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A B S T R A C T   

In the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging 
approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. 
Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal 
axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis 
of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the 
natural course of the disease. Therefore, in accordance with the therapeutic regimens proposed for other 
neurodegenerative diseases, a modern strategy to treat glaucoma includes prescription of drugs with neuro
protective activities. With respect to this, several preclinical and clinical investigations on a plethora of different 
drugs are currently ongoing. In this review, first, the conceptualization of the rationale for the adoption of 
neuroprotective strategies for retina is summarized. Second, the molecular aspects highlighting glaucoma as a 
neurodegenerative disease are reported. In conclusion, the molecular and pharmacological properties of most 
promising direct neuroprotective drugs used to delay glaucoma progression are examined, including: neuro
trophic factors, NMDA receptor antagonists, the α2-adrenergic agonist, brimonidine, calcium channel blockers, 
antioxidant agents, nicotinamide and statins.   

1. Introduction 

Neurodegeneration is characterized by a progressive loss of neurons 
and their processes (axons, dendrites, synapses) in defined areas of the 
nervous system and a concomitant impairment of neuronal function. 
The most prevalent neurodegenerative diseases such as Alzheimer’s 
disease (AD), glaucoma, age-related macular degeneration (AMD), 
Parkinson’s disease (PD), and others, develop in selected neuroana
tomical areas and in different neuron subgroups of highly specialized 
tissues, from the eye retina to brain regions. Despite their divergent 
clinical manifestations, neurodegenerative disorders are multifactorial 
and often share common molecular mechanisms at the basis of disease 
onset, such as abnormal protein aggregation, mitochondrial 

dysfunction, oxidative stress and inflammation (Angeloni et al., 2022; 
Baldassarro et al., 2022; Tarozzi and Angeloni, 2023). Over the last 
years, the main paradigm for the cure of neurodegeneration has been 
“one drug, one activity, one disease”, and a great number of preclinical 
and clinical treatments are currently investigated. However, most 
available therapeutic options are symptomatic, with approved drugs 
having limited clinical impact on disease progression (García and Bus
tos, 2018; Peña-Bautista et al., 2020). Hence, there is an urgent need of 
disease-modifying therapies to prevent, slow and even stop the pro
gression of neurodegeneration. The attention of researchers is now 
focused on the discovery of multi-targeted compounds, in which the 
same molecule can exert its effects by targeting different molecular 
pathways. The definition of neuroprotection is wide and complex, and it 
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refers to the mechanisms and strategies aimed at protecting the nervous 
system from injury and damage. Neuroprotective strategies support 
neuronal survival and, in the case of ongoing neurodegenerative insult, 
promote the maintenance of neuron structure and function, leading to a 
reduction in the rate of neuronal loss over time. Therefore, efficacious 
neuroprotective therapies are expected to gain disease modifying 
properties, even though, to date no directly neuroprotective therapies 
have been approved by regulatory agencies (Villoslada and Steinman, 
2020; Yanamadala and Friedlander, 2010). (see Figs. 1 and 2). 

1.1. Neuroprotection in retina 

Retinal neurodegenerative diseases such as age-related macular 
degeneration, demyelinating and hereditary optic neuropathies, glau
coma, diabetic retinopathy and retinitis pigmentosa are the most com
mon disorders that cause progressive and incurable loss of vision 
(Danesh-Meyer and Levin, 2009; Kaur and Singh, 2021). The complexity 
and unique architecture of retina renders it vulnerable to multiple 
pathological insults (Usategui-Martin and Fernandez-Bueno, 2021). 
Clinical manifestations and etiology, spanning from genetic mutations to 
various stressful conditions (i.e., high level of glucose in blood and 
mechanical stress due to enhancement of intraocular pressure) and 
aging, are quite different, depending on the single pathology. Never
theless, they reveal some common features at cellular and molecular 
level, such as inflammation determined by activation of glia, oxidative 
stress response and progressive cell death of retinal ganglion cells 
(RGCs) which are the unique output neurons of the retina (Cuenca et al., 
2014). RGCs cannot spontaneously regenerate axon, and, as a conse
quence, their loss results in permanent vision reduction and blindness 
(Oliveira-Valença et al., 2020). Retina neurodegeneration is usually 
divided into four phases: 1) the morphology of the retina appears 
normal, but at molecular level alterations are present; 2) stressful con
ditions lead to progressive cell death and activation of glia; 3) an 
extensive neuronal cell death and microglia activation occur; 4) retina 
architecture is overturned with invasion by blood vessels, hypertrophy 
of glia cells and RGCs death (Cuenca et al., 2014, p. 201). These pro
gressive stages of dysfunction lead to visual blindness that becomes 
irreversible in later phases (Gagliardi et al., 2019). As a matter of fact, 

early-acting therapies are expected to change the disease course of pa
thology. Retinal neuroprotection represents the next frontier in 
ophthalmic diseases and for some pathologies (e.g., age-related macular 
degeneration, inherited retinal dystrophies and macular telangiectasia 
type 2), neuroprotective strategies are in clinical trials and an increasing 
number of preclinical studies are published (Levin et al., 2022; 
Schmetterer et al., 2023; Wubben et al., 2019). Nevertheless, key aspects 
that render hard to design effective neuroprotective strategies, spanning 
from molecular to clinical troubleshooting, include: the lack of complete 
understanding of molecular basis of diseases, the anatomical and tissue 
complexity of visual system, the time at which patients are enrolled in 
clinical trials, and the absence of valid endpoints (Levin et al., 2022; 
Weinreb and Levin, 1999). The progress of investigations to determine 
the primum movens of neurodegeneration and the exact mechanism 
leading to primary neuronal and/or glia dysfunction is crucial. There
fore, a deeper understanding of the common mechanisms among 
different neurodegenerative disorders is mandatory. Of note, although 
the pathophysiology of neurodegenerative diseases affecting eye and 
brain differs, they show biological commonalties, such as the activation 
of inflammatory and stress response, and misfolded protein accumula
tion (Sbardella et al., 2021; Tundo et al., 2021, 2020, p. 20,123; Usa
tegui-Martin and Fernandez-Bueno, 2021). Additionally, in some cases, 
specific links have been identified, as for mild atrophy of RGCs cells in 
AD and mild cognitive impairment in glaucoma (Ashok et al., 2020) (see 
Box. 1). Hence, preclinical studies support the notion that various classes 
of neuroprotective therapies (i.e., antioxidants, neurotrophic factors, 
apoptosis and kinase inhibitors, and modulators of 
ubiquitin-proteasome system) could show similar efficacy in the case of 
brain and eye neurodegeneration (Pietrucha-Dutczak et al., 2018; 
Sbardella et al., 2020a; Tundo et al., 2023). A further element of 
complexity is represented by the fact that RGCs are highly divergent, 
and their precise physiology is partially unknown. In fact, there is poorly 
knowledge concerning which specific cell type is fundamental to pre
serve visual integrity and how different populations respond to the 
neurodegenerative insult. Moreover, animal and human visual systems 
differ in term of anatomy, physiology and disease manifestations, 
making it hard the identification of the correct animal model for testing 
neuroprotective strategies (Sanes and Masland, 2015; Trenholm and 

Fig. 1. Mechanisms of neurodegeneration in the retina. The degeneration of neurons in the eye can be triggered by several events, such as mitochondrial 
dysfunction, oxidative stress, inflammation and protein aggregation. All these events are strictly interconnected, and they can all participate in glaucoma 
pathogenesis. 
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Krishnaswamy, 2020). Nevertheless, with the identification of novel 
targets and new neuroprotective agents to test, the number of clinical 
trials in ophthalmology has exponentially increased. However, out
comes are in general below researchers’ expectations. The failure of 
neuroprotection trials could be related to patients’ selection issues. To 
be effective, by definition, neuroprotective strategies should be admin
istrated at an early stage of disease. However, the diagnosis is often 
belated and patients are enrolled in later phases, when the neuronal 
function is compromised and the chances that a neuroprotective therapy 
could significatively influence disease course are few (Cummings, 2017; 
Wubben et al., 2019). To assess the efficacy of a therapy, the gold 
standard endpoint has been considered for a long time the evaluation of 
visual acuity, but with the improvement of knowledge, it became clear 
that other endpoints are required (Schmetterer et al., 2023). Meaningful 
endpoints should include functional, biochemical and structural pa
rameters or any combination thereof. As a matter of fact, several po
tential endpoints specific for the examined pathology have been 
proposed, but their validation is complex and requires solid scientific 
evidence. Thus, the identification of combined endpoints is an urgent 
need to assess the ratio between risk and benefit of novel interventions 
(McCoy, 2018; Schmetterer et al., 2023). 

