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The steady-state behavior of a single drop under shear flow has been extensively investigated in
the limit of small deformation and negligible inertia effects. In this work, we combine the calculations
proposed by Flumerfelt [R. W. Flumerfelt, J. Colloid Interface Sci. 76, 330 (1980)] for unconfined
drops with interface viscosity, with those by Shapira and Haber [M. Shapira and S. Haber, Int. J.
Multiph. Flow 16, 305 (1990)] for confined drops without interface viscosity. By merging these two
approaches, we provide comprehensive analytical predictions for steady-state drop deformation and
inclination angle across a wide range of physical conditions, from confined to unconfined droplets,
including or excluding the effect of interface viscosity. The proposed analytical predictions are also
robust concerning variations in the viscosity ratio, making our model general enough to include any
of the above conditions.
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I. INTRODUCTION

Complex fluids, such as blood, emulsions, and immiscible polymer blends, are familiar to people ordinary-life since
they are implemented in several engineering applications, ranging from pharmaceutical [1–3] to petroleum [4, 5]
and food industry [6–8]. During their processing, the micro-constituents of these systems, namely red blood cells,
drops, and single polymers, may undergo deformation, turning into a specific system morphology, up to the interface
rupture. Studying the steady-state shape of the system is crucial in defining the mechanical properties and rheology
of such systems [9–12]. For this reason, precise control of the behavior of every single constituent under specific
conditions is a critical aspect for enhancing and regulating manufacturing procedures. The most streamlined situation
consists in a single drop undergoing a shear flow at low Reynolds numbers, which has garnered extensive scrutiny
through analytical [13–17], experimental [18–20], and numerical investigations [21–23]. In particular, under the same
conditions, the pioneering work of Taylor [14] laid the foundation for predicting the steady-state behavior of both
drop deformation and inclination angle with respect to the flow direction. However, when the drop is placed in
confined geometries, the latter quantities suffer from significant variations regarding bulk systems [24–28]. In this
scenario, Shapira & Haber [24] provided an analytical prediction for steady-state drop deformation as a function of
the confinement degree and the relative distance between the drop’s center of mass and the lower wall, but no claim
has been made on the inclination angle. Their analytical prediction has also been confirmed by experiments [25–
27]. Later on, confinement degree has been numerically and experimentally observed to play an important role in
drop breakup, influencing not only the threshold and dynamics of breakup but also the resulting daughter-drop size
distribution under different confinement, viscosity ratios and flow conditions [29–34]. Besides confinement effects,
it has been detected that the presence of an interface viscosity represents an additional discriminating factor in
determining the steady-state drop shape [10, 35–39]. Indeed, Flumerfelt [35] extended Taylor’s theory to account for
the drop interface viscosity by providing analytical predictions for both drop deformation and inclination angle. In
this landscape, a comprehensive analytical expression predicting the steady-state value of deformation and inclination
angle of a confined drop with interface viscosity in shear flow is still missing, despite the necessity coming from
practical applications involving drops and suspensions of droplets.
In this work, we present a comprehensive analytical prediction for the steady-state deformation and inclination angle
of a confined/unconfined drop with/without interface viscosity in the limit of small deformation and negligible inertia
effects.
The paper is organized as follows: in Sec. II, both the employed numerical method and setup are presented. In
Sec. III, we report the derivation of the equation describing the steady-state deformation, while the derivation for the
steady-state inclination angle is provided in Sec. IV. Finally, conclusions are summarized in Sec. V.
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FIG. 1. We consider a single drop with initial radius R, viscosity λµ and surface tension σ under shear flow, immersed in a fluid
with viscosity µ and confined in a channel with two walls placed at distance H moving with velocity uw(x, y, z = ±H/2) =
(±uwall, 0, 0). The drop’s center of mass is placed at a distance h from the lower wall. We vary the Boussinesq (Bq) and

capillary (Ca) numbers, the drop relative height (ĥ) and the degree of confinement (χ). For each parameters’ combination, we
measure the time-evolution of both drop deformation D(t) and inclination angle θ(t) (see upper-right panel). The instantaneous
deformation is computed as D(t) = (a(t) − b(t))/(a(t) + b(t)), where a and b are the drop main axes in the xz plane. The
steady-state value D∞ (solid black line) and θ∞ (solid red line) are then considered. Data in the upper-right panel correspond

to the situation with Ca= 0.33, Bq= 40, χ = 0.7, and ĥ = 0.5.

