most recently, Nalluri et al. per-
formed a systematic review and meta-analysis of published 
randomized controlled trials to assess the overall risk of 
VTEs associated with the use of bevacizumab [111]. A total 
of 7956 patients with a variety of advanced solid tumors 
from 15 randomized controlled trials were identified and 
included for analysis. The results obtained showed that pa-
tients treated with bevacizumab had a significantly increased 
VTEs risk with a RR of 1.33 (95% CI, 1.13-1.56; P<0.001) 
compared with controls. The risk was significantly increased 
for both all grade and high-grade VTE. In addition, the risk 
was similarly increased for bevacizumab at low or high dose 
[111], leading the Authors to conclude that the so called low 
dose of bevacizumab may be already reaching the saturation 
level to induce thrombosis; alternatively, the difference be-
tween the high and low doses of bevacizumab in throm-
bogenesis may be too small to detect [111]. 

Other Angiogenesis Inhibitors 

 Additional angiogenesis inhibitors have recently been 
approved by the US and European drugs regulatory agencies 
(FDA and EMEA) for the treatment of solid and hematologi-
cal malignancies (lenalidomide, thalidomide, sunitinib, 
sorafenib). All these agents inhibit VEGF signaling by 
blocking VEGF ligand or VEGF receptor functions and for 
some of them (e.g. sunitinib) an inhibition of other important 
tyrosine-kinase proteins, such as platelet-derived growth 
factor receptor (PDGFR), has been also demonstrated. 

 An increased incidence of ATEs has been also reported 
with the use of such inhibitors. Lenalidomide and thalido-
mide are immunomodulatory drugs, structurally related to 
each other, with pleiotropic activities, including antiangio-
genic and antineoplastic properties. It has been observed a 
surprisingly higher incidence of VTEs in multiple myeloma 
patients treated with these drugs, but how much part can be 
attributable to their antiangiogenic activity remains unclear 
[112-114]. In a recently published pooled analysis by Menon 
et al. [115] with multiple myeloma patients enrolled in 3 
distinct lenalidomide-based clinical trials, 8% of the 125 
analyzed patients developed deep vein thrombosis despite 
the fact that half of them were taking primary thrombopro-
phylactic therapy. There was a trend to a higher incidence of 
thrombosis in patients receiving concomitant high-dose cor-
ticosteroid therapy. 

 Sunitinib and sorafenib are 2 small molecules inhibiting 
the tyrosin-kinase activity of vascular endothelial growth 
factor receptor (VEGFR). Sunitinib has been proven effec-
tive in the treatment of gastrointestinal stromal tumors and 
renal cell carcinomas [116, 117], sorafenib provides signifi-
cant improvement in progression-free survival in patients 

                                                
3 Novotny WF, Holmgren E, Nelson B, Mass R, Kabbinavar F, Hurwitz H. Bevacizu-

mab (a monoclonal antibody to vascular endothelial growth factor) does not increase 

the incidence of venous thromboembolism when added to first-line chemotherapy to 

treat metastatic colorectal cancer. 2004 ASCO Annual Meeting. Abstract No: 2184. 

with renal cell carcinoma [118] and hepatocellular carci-
noma

4
. While thromboembolic events have not yet been spe-

cifically analyzed for the 2 drugs, a 3% incidence of VTEs 
for sunitinib and a 2.9% incidence of treatment-emergent 
cardiac ischemia/infarction events are reported in the respec-
tive European Public Assessment Reports 
(http://www.emea.europa.eu). 

 Although data with respect to incidence and management 
of cardiovascular and cerebrovascular events from bevaci-
zumab are more mature than those from the various VEGFR 
tyrosine kinase inhibitors, it is conceivable that, considering 
the fact that the VEGF inhibitory effects of the various 
classes of angiogenesis inhibitors are comparable, the inher-
ent risks for any such event is theoretically comparable. As a 
matter of fact, the apparent differences in incidence of any 
cardiovascular thromboembolic event observed between 
bevacizumab and small molecules may be related to the yet 
relatively small number of patients that have been exposed to 
the latter [119]. 

CONCLUSIONS AND PERSPECTIVES 

 The clinical use of bevacizumab is rapidly increasing and 
we have now sufficient experience and number of treated 
patients to draw reasonable conclusions on its toxic profile. 
The thrombogenic effect of the drug seems to be exerted 
mainly in arteries, with the risk of venous thrombotic events 
being comparable to that of patients treated with standard 
chemotherapy. Some unclear points remain on the definition 
and grading of VTE among different trials and rate of as-
ymptomatic VTE may be underestimated

5
. 

 The incidence of ATEs attributable to bevacizumab re-
mains low (2-3%) but it is double in size respect to that ob-
served in chemotherapy-only treated patients with a signifi-
cant difference. However, increased risk of ATEs in bevaci-
zumab-treated patients seems to be mainly related to age, 
history of previous ATE and ECOG performance status, 
variables that have to be taken into account before starting an 
antiangiogenic treatment. 

Moreover, undetectable thrombotic phenomena of the mi-
crovasculature seem to have a role also on pathogenesis of 
other side effects typically associated with bevacizumab, 
such as hypertension and proteinuria [120, 121]. 

 On the other hand, the protective role of other factors 
such as concomitant use of antihrombotic drugs and hormo-
nal factors still has to be elucidated. Considering the signifi-
cant impact of history of ATEs of new ATEs on bevacizu-
mab treatment, exclusion of patients with recent episodes 
(within 12 months) of relevant cardiovascular events should 
be maintained in future bevacizumab-involving trials. The 
real impact of thromboembolic toxicity of other antiangio-
genic agents such as sunitinib and sorafenib needs further 
investigations and larger study populations. 

                                                
4 Llovet J, Ricci S, Mazzaferro V, et al. Sorafenib improves survival in advanced 

Hepatocellular Carcinoma (HCC): Results of a Phase III randomized placebo-

controlled trial (SHARP trial). 2007 ASCO Annual Meeting. Abstract No: LBA1. 
5 Suenaga M, Mizunuma N, Shinozaki E, et al. Doppler ultrasound imaging in man-

agement of venous thromboembolic events in patients treated with chemotherapy and 

bevacizumab. 2008 ASCO Gastrointestinal Cancers Symposium. Abstract No: 508. 
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 The critical issues emerging from the available studies 
are, firstly, how to best prevent these complications and, 
secondly, how to best manage the haemostatic complications 
of antiangiogenic agents in cancer patients, particularly those 
undergoing concurrent treatment with standard chemother-
apy [79]. The American Society of Clinical Oncology’s 
guidelines do not recommend routine prophylaxis in ambula-
tory cancer patients receiving chemotherapy with the excep-
tion of myeloma patients receiving thalidomide or lenalido-
mide because of potential bleeding and the relatively low 
incidence of VTEs in this setting [122]. However, the abso-
lute risk of VTEs in patients treated with bevacizumab may 
be comparable and, thus, prophylaxis may be conducted ac-
cordingly [79,111]. Future studies, specifically designed to 
address this issue, are urgently required to better define the 
causal association of antiangiogenic drugs with haemostatic 
complications and to establish the best prophylactic strategy. 
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