2. Glaucoma as neurodegenerative disease 

Glaucoma is a chronic neurodegenerative disease characterized by 
progressive excavation of the optic nerve head (ONH), RGCs axonal 
injury and corresponding vision loss (Kang and Tanna, 2021). It is one of 
the major causes of poor vision worldwide in the elderly and it is a social 
health emergency whose impact is destined to increase over time. It is 
estimated that it will approximately affect 112 million people world
wide by 2040 (Quigley and Broman, 2006; Tham et al., 2014). The 

molecular mechanisms underlying the onset and progression of the 
disease are not fully understood. Thus, treatment is symptomatic and 
does not drastically change the disease course. 

2.1. Pill on glaucoma pathogenesis 

Several risk factors for glaucoma have been identified including 
older age, genetic background, African American ethnicity, diet, life
style (i.e. aerobic exercise and mindfulness), microvascular diseases like 
diabetes mellitus and elevated intraocular pressure (IOP) (Coleman and 
Miglior, 2008; Kumar and Ou, 2023; Tribble et al., 2021a). IOP is 
considered the most common modifiable risk factor for glaucoma pro
gression. However, in some cases, called normal tension glaucoma 
(NTG), the ONH damage develops without elevation of the IOP and in 
other ones the elevated IOP never determines the optic neuropathy, 
supporting the existence of different pathogenetic mechanisms not 
exclusively IOP-related (Dahlmann-Noor et al., 2010; Weinreb et al., 
2014). According to the mechanical theory, prolonged elevated IOP 
causes mechanical stress and deformation of the lamina cribrosa (LC), a 
thin structure composed of collagen fibres, that allows the passage of the 
RGC axons which converge to form the ONH (Dias et al., 2022; Hakim 
et al., 2023). The LC is the weakest point in the wall of the pressurized 
eye, therefore its compression compromises the retrograde transport of 
neurotrophic factors (see Section 3.1) to the RGC soma, progressively 
leading to RGCs apoptosis (Chidlow et al., 2007; Weinreb et al., 2014). 
RGCs death is recognized as the earliest histological manifestation, and 
the degeneration of up to 36% of RGCs determines the appearance of 
glaucomatous visual field defects (Kerrigan-Baumrind et al., 2000; Parisi 
et al., 2018). On the other hand, the vascular hypothesis states that the 
glaucomatous optic neuropathy may be a consequence of insufficient 
blood supply related to increased IOP or to factors, other than IOP, that 

Fig. 2. Neuroprotective agents in glaucoma. Strategies that aim at preventing the degeneration of retinal neurons are classified as direct neuroprotectors. For the 
treatment of glaucoma, they include neurotrophic factors, NMDA receptor antagonists, alpha2-adrenergic agonists, calcium channel blockers, antioxidant agents, 
vitamin B3 and statins. Except for the alpha2-adrenergic agonist, brimonidine, all of them show neuroprotective activity without affecting the IOP. Thus, neuro
protectants could be used in combination with IOP-lowering therapies (pharmacological or surgical) to effectively slow down the progression of the disease. 
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induce a reduction of the ocular blood flow (OBF) (Burgoyne et al., 
2005; Flammer et al., 2002). Studies dealing with blood flow reported a 
reduced OBF in all part of the eye, including iris, retina, choroid, ONH, 
and retroocular vessels in glaucoma patients compared with normal 
subjects (Flammer et al., 2002; Flammer and Mozaffarieh, 2007). Un
stable OBF may be caused by IOP fluctuation, unstable blood pressure 
and dips that are linked to ONH damage and consequent visual field 
defects (Grieshaber and Flammer, 2005). Indeed, primary vascular 
dysregulation, also known as vasospastic syndrome, is considered an 
important risk factor for glaucoma, especially NTG. Patients with 
vasospastic syndrome tend on average to have lower blood pressure and 
perfusion pressure and, also, instability of the OBF autoregulation 
(Dahlmann-Noor et al., 2010; Emre et al., 2004; Flammer et al., 2002). 
The major consequence of blood flow compromission is an ischemia and 
reperfusion damage which may play a role in RGCs death (Chidlow 
et al., 2007; Grieshaber and Flammer, 2005). Currently, there is no 
curative treatment for glaucoma, but disease progression can be halted 
by lowering IOP. Large treatment controlled studies have repeatedly 
demonstrated that lowering IOP protects against glaucomatous optic 
nerve damage and visual field loss regardless of subtype or disease stage 
(Gordon and Kass, 2018; Leske et al., 2004; Miglior et al., 2005; “The 
Advanced Glaucoma Intervention Study (AGIS),” 2000; “The effective
ness of intraocular pressure reduction in the treatment of normal-tension 
glaucoma. Collaborative Normal-Tension Glaucoma Study Group,” 
1998). However, even when IOP is lowered, some patients continue to 
progress and suffer of visual impairment and deterioration in quality of 
life. Studies have reported a rate of blindness from glaucoma despite 
treatment from 20% to 27% for one eye and 9% for both eyes (Almasieh 
and Levin, 2017; Hattenhauer et al., 1998; Oliver et al., 2002). Many 

medications have been approved by regulatory agencies (i.e., FDA and 
EMA) as IOP lowering therapies acting by reducing aqueous humour 
(AH) production, improving outflow or a combination of both, even 
though their administration does not significantly modify the disease 
course (See Box 2). 

2.2. Molecular aspects of glaucoma as a neurodegeneration of the brain 

In recent years rather than being considered as a “simple” eye dis
ease, glaucoma is regarded as a progressive neuropathy with damage 
occurring in other parts of the central nervous system (CNS) (Jane W. 
Chan et al., 2021; Neacș;u and Ferechide, 2022). Primate models and 
post-mortem analysis in humans have demonstrated the atrophy of 
neurons of magnocellular and parvocellular lateral geniculate nucleus 
(LGN) as well as degeneration of multiple vision area of the brain, 
including visual cortex (Dai et al., 2011; Yücel et al., 2001). These 
changes are related to the severity of disease. The neurodegenerative 
process is not limited to the visual pathways but also extends into areas 
related to memory, attention, orientation, coordination, and face 
recognition (Chang and Goldberg, 2012a; Nuzzi et al., 2018). Contro
versial issues concern whether brain changes are secondary to the optic 
neuropathy or whether glaucoma begins as primary CNS pathology and, 
therefore, it can be viewed as a neurological disorder (Lawlor et al., 
2018). In fact, even though evidences in primates show that irreversible 
LGN abnormalities precede RGCs death, the studies are not robust and 
further investigations are required (Lawlor et al., 2018). It is obvious 
that if this will be confirmed, a significant reconsideration of the most 
appropriate therapeutic strategy is required. An archetypal pathological 
hallmark of neurodegenerative disorders is the destruction of specific 

Box 1 
links between Alzheimer’s and glauco 

The retina is considered an extension of the brain, hence diseases affecting one organ could mirror the other. Given that both glaucoma and AD 
are typical of elder age, and are the result of neuron degeneration, several studies are focusing on the identification of possible links between 
glaucoma and AD. One of the goals of these studies is to use the retina as an accessible insight into brain pathology, that could help the diagnosis 
of AD at an early stage, establishing a therapeutic plan that could slow down disease progression (Gupta et al., 2021). 