II. NUMERICAL METHOD

Given the inherent challenges of precisely controlling all possible parameter combinations in experiments is challeng-
ing, numerical simulations are crucial to address this scope. In this work, we performed immersed boundary-lattice
Boltzmann numerical simulations. Such a method has been largely benchmarked and employed for investigating
the dynamics of single drops [38–42] and capsules [12, 43–47] with and without interface viscosity. In particular,
the in-house GPU code we employed has already been extensively validated in previous works of some of the au-
thors [39, 41, 42, 48, 49].

Instead of directly simulating the Navier-Stokes equations, the lattice Boltzmann (LB) method simulates the evolution
of some probability distribution functions ni(x, t), representing the probability of finding fluid particles at position
x and time t, moving with a discrete velocity ci. In particular, we implemented the so-called D3Q19 LB scheme, in
which 19 discrete velocities are considered on a 3D regular lattice (see Ref. [50] for details). The dynamics of such
functions ni is given by the LB equation:

ni(x+ ci∆t, t+∆t)− ni(x, t) = −∆t
ni(x, t)− neq

i (x, t)

τLB

+

(
1− ∆t

2τLB

)
wi

c2s

[(
ci · u
c2s

+ 1

)
ci − u

]
· F , (1)

being neq

i the equilibrium distribution function

neq

i (x, t) = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (2)

F the force density, wi suitable weights (w1 = 1/3, w2−7 = 1/18, w8−19 = 1/36), c2s = 1/3 the speed of sound,
∆x = ∆t = 1 the lattice spacing and the discrete time-step, respectively, and τLB = 1 is the LB relaxation time [50].
The hydrodynamics fields (fluid density ρ and velocity u) can be computed as:

ρ(x, t) =

19∑
i=1

ni(x, t) , ρu(x, t) =

19∑
i=1

cini(x, t) +
∆t

2
F . (3)
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Notice that τLB provides the link between the kinetic approach of the LB method and the hydrodynamic world of
the Navier-Stokes equation via the fluid viscosity µ = ρc2s

(
τLB − ∆t

2

)
. Further technical details can be found in

textbooks [50, 51] or in previous works by some of the authors, in which the same method (and the same numerical
code) was employed [39–42, 48, 49]. In the present work, the fluid domain is a three-dimensional rectangular box with
sizes Lx = Ly = 128 ∆x and Lz = H, the latter varying to explore different degrees of confinement. The immersed
boundary method handles the two-way coupling between the fluid and the drop interface [50, 52]. The drop interface
is modeled as a 3D triangular mesh with radius R = 20 ∆x, made of 1.8 × 104 faces. On each mesh Lagrangian
node k at position rk, the interface force φk(t) is computed (details on the interface model are given below), and
then, according to the immersed boundary method, it is spread over the neighboring Eulerian (fluid, LB) nodes with
coordinates x:

F (x, t) =
∑
k

φk(t)δ(rk − x) . (4)

The function δ(x) is the discretized Dirac delta. In particular, we implemented the 4-points stencil for the Dirac
delta (see Refs. [50, 52]). The immersed boundary method is also used to interpolate the fluid velocity on the k−th
Lagrangian node:

ṙk(t) =
∑
x

∆x3u(x, t)δ(rk − x) . (5)

Once we have the velocity ṙk, the position of the Lagrangian node is integrated with a forward-Euler scheme.

Concerning the interface model, we compute on each element of the triangular mesh the viscoelastic stress tensor
τ = τs + τv, that is made of the sum of the surface-tension stress tensor τs = σI2 [38, 39, 41, 42], with I2 being
the 2D identity matrix, and the viscous tensor τv, which is given by the Boussinesq-Scriven tensor [53]: τv = 2µinte,
where e = 1

2 [∇u+(∇u)T ] is the strain rate tensor and ∇u is the velocity gradient at the interface [37, 38, 54]. In the
most general case, the Boussinesq-Scriven tensor can be split into shear and dilatational contributions, characterized
by the corresponding values of surface viscosity (µs and µd, respectively): τv = µs[2e− tr(e)I2] + µdtr(e)I2. For the
sake of simplicity, as already done in other works [54, 55], we assume the surface shear and dilatational viscosities to
be the same, allowing us to characterize viscous effects with a single parameter: µs = µd = µint. Numerical details
on how to compute the nodal force φi starting from the stress tensor τ can be found in Refs. [38, 39].

