
Ann Oper Res (2007) 150:3–15
DOI 10.1007/s10479-006-0164-y

Multi-agent single machine scheduling

Alessandro Agnetis · Dario Pacciarelli · Andrea Pacifici

Published online: 10 January 2007
C© Springer Science + Business Media, LLC 2007

Abstract We consider the scheduling problems arising when several agents, each owning a
set of nonpreemptive jobs, compete to perform their respective jobs on one shared process-
ing resource. Each agent wants to minimize a certain cost function, which depends on the
completion times of its jobs only. The cost functions we consider in this paper are maximum
of regular functions (associated with each job), number of late jobs and total weighted com-
pletion time. The different combinations of the cost functions of each agent lead to various
problems, whose computational complexity is analysed in this paper. In particular, we inves-
tigate the problem of finding schedules whose cost for each agent does not exceed a given
bound for each agent.

Keywords Multi-agent . Scheduling . Complexity . Multi-criteria

1 Introduction and multi-agent literature

This paper addresses a class of scheduling problems in which multiple agents compete on the
usage of a common resource. This kind of problems occurs in several different application
environments and different methodological fields, such as artificial intelligence, decision
theory, operations research etc. We focus on the following situation. There are k agents, each

A. Agnetis (!)
Dipartimento di Ingegneria dell’Informazione,
Università di Siena, Via Roma, 56 – 53100 Siena, Italy
e-mail: agnetis@dii.unisi.it

D. Pacciarelli
Dipartimento di Informatica e Automazione,
Università Roma Tre, Italy
e-mail: pacciare@dia.uniroma3.it

A. Pacifici
Dipartimento di Ingegneria dell’Impresa and Centro Vito Volterra,
Università di Roma “Tor Vergata”, Italy
e-mail: andrea.pacifici@uniroma2.it

Springer

4 Ann Oper Res (2007) 150:3–15

owning a set of jobs. The agents have to schedule their jobs on a common machine, and each
agent wants to minimize a cost function which depends on its own jobs’ completion times.
The problem is how to compute schedules which account for each agent’s cost function, and
that can be used to support the negotiation among the agents.

Multi-agent scheduling problems occur in several application environments in which the
need for negotiation/bidding procedures arises. Most of the papers on this subject investigate
heuristic approaches for the construction of schedules that are acceptable to the agents,
with no particular concern on optimality. For instance, Kim et al. (2000) discuss complex
negotiation procedures for project scheduling in a multi-agent environment, allowing the
parties to come up with new schedules whenever unacceptable task timings occur. Other
approaches are based on distributed artificial intelligence. Huang and Hallam (1995) address
a multi-agent scheduling problem in terms of a constraint satisfaction problem where a
subset of constraints can be relaxed but are expected to be satisfied as well as possible. Chen
et al. (1999) propose a number of negotiation protocols for functional agent cooperation in a
supply chain context. Brewer and Plott (1996) devise a bidding mechanism for the problem
of scheduling trains (agents) on a shared single rail track. Arbib, Servilio, and Smriglio
(2004) discuss the problem of the integration of multimedia telecommunication services for
a Satellite-based Universal Mobile Telecommunication System (S-UMTS). The problem here
is to fulfill the requirements of various integrated services (agents), such as Voice over IP, web
browsing, file transfer via ftp, etc. Different agents have different objectives. For instance,
the voice service may tolerate the loss of some packets, but under strict delay requirements.
On the contrary, when transferring a data file, no packet can go lost, but some delay can be
tolerated.