In support of this idea, epidemiological studies showed that in the population of AD patients, the prevalence of glaucoma is higher than in the 
control group. These studies took into account also IOP showing that among AD patients, elevated IOP is always associated with glaucoma. 
Moreover, glaucoma was also found in AD patients without high IOP (Bayer et al., 2002), suggesting that AD patients are more sensitive to 
retinal degeneration. The structural alterations of the eyes found in AD patients included a reduction in retinal nerve fiber layer (RNFL) 
thickness, broad axonal degeneration of the optic nerve, and degeneration of retina neurons (Gao et al., 2015; Hinton et al., 1986; Paquet et al., 
2007). In addition to these structural modifications, molecular markers typical of AD, such as the accumulation of β amyloid (Aβ) (Hart et al., 
2016; Koronyo et al., 2017) and Tau protein (den Haan et al., 2018) were also found in several retinal layers. The possibility to use Aβ and Tau in 
the retina as biomarkers for AD is under discussion (reviewed in (Liao et al., 2021), but many studies agreed on the fact that Aβ and pTau 
accumulation is toxic not only for the brain but also for the retina. 

Another approach for a better understanding of the link between glaucoma and AD is based on the possibility that glaucoma patients have a 
major risk to develop AD. A study carried out in South Korea, found that in the group of open-angle glaucoma, there was a higher incidence of AD 
than control group (Moon et al., 2018). Similar results were also obtained in an 8-year follow-up study (Lin et al., 2014). Given the results of a 
population-based, retrospective case-control study, Lai et al. also proposed glaucoma as a non-cognitive manifestation of AD disease (Lai et al., 
2017). However, further analyses are necessary to understand why others did not show a high incidence of AD in glaucoma patients (Ou et al., 
2012). 

Overall, AD and glaucoma are both multifactorial diseases, for which genetic seems to be an important risk factor. Among the genetic factors 
associated with AD or glaucoma, the gene encoding for the Apolipoprotein E (APOE) raised interest in the field, because it seems to be a common 
risk factor for both diseases, even though is not causative. APOE works as a transport protein for lipids and cholesterol, and it is mainly produced 
in the liver, but it is also expressed in the brain and retina. The gene ApoE has three variants called E2, E3 and E4 differing only in two amino 
acids, that change the binding preferences for lipoprotein particles, and they are present in the plasma at different levels. APOE4 isoform is the 
stronger genetic risk for AD, while APOE2 seems to have a protective role. Unexpectedly, epidemiological studies suggested that APOE2 and 
APOE4 are risk and protective factors for retinal degenerative diseases, respectively. How and why the different APOE isoforms contribute to 
neurodegeneration is still under investigation, but it seems to be correlated with lipid metabolism, inflammation and clearance of Aβ and Tau 
aggregated (reviewed in (Abyadeh et al., 2023; Martens et al., 2022)). 

In conclusion, AD and glaucoma share several features both at molecular and clinical levels, but further studies are needed to better understand 
the link and develop new strategies for the prevention and treatment of these neurodegenerative diseases.  
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Box 2 
IOP reducing, indirect neuroprotective agents in the cure of glaucoma 

Over the last decades, researcher’s attention has focused on RGCs degeneration, and several molecules have been under investigation in pre
clinical studies for their neuroprotective role (see Section 3) (Chang and Goldberg, 2012b). Interestingly, some of these agents have a positive 
effect on glaucoma by means of both neuroprotection and IOP reduction and are didactically defined as “indirect neuroprotective agents” 
(Fogagnolo and Rossetti, 2011; Marcic et al., 2003). The highest reduction of IOP is obtained with prostaglandin (PG) F2α analogues, followed by 
non-selective β-blockers, Rho kinase inhibitors, alpha-adrenergic agonists (see Section 3.2), selective β-blockers and at last topical carbonic 
anhydrase inhibitor (“European Glaucoma Society Terminology and Guidelines for Glaucoma, 5th Edition,” 2021). 

Prostaglandin analogues 

Prostaglandin analogues increase the uveoscleral outflow by remodeling extracellular matrix within the ciliary muscle and surrounding sclera, 
thereby increasing their permeability (Almasieh and Levin, 2017). They may be considered the first-choice antiglaucoma medication having the 
highest IOP-lowering effect between 20% and 35% from the initial value (Schmidl et al., 2015). Preclinical studies reported that PG analogues 
have the additional effect to protect neurons. Yamagishi et al. showed a direct neuroprotective effect of PG analogues on glutamate- and 
hypoxia-induced RGC death using rat purified primary RGC culture with latanoprost acid, travoprost acid, bimatoprost acid, bimatoprost, 
tafluprost acid, unoprostone, and PGF2a. The mechanisms by which PG analogues exert this effect is not well clarified but seems unrelated to FP 
receptor stimulation (Yamagishi et al., 2011). Bimatoprost probably prevents from RGCs loss via the Akt pathway, latanoprost rescues retinal 
neurons and/or glial cells from apoptosis through the pro-survival p44/p42 mitogen-activated protein kinase pathway, and unoprostone via 
activation of big potassium channels which prevents Ca (2+) dysregulation such as that induced by glutamate excitotoxicity (Cuppoletti et al., 
2007; Nakanishi et al., 2006; Takano et al., 2013). 

Moreover, the topical administration of travoprost, as for dorzolamide (see below), possesses neuroprotective potential by attenuating HMGB1 
upregulation and calmodulin downregulation in an inherited glaucoma model in rats (Schallenberg et al., 2012). 

Experimental studies on rabbit have also found that PG analogues, such as tafluprost, travoprost and latanoprost, significantly increased ONH 
and retinal blood flow and inhibited endothelin-1 induced vascular contraction without IOP reduction (Akaishi et al., 2010; Kurashima et al., 
2010). 

Beta-adrenoreceptor antagonist (β-blockers) 

Beta-blockers reduce aqueous humour production in the ciliary body by decreasing intracellular cAMP concentration thus, inducing a IOP 
reduction between 20% and 25% from the initial values (Schmidl et al., 2015). In addition to this well-known IOP-lowering effect, preclinical 
studies have shown that beta-adrenoreceptor antagonists may play a role against RGCs death even if the clinical relevance of this effect remains 
unclear (Gross et al., 2000; Osborne et al., 1997, 2005; Wood et al., 2003; Zhang et al., 2003). Topical application of betaxolol, a selective β1 
adrenoreceptor antagonist, is able to protect retinal neurons in vitro and ganglion cells in vivo from the adverse effects of experimentally induced 
ischemia/reperfusion injury and/or excitotoxicity (Wood et al., 2003; Zhang et al., 2003). It exerts this action by direct interaction with L-type 
voltage-dependent calcium channels and voltage-sensitive sodium ones, thus reducing calcium and sodium ion influxes into RGCs (Osborne 
et al., 2005; Wood et al., 2003). Metipranolol and timolol, two non-selective β-adrenoreceptor antagonists, have also the ability to confer 
neuroprotection to retinal neurons because they possess a certain degree of calcium and sodium channel blocking activity which is, however, 
less pronounced than that of betaxolol (Wood et al., 2003). 

Carbonic anhydrase inhibitors (CAIs) 

Carbonic anhydrase inhibitors reduce the aqueous humour production providing an IOP-lowering effect between 15% and 20% from the initial 
value (Schmidl et al., 2015). 

Studies have reported that CAIs increase ONH, choroidal and retinal blood flow and may normalize retinal blood flow regulation in patients with 
glaucoma acting as neuroprotective agents (Fuchsjäger-Mayrl et al., 2005; Rolle et al., 2008; Schmidl et al., 2015). 

Moreover, dorzolamide seems to have an IOP-independent effect on the retina metabolism at proteomic level in an inherited rat glaucoma model 
(Schallenberg et al., 2012). 

The topical administration of dorzolamide attenuates HMGB1 upregulation and calmodulin downregulation in the glaucomatous retina, factors 
that may play a role in the degenerative events initiated by IOP elevation (Schallenberg et al., 2012). 

However, it is unclear if topical CAIs exert a clinically relevant neuroprotective effect. 

Rho kinase inhibitors 

Rho kinase inhibitors alter actin cytoskeleton and cell motility of trabecular meshwork, canal of Schlemm and ciliary muscle enhancing the 
aqueous humour outflow (Cholkar et al., 2015). They also increase the OBF to the ONH through vascular smooth muscle relaxation leading to 
vasodilation (Rao and Epstein, 2007). 