Concerning the setup, we consider a drop with initial radius R characterized by a surface tension σ, an interface
viscosity µint, and immersed in a fluid with density ρ and viscosity µ, resulting in a viscosity ratio between inner and
outer fluid viscosity λ (see Fig. 1). The drop is placed between two walls in the xy plane, located at z = ±H/2 and
separated by a distance H. The drop’s center of mass is fixed at a distance h from the lower wall. We apply a shear
rate γ̇ = 2uwall/H by moving the walls with a velocity uw(x, y, z = ±H/2) = (±uwall, 0, 0) (see Fig. 1). The Reynolds
number Re = ργ̇R2/µ keeps values smaller than 10−2 to avoid inertial effects. We measure the drop steady-state
deformation D∞ and the inclination angle θ∞ by varying the capillary number Ca = γ̇µR/σ, the Boussinesq num-

ber Bq = µint/µR, the degree of confinement χ = 2R/H, and the relative height of the drop’s center of mass ĥ = h/H.

III. STEADY-STATE DEFORMATION

To derive an analytical prediction for the steady-state drop deformation under shear flow, we considered the one
computed by Shapira & Haber [24] for confined pure drops, which reads

DSH(λ, ĥ, χ,Ca) = DT(λ,Ca)ΨSH(λ, ĥ, χ) , (6)

where DT(λ,Ca) = Ca(19λ+16)/(16λ+16) is the steady-state drop deformation computed by Taylor for an unconfined
pure drop [13], and

ΨSH(λ, ĥ, χ) = 1 + Cs(ĥ)
(χ
2

)3 1 + 2.5λ

1 + λ
, (7)

is a function accounting for the degree of confinement. The coefficient Cs(ĥ) in Eq. (7) represents the shape factor [56].
It is worth noting that, when χ = 0 (unconfined drop), then ΨSH = 1 and DSH = DT. To include the effect of the
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FIG. 2. For three representative combinations of χ and ĥ with λ = 1, we show data for the measured steady-state value of the
drop deformation D∞, normalized with the corresponding value of DF (cfr. Eq. (8)), as a function of Bq. Dotted and solid
black lines report the corresponding value of the function ΨSH (cfr. Eq. (7)) and Ψ (dfr. Eq. (11)), respectively. Different
colors/symbols correspond to different values of Ca.

interface viscosity, we considered the steady-state deformation of an unconfined drop with interface viscosity computed
by Flumerfelt [35]:

DF(λ,Ca,Bq) =
19λ+ 16 + 32Bq

(16λ+ 16 + 32Bq)

√
Ca−2 +

[
19F
20 (λ+ 2Bq)

]2 , (8)

with

F = 1− 9λ+ 18Bq− 2

8(λ+ 2Bq)2
. (9)

Based on this observation and intending to provide a comprehensive analytical prediction for confined droplets with
interface viscosity, we replaced DT(λ,Ca) with DF(λ,Ca,Bq) in Eq. (6), thus obtaining

D(λ, ĥ, χ,Ca,Bq) = DF(λ,Ca,Bq)ΨSH(λ, ĥ, χ) . (10)

In the case of χ = 0 (i.e., ΨSH = 1), Eq. (10) recovers both Flumerfelt’s result (when Bq > 0) and Taylor’s result

(when Bq = 0). In this way, we implicitly assume that ΨSH(λ, ĥ, χ) does not depend on the interface viscosity and
that the effects of confinement and interface viscosity separately contribute to the overall drop deformation. On the
other hand, one can consider the Oldroyd’s model [57] to account for the effect of membrane viscosity, as also shown
in Refs. [10, 58]. This results in considering an effective viscosity ratio λ∗ = λ + 2Bq [10, 35, 37, 58], that can be
substituted in Eq. (7), leading to:

Ψ(λ, ĥ, χ,Bq) = 1 + Cs(ĥ)
(χ
2

)3 1 + 2.5λ+ 5Bq

1 + λ+ 2Bq
. (11)