From the theoretical viewpoint, multi-agent scheduling problems are a special case of
general multicriteria optimization problems. For instance, the two-agent problem in which
Agent 1 wants to minimize the total completion time of the jobs in J 1 and Agent 2 wants to
minimize the maximum lateness of the jobs in J 2 can be viewed as a bicriteria, single-agent
problem with objective functions

∑
j∈J 1∪J 2 q (1)

j C j and max j∈J 1∪J 2{q (2)
j Tj }, where q (1)

j = 1

and q (2)
j = 0 for j ∈ J 1, whereas q (1)

j = 0 and q (2)
j = 1 for j ∈ J 2. Hence, in principle,

general methods for multicriteria optimization can be applied, although these may not exploit
the peculiarity of the problem. In fact, in classical single-agent, multicriteria scheduling
problems, all jobs contribute to all criteria, whereas, in a multi-agent situation, only the jobs
belonging to an agent contribute to that agent’s criterion. So, two-agent scheduling problems
differ from the problems commonly referred to as bicriteria scheduling problems, see, e.g.,
T’kindt and Billaut (2002). As a consequence, the complexity results known for a certain
bicriteria scheduling problem in which there are two objectives f and g, in general do not
imply similar complexity results for the corresponding two-agent problem in which the two
agents have objectives f and g respectively. Moreover, note that some cases only make sense
in the two-agent setting, such as, for instance, when both agents have the goal of minimizing
the total (unweighted) completion time of their respective jobs.

In the multi-agent setting, a key issue is the determination of nondominated (or Pareto-
optimal) schedules, i.e., such that a better schedule for one agent necessarily results in a
worse schedule for at least another agent.

For the two-agent and three-agent cases, Baker and Smith (2003) analyzed the problem
of minimizing a convex combination of the agents’ objective functions. They characterize
the complexity of the problem in some scenarios, when the objective functions are chosen
among Cmax, Lmax,

∑
Ci and

∑
wi Ci . The optimal solutions of their model are nondominated

schedules, but not all of them can be obtained in this way. Agnetis et al. (2004) addressed

Springer

Ann Oper Res (2007) 150:3–15 5

the complexity of several two-agent, single-machine problems in which one agent computes
the best solution for it, given that the other agent will not accept schedules of cost greater
than a certain value. For various combinations of the two agents’ cost functions the problem
of generating nondominated schedules was addressed.

In this paper we provide new results for two types of problems, namely the (decision)
problem of finding, if it exists, a single feasible solution, and the (Pareto-optimization)
problem of finding all nondominated solutions. In particular:! For the two-agent case, we show that

– an exponential number of nondominated solutions may exist when the cost functions
are: total weighted completion time for one agent and maximum of regular functions in
each job’s completion times for the other;

– the decision problem can be solved in O(n log n), when each agent’s cost function is the
maximum of regular functions.! For the general multi-agent case, we give polynomial time algorithms for the scenarios in

which:

– the cost function of k − 1 agents is the maximum of regular functions, and the other
agent’s cost function is total completion time;

– the cost function of all k agents is the maximum of regular functions;
– the cost function of a fixed number p of agents is the number of late jobs, while the other

agents’ cost function is the maximum of regular functions.

The paper is organized as follows. In Section 2 we formally introduce the notation and
terminology used through the rest of the paper. In Section 3, we show that when one agent
wants to minimize the weighted sum of completion times and another wants to minimize the
makespan, even if k = 2, there is an exponential number of nondominated solutions (this
issue was left open in Agnetis et al. (2004)). In Section 4, a decomposition procedure is
described, which proves useful to characterize the complexity of several special cases, as
illustrated in Section 5. Conclusions follow in Section 6.

2 Problem definition and notation

In this section we introduce the notation and terminology we use throughout the paper.
There are k competing agents A = {1, 2, . . . , k}. Each of them has a set of non-preemptive

jobs to be processed on a single common machine. Every agent h ∈ A has to execute the
job set J h = {J h

1 , J h
2 , . . . , J h

n(h)}. We call h-jobs the jobs of J h . The processing time of job
J h

i will be denoted by ph
i . In some cases we will consider job due dates as well, dh

i . We
always assume zero release dates for all jobs. Each agent will have to schedule its jobs on
the machine complying with the presence of the other agents’ jobs.

Let σ indicate a feasible schedule of the n =
∑

h∈A n(h) jobs, i.e., a feasible assignment
of starting times to the jobs of the k agents. The completion time of job J h

i in σ will be
denoted as Ch

i (σ) (or, simply, Ch
i if it does not generate confusion).