Besides the IOP-lowering effect, evidences have pointed out the role of Rho kinase signaling in neuroprotection and axonal development, 
maintenance and regeneration (Tanna and Johnson, 2018; Van de Velde et al., 2015). This protective role is mediated through the regulation of 
elements of the axonal cytoskeleton, including actin, microtubules, and intermediate filaments as well as by controlling the inflammation 
mediated by activation of nuclear factor-kB (Tanna and Johnson, 2018). 

A study by Shaw et al. showed that, the topical application of a Rock/Net kinase inhibitor (AR-13324) effectively determines a reduction of RGC 
loss and induces axonal regeneration of the ONH following optic nerve injury (Shaw et al., 2017). 
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neuronal populations; for example, in PD, the selective loss of nigros
triatal dopaminergic neurons translates into a progressive movement 
alteration, and, in AD, the loss of hippocampal and cortical neurons 
leads to memory and cognitive impairments. Similarly, as already 
mentioned, visual dysfunction results from RGCs apoptosis with axonal 
degeneration in glaucoma. RGCs damage is the result of both retrograde 
and anterograde (or Wallerian) axonal degeneration as well as trans
synaptic (transneuronal) degeneration of the injured tract. Retrograde 
degeneration leads to loss of the cell bodies in the retina, whereas the 
Wallerian one results in degeneration of all connected visual pathways 
(Calkins, 2012; Dias et al., 2022). Although the molecular mechanism 
that triggers selective RGCs damage remain largely unknown, several 
IOP-unrelated processes have been identified spanning from neuro
inflammation, mitochondrial dysfunction, alteration of carbohydrate 
and lipid metabolism, oxidative stress (see Section 3.5), calcium dys
homeostasis (see Section 3.4), glutamate excitotoxicity (see section 3.2), 
alteration of autophagy and protein misfolding (Jane W Chan et al., 
2021; Duarte, 2021; Duyckaerts et al., 2009; Gupta and Yücel, 2007; 
Kumar and Ou, 2023; Musa et al., 2023; Quaranta et al., 2021; Sbardella 
et al., 2021; Tribble et al., 2021a). It is likely that neuroinflammation is 
one of the major contributors to the development of neurodegenerative 
diseases. Anyway, even though mounting evidence suggests a role of 
neuroinflammation also in glaucoma, its contributions is not fully 
characterized yet (Jane W. Chan et al., 2021; Pinazo-Durán et al., 2020; 
Quaranta et al., 2021). High level of inflammatory mediators as well as 
reactive oxygen species (ROS) have been found in AH and blood of 
diseased patients. The onset of inflammation in glaucoma is hypothe
sized to be triggered by an altered crosstalk between RGCs and glial 
cells. Immunohistological and immunohistochemical studies indicate 
overactivation of glia and astrocytes at the optic nerve head. This phe
nomenon is associated with the secretion of matrix metalloproteases 
(MMPs) and a variety of cytokines that are thought to drive the 
remodeling and excavation of optic nerve head. Moreover, the release of 
proinflammatory cytokines (IL-1, IL-6, TNFα) and chemokines (CCL2, 
CX3CL1) was reported at the first central relay level (lateral geniculate 
bodies and superior quadrigeminal colliculi) (Howell et al., 2013; Huang 
et al., 2010; Quaranta et al., 2021; Sawada et al., 2010, p. 2). In 
eucaryotic cells a significant source of ROS is mitochondria, mainly in 
the context of age-related deterioration of mitochondrial electron chain 
transfer. Retina is one of the most metabolically active tissues of our 
body and mitochondria integrity is required to respond to RGCs meta
bolic demands. In animal models of glaucoma, a number of evidence 
supports that early metabolic alterations might underscore RGCs 
degeneration (Harder et al., 2020; Harun-Or-Rashid et al., 2018; Tribble 
et al., 2021a). Moreover, mitochondrial function may progressively 
decline as a consequence of aging and exposure to several endogenous 
and environmental stressors that disrupt mitochondrial homeostasis and 
lead to the release of multiple mitochondrial damage associated mo
lecular patterns (DAMPs). Neuronal DAMPs can act as inducers of 
chronic inflammation in glaucoma. In fact, they can trigger inflamma
tory responses when recognized by complement molecules and micro
glial pattern-recognition receptors, thus inducing the transcription of 
proinflammatory cytokines and chemokines. Then, inflammation can 
further induce mitochondrial dysfunction, thereby amplifying a vicious 

cycle of inflammation. However, the precise mechanism of how mito
chondrial DAMPs lead to glaucomatous neurodegeneration is yet to be 
fully dissected (Duarte, 2021). Protein misfolding and accumulation is 
the key pathogenetic event of neurodegeneration, overlapping also with 
glaucoma. In human glaucomatous retinas, β-Amyloid (βA) deposits and 
intraneuronal accumulations of hyperphosphorylated tau protein as 
well as a decrease of Aβ level in vitreous were reported. Moreover, 
abnormal accumulation of these proteins was demonstrated in animal 
models of ocular hypertension. Interestingly, no evidence of Tau tran
scriptional alteration has been envisaged. As a matter of fact, it has been 
hypothesized that Tau accumulation in retina could be due to impair
ment in its degradation by UPS or autophagy and/or spreading. 
Mis-sorting of anterograde axonal transport leads to Tau accumulation 
into dendrites with concomitant damage (Chiasseu et al., 2016; Gupta 
et al., 2008; Yan et al., 2017; Yoneda et al., 2005). 

3. Neuroprotection in glaucoma: a glance to the future 

For most optic neuropathies, treatments are ineffective and do not 
modify the disease course. As previously mentioned, this therapeutic 
lacuna has prompted many groups (no profit laboratories, organizations 
and companies) to investigate the effect of neuroprotective therapies 
(Monteiro et al., 2017). Noteworthy, metabolic decline prevention has 
been recently proposed as a viable therapeutic strategy in combination 
with existing IOP-lowering approaches in the management of glaucoma 
progression. As recently and extensively reviewed elsewhere, in
terventions include: exercise, mindfulness, alternative energy sources 
such as lactate/pyruvate, increment of metabolic cofactors such as NAD 
and dietary supplements, modifying lipid metabolism through keto
genesis, administration of semaglutide (Jabbehdari et al., 2021; Kumar 
and Ou, 2023; Tribble et al., 2021a). Neuroprotection encompasses two 
main strategies, referred to as direct or indirect strategies. Direct neu
roprotection refers to approaches targeting RGCs, astrocytes, glia, or 
both, and, thus, it is not specific for the pathology. The scientific hy
pothesis driving this strategy is that, whether RGCs (or related ones) 
structure and function are preserved, vision can be also maintained. On 
the other hand, indirect neuroprotection is strongly related to the mo
lecular basis of the disease and include therapies that themselves may 
not act directly on neuronal or glia cells (Levin, 2018; Levin et al., 2022). 
In the case of glaucoma, some lowering IOP drugs are considered indi
rect neuroprotective agents since the effect in slowing down the intra
ocular pressure reduces the rate of RGCs loss (see BOX 2). As matter of 
fact, current treatments of glaucoma effectively control concomitant 
ocular hypertension, but do not or poorly affect the progression of 
neurodegeneration (Calkins, 2012; Fry et al., 2018). Actually, there is no 
effective treatment that limits the reduction of vision acting on RGCs 
depletion (Oliveira-Valença et al., 2020). This highlights the need of 
investigating novel therapeutic approaches. In the next paragraphs, the 
molecular and pharmacological properties of the most promising direct 
neuroprotective agents will be examined. 

3.1. Neurotrophic factors 

Neurotrophic factors (NTFs) exert a neuroprotective effect mediating 

Parasympathomimetics: pilocarpine 

Parasympathomimetics determine a 20–25% reduction of the IOP from baseline by increasing aqueous humour outflow through the trabecular 
meshwork (Almasieh and Levin, 2017). 