However, Eq. (11) represents a small correction to Eq. (7), which can be only appreciated for high degrees of con-
finement. To verify it, we measured the steady-state value of the deformation D∞ from numerical simulations, and
we estimated the ratio D∞/DF as a function of Bq. Results are reported in Fig. 2 for λ = 1: different panels refer

to different combinations of χ and ĥ, while different symbols and colors refer to different Ca. In each panel, the

corresponding values of ΨSH(λ, ĥ, χ) (cfr. Eq. (7)) and Ψ(λ, ĥ, χ,Bq) (cfr. Eq. (11)) are reported with dashed and
solid black lines, respectively. Our analysis shows that at small degrees of confinement (χ < 0.7), ΦSH and Ψ are
qualitatively the same, with Ψ losing its dependence on Bq for values of Bq > 5; however, when χ is large, then a
discrepancy emerges.
By substituting the expression for DF (cfr. Eq. (8)) and that for Ψ (cfr. Eq. (11)) in Eq. (10), we obtained the explicit
comprehensive analytical expression for the steady-state deformation of a confined drop with interface viscosity:

D(λ, ĥ, χ,Ca,Bq) =
19λ+ 16 + 32Bq

(16λ+ 16 + 32Bq)

√
Ca−2 +

[
19F
20 (λ+ 2Bq)

]2
[
1 + Cs(ĥ)

χ3

8

1 + 2.5λ+5Bq

1 + λ+2Bq

]
. (12)

We remark that in the two limit cases of an unconfined drop with interface viscosity (χ = 0, Bq > 0) and a confined
pure drop (χ > 0, Bq = 0), Eq. (12) exactly recovers Flumerfelt’s and Shapira & Haber’s predictions, respectively.
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FIG. 3. Left panels: Measured steady-state value of the drop deformation D∞ as a function of Bq for λ = 1. Symbols
show simulation data, while solid and dotted lines correspond to Eq. (12) and Flumerfelt’s prediction DF (cfr. Eq. (8)),
respectively. Different colors/symbols correspond to different values of Ca. Right panels: steady-state shape of droplets for
different parameters’ combination that are marked in left panels with index i = 1, . . . , 8.

To further validate Eq. (12), we compared analytical prediction with numerical data. Since drop deformation in Eq.(12)

depends on five parameters (λ, ĥ, χ, Ca, Bq), we started by fixing λ = 1 and varying the remaining parameters. We
do not show data in either the case of an unconfined drop with interface viscosity or the confined pure drop because
results have already been widely explored [24, 35].

Fig. 3 reports the measured steady-state deformation D∞ as a function of Bq for different drop relative height ĥ
(columns) and various degrees of confinement χ (rows). Symbols represent numerical simulation data, while solid
lines show the theoretical prediction given by Eq. (12). Different colors refer to different values of Ca. The overall
effect of increasing confinement is to enhance the drop deformation, as already known for the pure drop [24]; on
the other hand, the effect of interface viscosity is to reduce the deformation [35]. The combination of both effects
holds the same qualitative scenario. Numerical results and analytical predictions are in good agreement , especially
in the limit of small Ca and χ, which is the limit in which the calculations by Flumerfelt and Shapira & Haber were
performed. There is, indeed, a slight difference for the combination of strong confinement (χ = 0.7), large values

of interface viscosity (Bq ≥ 30), and low relative drop height (ĥ = 0.35). Such differences have also been observed
experimentally for pure drops [25, 59], where experiments for high values of capillary number (Ca ≈ 0.3) and high
degrees of confinement (χ > 0.5) show that the prediction by Shapira & Haber underestimates the measured values.

Notice that simulation data for the case χ = 0.7 and ĥ = 0.25 does not exist because the distance h would be smaller
than R (see Fig. 1). Further, we remark that the correction that our model provides on the already existing theories
is pronounced: indeed, dashed lines in Fig. 3 refer to Flumerfelt’s prediction DF (cfr. Eq. (8)) for the unconfined
drop with interface viscosity. As expected, Eq. (12) approaches DF only for small values of χ. To visually capture
the effect of both interface viscosity and confinement on drop shape, right panels (1-8) of Fig. 3 show snapshots of

the steady-state configurations for selected and relevant combinations of Ca, ĥ and χ, spanning from the less confined
drop with a small interface viscosity (panel (1)) to the most confined case with the highest considered value of Bq
(panel (8)). The effect of interface viscosity can be appreciated by comparing left (Bq = 5) and right (Bq = 40)
panels. In contrast, the impact of the proximity to the wall is reflected in a not-symmetric drop shape (panels (3-4)).
This asymmetry is mitigated by the impact of interface viscosity.
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IV. STEADY-STATE INCLINATION ANGLE

We now move our attention to the drop inclination angle with respect to the flow direction. According to Maffettone
& Minale (MM) [60], who described the shape evolution of an ellipsoidal drop in terms of two functions f1 and f2,
the steady-state deformation and inclination angle in the limit of small Ca can be computed as