Each agent wants to minimize its own objective function, which depends on the completion
times of its jobs only. We indicate the k objective functions by f h(σ) : {Ch

i (σ) : 1 ≤ i ≤
n(h)} → R, h ∈ A. In this paper we consider the following objective functions for the generic
agent h:

Springer

6 Ann Oper Res (2007) 150:3–15

! Maximum of regular functions f h
max(σ) = maxi=1,...,n(h){ f h

i (Ch
i (σ))}, where each f h

i (·) is
a nondecreasing function of the completion time of job J h

i . This includes the makespan
Cmax and maximum tardiness Tmax as special cases.! Number of late jobs

∑
U h

i (σ) =
∑n(h)

i=1 U h
i (σ), where U h

i (σ) = 1 if job J h
i is late in σ and

zero otherwise.! Total weighted completion time
∑

wi Ci
h(σ) =

∑n(h)
i=1 wi Ch

i (σ). When all the weights wi

are equal, we obtain the special case of total completion time
∑

Ci .

Since all these objective functions are regular (i.e., nondecreasing in the completion times)
there is no convenience in keeping the machine idle, and therefore each job is started as soon
as the previous job in the sequence is completed. We use

∑
Ci for

∑
wi Ci when wi = 1 for

all i .
We say that a schedule σ is nondominated if there is no schedule σ̄ such that f h(σ̄) ≤

f h(σ), h ∈ A, and at least one of the k inequalities is strict, i.e., a schedule is nondominated
if a better schedule for one of the k agents necessarily results in a worse schedule for
another. Distinct nondominated schedules σ, σ ′, . . . may yield the same k-tuple of objective
function values (f 1(σ), . . . , f k(σ)) = (f 1(σ ′), . . . , f k(σ ′)) = · · · = (y1, . . . , yk). We call
(y1, . . . , yk) a nondominated k-tuple of objective function values. We say that σ, σ ′, . . . are
equivalent schedules, and for each nondominated k-tuple we are interested in finding one of
them, not all of them.

Following the usual classification scheme for scheduling problems, we denote a problem
with three fields, ψ1|ψ2|ψ3, where ψ1 indicates the scheduling environment, ψ2 describes the
job characteristics or restrictive requirements, and ψ3 defines the set of objective functions,
one for each agent. In particular, in this paper we address only single machine problems, so
we let ψ1 = 1. Under ψ3, we will distinguish the two types of problems as follows.

Decision Problem (1|| f 1, f 2, . . . , f k). Given k integers Q1, . . . , Qk and, for each agent
h ∈ A, the job set J h and the objective function f h(·) of the agent, find a schedule σ ∗ such
that f h(σ ∗) ≤ Qh for all h ∈ A.

Pareto-Optimization Problem (1|| f 1 · f 2 · . . . · f k). Given the job sets J h and the k objective
functions f h(·) of each agent h ∈ A, find the set of all nondominated k-tuples (f 1(·), . . . ,
f k(·)) and a corresponding schedule of J 1, . . . , J k for each k-tuple.

In some cases it will be necessary to specify the bounding integers in the decision problem,
and so we will indicate the decision problem as 1|| f 1 ≤ Q1, f 2 ≤ Q2 . . . , f k ≤ Qk . If some
of the values Qh , h = 1, . . . , k are too small, an instance of 1|| f 1, f 2, . . . , f k may not have
feasible solutions. If there is at least one feasible solution, we say that the instance is feasible.

Given an instance of 1|| f 1, f 2, . . . , f k , the problem of finding, among feasible schedules,
one which is also nondominated can always be addressed by binary search. Suppose first
that a feasible solution σ to 1|| f 1 ≤ Q1, f 2 ≤ Q2, . . . , f k ≤ Qk is available. Now we want
to find a schedule σ ′ such that f h(σ ′) ≤ Qh for all h ∈ A\{1} and f 1(σ ′) is minimum. We
may try solving 1|| f 1 ≤ 1