Pilocarpine seems to have a non IOP-related neuroprotective effect. In vitro and in vivo studies on retinal neurons of rats reported that topical 
administration of pilocarpine, through the activation of muscarinic M1 receptors, appears to attenuate the glutamate-induced neurotoxicity and 
to reduce the inner retinal damage caused by ischemia/reperfusion injury in a dose-dependent manner (Tan et al., 2014; Zhou et al., 2008).  
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axon regeneration and improving neuronal function into the brain 
(Chang and Goldberg, 2012a). In healthy conditions, RGCs, that express 
the Trk receptor family, receive neurotrophic support from Muller glia 
and/or directly from the brain through retrograde axonal transport. 
According to the “neurotrophin deprivation hypothesis”, a defect in 
neurotrophin support is one of the triggers that induces retinal degen
eration and death in glaucoma and, therefore, the administration of 
NTFs is an appealing therapeutic strategy (Chitranshi et al., 2018; 
Dekeyster et al., 2015; Johnson et al., 2009). Several NTFs have been 
associated to glaucoma progression, such as nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor 
(CNTF), glial-derived neurotrophic factors (GDNF), and neurturin (Ji 
et al., 2004; Koeberle and Ball, 2002; Lambiase et al., 2009; Oddone 
et al., 2017). Studies on rat model of glaucoma have confirmed that 
NTFs could be effective in preventing RGCs death (Kuo and Liu, 2022). 
NGF and its receptors are expressed in the anterior and posterior seg
ments of the eye and alteration in its expression and signaling are 
correlated with the onset and/or severity of different ocular pathologies. 
The neuroprotective mechanism of NGF is associated with oxidative 
stress inhibition, achieved via the phosphatidtlinositol-3-kinase 
(PI3K)/AKT survival pathway and with a key role in controlling intra
cellular calcium levels. In fact, it mediates the presynaptic uptake of 
calcium that stimulates the presynaptic release of the neurotransmitter, 
fundamental for synaptic plasticity (Hill et al., 2021). Based on pre
clinical studies and since NGF is considered a putative target also for 
other neurodegenerative diseases (e.g., AD), NGF has attracted interest 
in the cure of glaucoma (Wang et al., 2014). However, an 8-weeks phase 
1 b clinical trial (NCT02855450) evaluating the safety and efficacy 
profiles of recombinant human NGF eyedrops in glaucoma patients 
revealed the absence of major adverse events and a good tolerability, but 
not significant short-term neuroenhancement in terms of structural and 
functional measures (Beykin et al., 2022). The authors proposed that the 
inconsistency of these results with those obtained in animal model 
(Lambiase et al., 2009) might be attributed to the treatment duration, 
since RGCs regeneration could require a time longer than 3 months to 
achieve a substantial neuroprotective effect. BDNF is produced by RGCs 
and astrocytes, and its effects are mediated mainly by binding to 
high-affinity receptor (TrkB) constitutively expressed in the retina and 
lamina cribrosa. BDNF deprivation triggers apoptosis of RGCs via 
JNK-mediated signaling, resulting in activation of proapoptotic BCL-2 
family of proteins which culminates with mitochondrial dysfunction 
(Lambuk et al., 2022). Numerous evidences supports BDNF role in 
glaucoma pathogenesis (Feng et al., 2016; Mysona et al., 2017). In fact, 
in experimental models of glaucoma retrograde transport defects have 
been implicated in the progressive development of optic neuropathy 
(Chitranshi et al., 2018, 2019; Guymer et al., 2019a; Osborne et al., 
2018). Moreover, in vivo studies have suggested that deficits of BDNF 
expression mark the RGC damage. Reduced serum and AH level were 
reported in patients with NTG and POAG (Cha and Kim, 2021; Oddone 
et al., 2017). Additionally, BDNF serum level were found increased 3 
months after trabeculectomy in POAG patients, suggesting that this 
neurotrophin could be a potential biomarker for disease evaluation 
(Uzel et al., 2018). Exogenous, topical, or intravitreal applications by 
injection of recombinant protein or by gene therapy of BDNF were found 
to be potent in activating the survival of RGCs in ocular hypertension 
animal models (Domenici et al., 2014; Ji et al., 2004; Mysona et al., 
2017; Wójcik-Gryciuk et al., 2020). As mentioned elsewhere (see Box 1 
and Section 2), amyloid-beta -related alterations like those observed in 
the brains of AD individuals, have been found in glaucomatous retina. 
Interestingly, intravitreal administration of BDNF prevents 
amyloid-beta RGC apoptosis by activating the BDNF-TrkB signaling 
pathway in rats (Lambuk et al., 2022; Lazaldin et al., 2023). Neverthe
less, more studies are required to highlight the relationship between 
glaucoma and BDNF as well as whether BDNF supplementation might be 
an effective neuroprotective therapy for the disease. Moreover, it would 
be interesting to better explore its possible relevance as a biomarker of 

treatment outcomes and prognosis for both glaucoma and AD (Lambuk 
et al., 2022). 

CNTF is expressed in glial cells of peripheral and central nervous 
systems and promote survival in a broad range of neuronal cells which 
express the CNTF receptor, sustaining neurite outgrowth. CNTF level is 
reduced in AH and lacrimal fluid in patients with POAG (Shpak et al., 
2017). Notably, exogenous CNTF exerts neuroprotection on photore
ceptors and RGCs in animal models of various eye diseases (Müller et al., 
2009; Pease et al., 2009; Wen et al., 2012). Indeed, several methods have 
been proposed to deliver CNTF to the retina, including viral transposons 
and intravitreal injection. Recently, a polymeric device, namely NT-501, 
has been developed consisting of encapsulated human cells genetically 
modified to secrete CNTF that can be surgically implanted (Do Rhee 
et al., 2022). Clinical trials of NT-501-encapsulated cell therapy are 
currently exploring its therapeutic efficacy. A phase 1 trial enrolling 
POAG patients indicated, similarly to previous reports in other eye pa
thologies, that there were no serious adverse effects related to the sur
gical procedure, intraocular implant, or CNTF secretion (NCT01408472) 
(Goldberg et al., 2023). Based on these data, a randomized, sham 
controlled, masked, phase 2 clinical trial in glaucoma, examining dual 
NT-501 implantation, is underway (NCT02862938 and NCT04577300) 
(Goldberg et al., 2023). 

3.2. NMDA receptor antagonists 

Glutamate excitotoxicity is thought to play an important role in a 
broad variety of neurological disorders including AD, since excessive 
stimulation of N-methyl-D-aspartate (NMDA), one of the three iono
tropic glutamate receptor subtypes, leads to neurons damage and death 
(Almasieh et al., 2012; Crabbé et al., 2019; Vorwerk et al., 2004). NMDA 
receptors are widely expressed in the retina, even though under physi
ological conditions, homeostatic mechanisms prevent their over
expression (Osborne et al., 2018). Excessive glutamatergic insult is 
linked to the loss of RGCs followed by several retinal injuries, including 
ischemia, that underscore the progression of diabetic retinopathy, and 
glaucoma (Almasieh et al., 2012; Crabbé et al., 2019; Vorwerk et al., 
2004). Analysis of vitreous composition reveals an increase of glutamate 
level in different models of glaucoma, even though some controversial 
results still exist (Brooks et al., 1997; Carter-Dawson et al., 2002; Dreyer 
et al., 1996). Anyway, the drivers of glutamatergic injury remain 
partially unknown, but multiple pathways have been implicated, such as 
alterations of the Na+/K+ homeostasis and high level of calcium ions 
influx into cells (Christensen et al., 2019; Fahrenthold et al., 2018). 
Increment of intracellular Ca2+ activates several enzymes, including 
phospholipases, endonucleases, and proteases, which can, in turn, 
damage cell structures such as the cytoskeleton, cell membrane, and 
DNA (Dutta and Trapp, 2011). Moreover, it can determine apoptosis 
through activation of a cAMP response element binding (CREB) protein 
shut-off (Christensen et al., 2019; Dutta and Trapp, 2011; Hardingham 
et al., 2002; Doozandeh and Yazdani, 2016; Lotery, 2005). MK801 
(dizocilpine maleate), a potent non-competitive NMDA antagonist, has 
been tested as neuroprotective agent in experimental glaucoma. How
ever, its high affinity for the NMDA receptor and long half-life may result 
in disruption of the glutamate physiological function, leading to 
neurotoxicity. For this reason MK801 has never been evaluated in 
clinical trials (Chaudhary et al., 1998; Guo et al., 2006). Memantine is an 
open-channel blocking NMDA antagonist with moderate affinity that 
binds only to channels that have been activated by glutamate. Impor
tantly, it effectively blocks glutamatergic pathway at concentrations 
that do not affect normal neurotransmission and it is approved by FDA 
and EMA for the treatment of moderate-severe AD and PD (Chen and 
Lipton, 1997). Several preclinical studies have shown that memantine 
reduces excitotoxicity in animal models of glaucoma (Hare et al., 2001; 
WoldeMussie et al., 2002). Although promising results in preclinical 
models were obtained, a phase 3 randomized, double-masked, place
bo-controlled clinical trial in which memantine was administrated daily 
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over 48 months, reported no significant effect in preserving visual 
function in glaucomatous patients (NCT00141882 and NCT00168350) 
(Weinreb et al., 2018). Despite the failure, these large 4-year studies 
have provided considerable insights regarding the design of future 
studies, such as the identification of the study population and progres
sive risk factors, as well as the specific schedule of treatment. In this 
regard, Weinreb and colleagues suggest that earlier memantine treat
ment in a population defined by more restrictive risk factors (e.g., age) 
may produce different effects, revaluating memantine’ s role in the 
treatment of glaucoma (Weinreb et al., 2018). In order to overcome the 
side effect of systemic memantine administration, topical formulations 
of memantine-loaded PLGA-PEG nanoparticles were investigated and 
revealed efficacy and tolerability as well as reduction of systemic side 
effects in glaucoma models (Sánchez-López et al., 2018). The results that 
indicate limited efficacy of memantine in glaucoma patients have raised 
the need of new NMDA receptor antagonists. In this context, bis 
(7)-tacrine demonstrated a more potent neuroprotective effect in RGCs 
cells as well as a concurrent inhibition of acetylcholinesterase and nitric 
oxide synthase. This agent should be deeper investigated to evaluate its 
potentiality as effective neuroprotective agent in glaucoma (Doozandeh 
and Yazdani, 2016; Fang et al., 2010). 