D = Ca
f2
2f1

, (13a)

θ =
1

2
arctan

(
f1
Ca

)
, (13b)

respectively. Since they considered an unconfined pure drop (χ = 0 and Bq = 0), the functions fi have been chosen
to recover the first-order expansion in Ca of the shape-evolution equation computed by Rallison [16]:

f1(λ) = f
(MM)
1 (λ) =

40(λ+ 1)

(2λ+ 3)(19λ+ 16)
, (14a)

f2(λ) = f
(MM)
2 (λ) =

5

2λ+ 3
. (14b)

Since Rallison’s result has been recently extended by Narsimhan (N) [10] to include the effect of the interface viscosity,
we matched the functions fi with the first-order expansion of the shape-evolution equation computed in Ref. [10], thus

obtaining fi(λ,Bq) = f
(N)
i (λ,Bq) (cfr. Eqs. (22) in Appendix 1). Notice that, in the limit of pure drop, f

(N)
i (λ,Bq = 0)

coincide with f
(MM)
i (λ). To include the effect of the confinement degree, we followed Minale’s approach [59], who

extended f
(MM)
i to account for the effect of χ. Thus, we extended fi as

f ext1 = f
(N)
1 (λ,Bq)/ψ1(λ, ĥ, χ) , (15a)

f ext2 = f
(N)
2 (λ,Bq)ψ2(λ, ĥ, χ) , (15b)

with

ψi = 1 + Cs(ĥ)
χ3

8
f̃i , (16)

where the expressions for f̃i have to be matched with the analytical results by Shapira & Haber [24] (in Ref. [59],

f
(N)
i are replaced by f

(MM)
i in the definition of f exti ). To obtain an expression for f̃i, we substituted fi with f

ext
i in

Eq. (13a) and, by neglecting O(χ6), we obtained:

D(λ, ĥ, χ,Ca,Bq) = Ca
f
(N)
2

2f
(N)
1

ψ1ψ2 = Ca
19λ+ 16 + 32Bq

16λ+ 16 + 32Bq

[
1 + Cs(ĥ)

χ3

8
(f̃1 + f̃2)

]
. (17)

We then considered the first-order expansion in Ca of Eq. (12) with the assumption Ψ = ΨSH, i.e.,

D(λ, ĥ, χ,Ca,Bq) = Ca
19λ+ 16 + 32Bq

16λ+ 16 + 32Bq

[
1 + Cs(ĥ)

χ3

8

1 + 2.5λ

1 + λ

]
. (18)

The assumption that Ψ = ΨSH follows from Shapira & Haber’s calculations [24]: indeed, the last hold for small values
of χ and, as we showed in Fig. 2, Ψ ≈ ΨSH for small degrees of confinement (i.e., χ < 0.7).
By comparing Eq. (17) with Eq. (18) it is straightforward to see that

f̃1 + f̃2 =
1 + 2.5λ

1 + λ
. (19)

This implies that, once f̃2 is determined, f̃1 is fixed. Since ΨSH(λ, ĥ, χ) (i.e., the term in squared parenthesis in

Eq. (18)) does not depend on Bq, then neither f̃1 nor f̃2 depend on Bq. Therefore, the values computed by Minale [59]
for a pure confined drop are still valid:

f̃1(λ) =
22 + 32λ− 13

2 λ
2

12 + 13λ+ λ2
, (20a)

f̃2(λ) = −10− 9λ

12 + λ
. (20b)
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ĥ = 0.25

(b)(b)(b)
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FIG. 4. Steady-state value of the drop inclination angle θ∞ as a function of Bq for λ = 1. Symbols show simulation data,
while solid and dotted lines draw Eq. (21) and Flumerfelt’s prediction θF (cfr. Eq. (23)), respectively. Different colors/symbols
correspond to different values of Ca.

Therefore, the prediction for the steady-state inclination angle is given by Eq. (13b) with f1 = f ext1 = f
(N)
1 /ψ1:

θ(λ, ĥ, χ,Ca,Bq) =
1

2
arctan

 40 (λ+ 1) + 80Bq

(2λ+ 3) (19λ+ 16) + Bq(32Bq + 98λ+ 112)

1[
1 + Cs(ĥ)

χ3

8 f̃1(λ)
]
Ca

 . (21)

When Bq = 0, Minale’s results are retrieved [59].