3.3. The α2-adrenergic agonist, brimonidine 

Alpha2-adrenergic agonists are responsible of the induction of 
smooth muscle contraction and vasoconstriction. Topical administration 
of α2-adrenergic agonists reduces the AH production through vasocon
striction in the ciliary body and increases uveoscleral outflow by 
contraction of the ciliary muscle leading to a IOP reduction of 20–25% 
from the initial value (Almasieh and Levin, 2017; Schmidl et al., 2015). 
Brimonidine tartrate is a third generation α-2 adrenergic agonist used in 
POAG patients, being in general well tolerated. It shows more than 
1000-fold selectivity for α-2 over α-1 receptors, giving it a greater 
advantage over the first- and second-generation agonists by reducing the 
risk of systemic side effects (such as systemic hypotension, bradycardia 
and sedation) as well as reducing the α-1 mediated ocular side effects 
(such as conjunctival blanching, mydriasis and eyelid retraction) 
(Cantor, 2000; Schnichels et al., 2021). Brimonidine penetrates the 
cornea, and, in line with others α2-adrenergic agonists, it acts by 
reducing AH production, and stimulating its outflow through the 
uveoscleral path. Several studies have also suggested that brimonidine 
provides a non-IOP related neuroprotective effect on visual field dete
rioration Galanopoulos and Goldberg (2009). In fact, animal models of 
optic nerve crush or the ischemic retinal injury have demonstrated that 
α2-agonist has neuroprotective properties in optic nerve degeneration 
(Dai et al., 2013; Fujita et al., 2013; Lee et al., 2012; Sun et al., 2017). 
Additionally, systemic administration of brimonidine provided RGCs 
neuroprotection with little effect on IOP also in chronic ocular hyper
tension models (Dong et al., 2008; Hernández et al., 2008; WoldeMussie 
et al., 2001). Even though α2-adrenergic receptors have been identified 
in the RGCs, the molecular basis of this novel proposed function is 
partially unknown (Oh et al., 2019). Brimonidine seems to promote 
ganglion cell survival, protecting them from degeneration caused by 
mechanical or ischemic injuries trough neurotrophic factor BDNF in
duction (see Section 3.1) (Gao et al., 2002). Activation of the α2-adre
noceptor by brimonidine also upregulates glutamate transporters (i.e., 
EAAT1), and downregulates NMDA receptors (i.e., GluN1) in ocular 
hypertension animal models, inhibiting glutamate accumulation, and, 
thus, reducing the glutamate-toxic effects on RGCs (see Section 3.2) 
(Conti et al., 2021; Jung et al., 2015). Interestingly, it has been also 
proposed that brimonidine could induce a decrease of Aβ level acting on 
amyloid precursor protein homeostasis. This reduction interferes with 
Aβ mediated RGC apoptosis (Nizari et al., 2016). Moreover, its admin
istration inhibits nitric oxide synthase and the endothelin pathway, 
reducing oxidative stress and glial activity (Guymer et al., 2019b; Khatib 
and Martin, 2017). Despite the encouraging preclinical results, to date, 

clinical trials have failed to translate neuron protective action in humans 
and large trials with adequate statistical power and methodological 
uniformity are urgently required (Scuteri et al., 2020; Sena and Lindsley, 
2017). 

3.4. Calcium channel blockers 

As mentioned in Section 3.2, the neurotoxic effect, which follows 
NMDA receptor activation, is mediated by calcium influx into neural 
cells (Araie and Mayama, 2011; Stout et al., 1998). Thus, it is not sur
prising that the administration of calcium channel blockers (CCBs) has 
attracted interest as neuroprotective strategy in visual neuro
degeneration, including glaucoma (Crish and Calkins, 2011). CCBs 
seems to protect RGCs preventing the rate of apoptosis determined by 
calcium influx and inducing vasodilatation (Crish and Calkins, 2011; 
Kuo and Liu, 2022). As a matter of fact, it has been reported that various 
CCBS, including the L-/N-type channel blocker amlodipine and nimo
dipine, the T-type channel blocker amiloride, α-amino-3- 
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blockers, 
and purinergic receptor blockers affect RGCs survival, reducing axonal 
degeneration, and stimulating axonal regeneration (Otori et al., 2003; 
Ribas et al., 2017; Savigni et al., 2013; Selt et al., 2010; Yamada et al., 
2006). Small-scale studies demonstrate CCBs benefits in glaucoma pa
tients but effects on visual function preservation are still controversial 
(Cheung et al., 2017; Duan and Liu, 2022; Hu et al., 2021; Koseki et al., 
2008, 1999, p. 199). In fact, drawbacks of CCBs use in glaucoma, which 
can explain these conflicting results, include (i) CCBs-mediated vaso
dilation could direct blood flow away from damaged tissues, and (ii) the 
reduction of systemic pressure could reduce blood flow to the retina, 
exacerbating the optic nerve damage in glaucoma patients. Thus, addi
tional studies must be performed to improve CCBs selectivity toward 
RGCs neuroprotection, preventing systemic effects (Araie and Mayama, 
2011; Kuo and Liu, 2022; Yilmaz et al., 2020). 

3.5. Antioxidant agents 

Among the mechanisms triggering neuronal degeneration, oxidative 
stress seems to play an important role. Oxidative stress occurs when 
there is the accumulation of reactive oxygen species (ROS) that cannot 
be eliminated by the antioxidant machinery of the cells. ROS are the 
natural products of aerobic metabolism, but they can also be produced 
in response to environmental stressors. Overaccumulation of ROS causes 
the peroxidation of lipids, affecting the fluidity of the cell membrane, 
and of other macromolecules, such as proteins and DNA, bringing the 
cell to death by apoptosis. Several pieces of evidence suggest that 
oxidative stress participates in glaucoma pathogenesis directly affect 
RGCs, but also the trabecular meshwork (TM), whose functionality is 
critical for retinal survival. Hence, antioxidant molecules are under 
investigation to limit or prevent neuronal degeneration, slowing down 
glaucoma progression. 

The great source of antioxidants is the plant kingdom, in fact, 
chemical compounds extracted from different plant organs have been 
tested as treatment for several neurodegenerative diseases with prom
ising results. The extracts of Ginkgo biloba leaves, one of the most ancient 
living trees on the planet, have been used as medicine since ancient 
times for multiple purposes. Even though many types of extracts are 
present on the market, the EGb761 is the standardized extract used in 
most pre-clinical and clinical trials, containing 24% of flavonoids and 
6% of terpene lactones. EGb761 acts as an antioxidant because of its 
scavenger activity on ROS (Chen et al., 1999), but it also increases the 
activity of the antioxidant cell machinery acting on the superoxide 
dismutase (SOD) enzyme (Bridi et al., 2001) and glutathione (GSH) 
levels (Rimbach et al., 2001). Moreover, EGb761 defends mitochondrial 
metabolism from damage caused by oxidative stress (Eckert, 2005). 
Many preclinical studies showed that EGb761 protects retinal ganglion 
cells from degeneration caused by different stresses, such as hypoxia 
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(Cho et al., 2019), optic nerve degeneration (Ma et al., 2010) and 
elevated IOP (Hirooka et al., 2004), inhibiting cell apoptosis (Di Meo 
et al., 2020). 

Another compound with antioxidant activity coming from plants is 
resveratrol. Resveratrol is a polyphenol present in many fruits, such as 
blueberries, cranberries, and grapes. This polyphenol compound acts as 
a ROS scavenger (Gülçin, 2010), but it may act as an antioxidant because 
it modulates the expression of several genes that are part of the anti
oxidant machinery of the cell (Xia et al., 2017). Cao et al. showed that 
resveratrol preserves mouse RGCs from the degeneration caused by 
elevated IOP, decreasing the levels of ROS and increasing SIRT1 levels 
(Cao et al., 2020), a well-known anti-aging protein with a protective role 
against oxidative stress (Singh et al., 2018). Similar results were also 
obtained in the glaucomatous rat model with high IOP (Pirhan et al., 
2016) and in retinal cell lines subjected to high pressure (Zhang et al., 
2018), confirming the neuroprotective effect of resveratrol. Another 
cellular target of resveratrol is the TM, where a reduced antioxidant 
capacity has been associated with the progression of primary angle 
glaucoma. TM cells undergoing oxidative stress caused by H2O2 show a 
reduced metabolic activity, which is restored by pretreatment with 
resveratrol (Ammar et al., 2012; Luna et al., 2009), suggesting that 
administration of resveratrol could prevent the damages caused by 
oxidative stress. 

The plant Crocus sativus, commonly known as saffron, has great 
commercial value not only because it is a tasty spice used for food 
preparation, but also for its medical properties. The stigma of saffron 
contains multiple bioactive metabolites and, among these, safranal and 
crocin seem to be the components with antioxidant properties since they 
show radical scavenging activity (Assimopoulou et al., 2005). Oral 
administration of crocetin, as well as safranal, prevents retinal degen
eration in animal models of glaucoma (Fernández-Albarral et al., 2019; 
Fernández-Sánchez et al., 2012; Ohno et al., 2012), pointing out that the 
saffron extracts, used as a diet supplement, can act as neuroprotectors. 
Besides the antioxidant properties (Farahmand et al., 2013; Wang et al., 
2019; Yamauchi et al., 2011), saffron extracts protect cells from 
apoptosis, also controlling the inflammatory pathway, decreasing the 
morphological signs of microglial activation (Fernández-Albarral et al., 
2019) and the levels of cytokines (Li et al., 2023), typical of an 
inflammation state. 

Two non-plant-based compounds that show antioxidant properties 
are citicoline and Coenzyme Q10 (CoQ10). Citicoline (cytidine-5′- 
diphosphocholine) is a natural intermediate in the synthesis of phos
pholipids, key components of the cell membranes. When citicoline is 
ingested, it is hydrolyzed into cytidine 5′-diphosphate and choline, 
which are translocated in the brain through the blood–brain barrier, 
where they are used to re-synthesize citicoline in neurons. Citicoline was 
proposed as neuroprotector because it increases the release of the neu
rotransmitters dopamine and norepinephrine, improving the func
tioning of the nervous system. However, the molecular mechanism 
underlying citicoline effect is still under investigation, and recent studies 
pointed out the possible role of citicoline in ameliorating cell response to 
oxidative stress. In TM cells stressed by H2O2, citicoline treatment di
minishes ROS levels and H2O2-induced apoptosis, in agreement with the 
reduced levels of pro-apoptotic proteins (Vernazza et al., 2022). Similar 
results were also obtained in the neuron-like cell lines PC12 (Aminzadeh 
and Salarinejad, 2019) and SHSY5Y (Barrachina et al., 2002, 2003) 
where citicoline restored SOD and GSH levels affected by oxidative 
stress, improving cell viability. Moreover, citicoline is a modulator of the 
activity of proteasome, which is the cell machinery committed to protein 
degradation after ubiquitylation (Sbardella et al., 2020b). Proteasome 
degrades proteins during their natural turnover, but it also plays an 
important role in recognizing and eliminating oxidized proteins that are 
produced because of ROS accumulation. Hence, the stimulation of 
proteasome activity by citicoline could help the restoration of cell ho
meostasis through the clearance of oxidized proteins. In addition to the 
molecular data, experiments in animal models and cell lines confirmed 

the neuroprotective effects of citicoline towards damaged RGCs 
(reviewed in (Parisi et al., 2018). All this evidence together led to the 
design of many clinical studies that aim at evaluating citicoline activity 
in glaucoma patients. dministration of citicoline as intramuscular or oral 
solution improved RGCs function with an enhancement of the neural 
conduction along the visual pathways and visual field (Parisi, 2005; 
Parisi et al., 1999, 2008). Lately, citicoline was proposed as eye drops 
solution to facilitate the administration to patients and ensure local 
absorption. In fact, upon administration of eye drops, citicoline was 
found in the vitreous of treated patients (Carnevale et al., 2019), sug
gesting that it can penetrates the eye tissues. This result, together with 
the improvement of the visual defects and RGCs survival observed in the 
glaucomatous patients treated with the ophthalmological solution 
(Parisi et al., 2015, 2019), endorse citicoline as treatment of glaucoma 
with a neuroprotective activity. 

Coenzyme Q10 (CoQ10), which is present in the mitochondria, 
where it participates in the electron transport chain for ATP production, 
is an antioxidant with scavenging activity, which improves cell response 
to oxidative stress reducing cell loss (Lee et al., 2014; Noh et al., 2013). 
Interestingly, CoQ10 levels decrease in the retina of elderly people (Qu 
et al., 2009), suggesting that its deficiency could be correlated with 
age-related retinal diseases and hence its administration could prevent 
neurodegeneration. Eyedrops of CoQ10 with vitamin E positively affect 
the cortical visual of patients with open-angle glaucoma (Parisi et al., 
2014). The same eyedrops were also used in a study on 
pseudo-exfoliative glaucoma: patients receiving the treatment showed 
lower levels of SOD in the aqueous humour compared to untreated pa
tients, confirming the antioxidant role of CoQ10 (Ozates et al., 2019). 
Lastly, among molecules that exert antioxidative properties, we 
mentioned erythropoietin (EPO), a circulating hematopoietic hormone 
responsible for erythropoiesis, whose receptors are expressed in retina, 
including photoreceptor cells, retinal pigment epithelium, and retinal 
ganglion cell layer (Lin et al., 2022). It seems to cover additional mul
tiple roles, such as cognition improvement, neurogenesis, anti-fibrotic, 
anti-apoptotic, anti-inflammatory and, mainly, antioxidative effects. It 
has been demonstrated that EPO increases levels of heme oxygenase-1 
and glutathione peroxidase, reducing oxidative stress. Accordingly, 
several studies have suggested its therapeutic potentiality in different 
human neurodegenerative diseases (Rey et al., 2019). Alteration of EPO 
production is associated with glaucoma; in facts, it is reported that its 
level increases in the aqueous humour, but not in plasma of affected 
subjects (Tribble et al., 2021a). Moreover, EPO crosses the blood–brain 
barrier and blood–retinal barrier to exert its neuroprotective action on 
CNS and eye and, thus, the therapeutic effect has been studied both 
locally and systemically in glaucoma, as recently reviewed elsewhere in 
great detail (Grimm et al., 2002; Lai et al., 2023). 