In Fig. 4, we compare Eq. (21) (solid lines) with Flumerfelt’s result (cfr. Eq. (23), dashed lines), showing that
accounting for the effect of confinement in the prediction for the steady-state inclination angle leads to a significant
difference. Numerical simulations (symbols) and Eq. (21) are in good agreement, showing a slight mismatch when Ca
increases or when the drop is close to the wall. This mismatch is not surprising for two reasons: first, Eq. (21) has
been derived in the limit of small Ca; second, Eq. (21) comes from Maffettone & Minale model, in which the drop is
assumed to be always ellipsoidal, whereas simulations show a more complex shape, especially in proximity to the wall
(cfr. Fig. 3, right panels). Numerical simulations also reveal a non-monotonic behavior of θ as Bq increases, which
has already been observed in other works concerning both unconfined drops [39] and unconfined capsules [55] with
interface viscosity. Finally, we observed that the proximity of the drop to the wall influences the inclination angle
measurement. In such cases, the drop shape loses symmetry relative to the largest diameter in the shear plane (see
Fig. 3, right panels). Notice that we measured the inclination angle considering the segment connecting the drop’s
center of mass to the top-right part of the shape (as shown by the white segment of length a in Fig. 1) and the flow
direction.

All results hitherto discussed refer to the case of λ = 1. To prove the robustness of the analytical expressions for
both D (cfr. Eq. (12)) and θ (cfr. Eq. (21)), we also explored a situation with λ = 5.2, which is usually encountered
in experiments [26, 59]. In Fig. 5, D∞ (panel (a)) and θ∞ (panel (b)) are reported as functions of Bq for the most

confined simulated case (i.e., χ = 0.7) and with ĥ = 0.5. In contrast with D∞, which shows a perfect agreement
between simulation data and Eq. (12), θ∞ behaves as in Fig. 4, with a good deal with Eq. (21) for small values of Ca
and a disagreement for Ca = 0.33. This result further confirms the validity of our analytical predictions.
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FIG. 5. Steady-state value of the drop deformation D∞ (panel (a)) and inclination angle θ∞ (panel (b)) as a function Bq for a

value of λ = 5.2, χ = 0.7, and ĥ = 0.5. Symbols show simulation data, while solid lines correspond to predictions from Eq. (12)
(panel (a)) and Eq. (21) (panel (b)). Dashed lines draw Flumerfelt’s predictions, i.e. Eq. (8) (panel (a)) and Eq. (23) (panel
(b)), respectively. Different colors/symbols correspond to different values of Ca.

V. CONCLUSIONS

In this work, we present a comprehensive analytical prediction describing the steady-state deformation (cfr. Eq. (12))
and inclination angle (cfr. Eq. (21)) of a confined/unconfined drop with/without interface viscosity, in the limit
of small deformation and negligible inertia effects. Since there are no available experiments for this system, to
validate the quality and robustness of the proposed predictions, we performed immersed boundary-lattice Boltzmann
simulations, which have already been validated in a series of previous works [38–42]. We also compared Eqs. (12)
and (21) with the already known analytical predictions computed by Flumerfelt [35] for the unconfined drop with
interface viscosity, showing that the accounting for confinement effects in Flumerfelt’s prediction is fundamental to
quantitatively describe the correct deformation of a drop under these conditions. The robustness of our analytical
predictions is strengthened by its application to different values of the drop viscosity ratio. We hope this result can
open a new route to experiments of confined/unconfined drops with/without interface viscosity.
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APPENDIX

1. Functions f
(N)
1 and f

(N)
2

To include the interface viscosity, similarly to what Maffettone & Minale [60] did with Rallison’s result [16] for the
pure (i.e., Bq = 0) unconfined drop, one can match the values of f1,2 with the first-order expansion of Eq.(3.1) in
Ref. [10], thus obtaining:

f
(N)
1 =

40 (λ+ 1) + 80Bq

(2λ+ 3) (19λ+ 16) + Bq(32Bq + 98λ+ 112)
, (22a)

f
(N)
2 = 5

19λ+ 16 + 32Bq

(2λ+ 3) (19λ+ 16) + Bq(32Bq + 98λ+ 112)
. (22b)
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2. Flumerfelt’s prediction for inclination angle

The steady-state inclination angle θF with respect to the flow direction which has been predicted by Flumerfelt [35]
is:

θF(λ,Ca,Bq) =
1

2
arctan

(
20

19F(λ+ 2Bq)Ca

)
, (23)

where F is given in Eq. (9).
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