Notably, all the molecules presented exert their neuroprotective role 
without altering IOP, which is one of the main risk factors of glaucoma, 
hence antioxidative compounds could be used to improve the results 
obtained with the drugs that decrease IOP. 

3.6. Nicotinamide 

Niacin is a precursor of the coenzyme nicotinamide adenine dinu
cleotide (NAD+) which is essential for healthy mitochondrial meta
bolism and several cellular processes. Since the local absence of 
myelinated axons in the intraocular portion of the optic nerve leads to 
high energy requirements, RGCs are particularly vulnerable to any en
ergy deficit and mitochondrial dysfunction, as also mentioned in the 
previous section (Morgan, 2012). Not by chance this important risk 
factor of glaucoma has been identified in both animals (Williams et al., 
2017) and glaucoma patients (Tribble et al., 2019). 

Different studies on DBA/2 J (D2) mouse model of glaucoma iden
tified an age-dependent depletion of retinal levels of NAD+ that renders 
RGCs susceptible to IOP-related stress. As a result, investigations began 
about the effect of NAD+ repletion in the same animal model. Both 
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dietary supplementation of nicotinamide (NAM), the amide of niacin, 
and viral gene-therapy overexpressing Nmnat1 (a terminal enzyme for 
NAD production) have been successfully used to correct NAD+ decline 
and to reduce progressive optic nerve degeneration (Williams et al., 
2017, 2018). 

Glaucoma patients have also been found to have systematically low 
serum levels of NAM (Kouassi Nzoughet et al., 2019). The above find
ings, in addition to the events observed in the D2 mouse model, have 
opened promising therapeutic perspectives based on nicotinamide sup
plementation. Pure NAM preparation reveals an excellent safety profile 
also at high doses, being the side effects mainly due to impure prepa
ration containing also niacin (Knip et al., 2000). The safety profile of 
vitamin B3 reports a low incidence of side effects and toxicity, including 
high doses (Knip et al., 2000). Currently there are two different trials to 
watch out for. The Glaucoma Nicotinamide Trial (TGNT) is a prospec
tive, randomized, placebo-controlled, double-masked trial 
(NCT05275738) that has started in May 2022, with a projected end date 
of December 2026, in which POAG patients will be randomized to two 
groups: receiving NAM (1.5 g/day for the first 6 weeks and then 3.0 
g/day) or placebo (Umeå University, 2022). The Nicotinamide in 
Glaucoma Trial (NAMinG) is a phase 3 randomized, placebo-controlled, 
multi-centre trial (NCT05405868) that will start in September 2023 and 
with an estimated end date of November 2026. In this trial, participants 
will receive NAM for up to 27 months (1.5 g/day for the first 6 weeks, 
then the dose increases to 3.0 g/day for 21 weeks) or placebo, in addi
tion to an initial treatment of standard of care IOP-lowering therapy 
(University College, London, 2023). 

Noteworthy, since, as previously mentioned, preclinical studies have 
suggested that enhancing mitochondrial function and administration of 
alternative energy source as pyruvate should be beneficial for RGCs 
survival (Harder et al., 2020), a combination of nicotinamide and py
ruvate has been tested in a phase 2, randomized, double-blind, place
bo-controlled clinical trial (NCT03797469). This combined therapy 
yielded a short-term improvement in visual function in patients with 
treated, manifest glaucoma, as measured with standard automated 
perimetry, supporting a role for these agents in neuroprotection and 
confirming the need for long-term studies (De Moraes et al., 2022). In 
summary, NAM provides important neuroprotective effects by 
increasing oxidative phosphorylation, buffering and preventing meta
bolic stress, preserving mitochondrial motility and simultaneously 
damping the potential firing rate of neurodegenerative action (Tribble 
et al., 2021b). However, the results of large-scale clinical trials are still 
awaited, before NAM can be considered an accepted therapeutic mo
dality for glaucoma. 

3.7. Statins 

Statins, as 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) 
reductase inhibitors, represent the first-line therapy for the treatment of 
hyperlipidemia and cardiovascular diseases (Chou et al., 2016). Their 
major mechanism of action is related to inhibition of cholesterol syn
thesis. Interestingly, in a meta-analysis of observational studies an as
sociation between glaucoma and high total cholesterol and low HDL 
levels was reported, supporting the hypothesis that alteration of lipid 
levels is an additional risk factor for glaucoma development (Posch-Pertl 
et al., 2022). In a retrospective longitudinal cohort study, a group 
treated with statins showed a lower incidence of POAG compared to the 
no statin group (Stein et al., 2012). Moreover, administration of statins 
has been associated with visual field improvement in patients with 
normal tension glaucoma and open-angle glaucoma (Kim et al., 2021; 
Whigham et al., 2018). However, controversies still exists, since other 
studies showed no or poor statistically significant association between 
statin use and rates of structural and functional changes in glaucoma 
subjects as well as glaucoma progression (Kang et al., 2022; Yuan et al., 
2022). Recently, statins have also received attention as candidates for 
glaucoma treatment given their neuroprotective effects. In preclinical 

models of chromic ocular hypertensions, it has been reported that statins 
improve RGCs survival, reducing apoptosis and suppressing glia acti
vation (Kim et al., 2021, p. 202; Schmeer et al., 2008). The precise 
molecular mechanism of the neuroprotective effect of statins needs to be 
further studied. 

4. Concluding remarks 

Currently, there are several neuroprotective agents under in
vestigations for the treatment of glaucoma and some of them have 
produced positive results in preclinical models. Anyway, different fac
tors contribute to the successful translation of novel glaucoma treat
ments into clinical practice. The main barriers to this may include the 
heterogeneity in phenotypical manifestations of the disease as well as 
the limited knowledge on the molecular mechanisms underscoring its 
onset. This statement reflects also the intrinsic difficulty in developing 
reliable animal models of the diseases due to variability in outcome 
measurement, differences in ocular bioavailability, and optimal timing 
of intervention (Lambuk et al., 2022). Therefore, a better understanding 
of the molecular basis of the pathology and the differences in nerve 
damage across the different forms of glaucoma gains overwhelming 
relevance (Kong et al., 2023). Another key aspect concerns the design of 
clinical trials. In general, trials are carried out with patients already 
receiving IOP-lowering treatments, whilst the effect of these strategies 
should be investigated in newly diagnosed glaucoma. Additionally, the 
cohort of enrolled patients is often too heterogeneous. Sometime, the 
duration of the observation period is also short. However, little infor
mation on potential interactions between the different classes of medi
cations is available, and neuroprotective mechanisms could require a 
long period of observation to be assessed in terms of therapeutic effi
cacy. Furthermore, the efficacy maybe relevant in just one sub-group of 
patients but ineffective in the other one. Thus, the identification of early 
biochemical and structural biomarkers that highlight the accurate effi
cacy of these novel treatments is mandatory (Hill et al., 2021). The 
failure of trials concerning some drugs and the success of other ones 
could be strongly related to a series of factors that should be taken into 
considerations before unequivocally evaluating the drug efficacy (Gar
way-Heath et al., 2015). As a consequence, alternative clinical trial 
designs may be useful to better understand the effective impact of novel 
medications and to maximize the chances of providing new sight-saving 
therapies for patients. Furthermore, development of formulations cir
cumventing anatomical barriers and allowing a suitable and compliant 
route of administration remains challenging. 

Glossary 

Neuroprotection includes a broad range of strategies that prevent the 
loss of neurons and/or their connection when the disease is ongoing or 
when it does not yet occur. 

Neurorestoration encloses strategies aimed at the replacement of 
different components of existing neurons or the activation of their re
sidual functionality in order to repair the damage. 

Neuroregeneration refers at therapies aimed at forming new 
neuronal circuitry, mainly by generation of new synapses and/or novel 
neurons from extrinsically provided stem cells (i.e., embryonic or 
pluripotent) or from intrinsic ones (such as reprogramming Muller glia 
cells to become retinal ganglion cells in retina). 
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