2 Q1, f 2 ≤ Q2, . . . , f k ≤ Qk . If we get a feasible solution we may
further decrease 1

2 Q1 to 1
4 Q1, otherwise we try 3

4 Q1. This goes on until we determine the
smallest value Q1∗ such that instance 1|| f 1 ≤ Q1∗, f 2 ≤ Q2, . . . , f k ≤ Qk is feasible. Next,
we apply the same procedure to find the smallest value Q2∗ such that 1|| f 1 ≤ Q1∗, f 2 ≤
Q2∗, f 3 ≤ Q3 . . . , f k ≤ Qk is feasible and, iterating, we eventually get a solution σ ∗ such
that f h(σ ∗) ≤ Qh∗ for all h ∈ A. It is not hard to see that σ ∗ is nondominated. Moreover note
that in general we may obtain different nondominated schedules if we perform the binary
searches on the values Qh according to different permutations of the agents’ sequence.

Springer

Ann Oper Res (2007) 150:3–15 7

Table 1 Summary of complexity results for decision and Pareto-optimization problems for the two-agent
(k = 2) case

Computational complexity Number of nondominated pairs
Scenario (k = 2) of 1|| f 1, f 2 in 1|| f 1 · f 2

(f 1
max, f 2

max) O(n log n) (Section 5.1) O(n(1)n(2))
(
∑

wi C1
i , f 2

max) Binary NP-hard Exponential (Section 3)
(
∑

C1
i , f 2

max) O(n log n) O(n(1)n(2))
(
∑

U 1
i , f 2

max) O(n log n) O(n(1))
(
∑

U 1
i ,

∑
U 2

i) O(n3) min{n(1), n(2)}
(
∑

C1
i ,

∑
U 2

i) Open O(n(2))
(
∑

wi C1
i ,

∑
U 2

i) Binary NP-hard O(n(2))
(
∑

C1
i ,

∑
C2

i) Binary NP-hard Exponential

In the Pareto-optimization problem 1|| f 1 · f 2 · . . . · f k , the agents want to list all possible
nondominated k-tuples, in order to negotiate the most acceptable trade-off for them.

The main focus of the paper is to analyze the complexity of these problems and propose
solution algorithms. Table 1 summarizes known results for the k = 2 case. The second column
reports the computational complexity of the problem 1|| f 1, f 2, . . . , f k and the third column
the number of distinct nondominated pairs. Except where indicated, the details concerning
the results of the table are contained in Agnetis et al. (2004).

3 Pareto-optimal solutions of 1||
∑

wi C1
i · f 2

max

In the following we show that 1||
∑

wi C1
i · f 2

max may have an exponential number of non-
dominated solutions. This issue was left open in Agnetis et al. (2004).

Consider the following instance of 1||
∑

wi C1
i · C2

max. Agent 1 has n(1) jobs. For each
job J 1

i ∈ J 1 the processing times and the weights are: p1
i = w1

i = 2i−1, i = 1, 2, . . . , n(1).
Agent 2 has a single job of unit length.

Theorem 3.1. Consider an instance of 1||
∑

wi C1
i · C2

max in which agent 2 has a single
job of unit length, while agent 1 has n(1) jobs. For each job i (i ∈ {1, 2, . . . , n(1)} = J 1),
p1

i = w1
i = 2i−1. Then, for every active schedule, the quantity C2

1 +
∑n(1)

i=1 wi C1
i is constant

and equal to 1
3 (1 + 22n(1)+1).

Proof: Given any active schedule σ , consider two adjacent jobs j and k. Let t be the starting
time of job j and t + p j the starting time of job k. The contribution to the objective function
of the two jobs is then w j (t + p j) + wk(t + p j + pk). Consider now the schedule σ̄ in
which the two jobs are switched: the contribution of the two jobs to the objective function
is now wk(t + pk) + w j (t + pk + p j). Observe now that w j pk = wk p j for any pair of jobs
in J 1 ∪ J 2 (since wi = pi for each job), thus proving that σ and σ̄ have the same value of
the objective function. This implies that any active schedule produces the same value of the
quantity C2

1 +
∑n(1)

i=1 wi C1
i . This value can be computed, for example, by considering the

sequence: J 2
1 , J 1

1 , J 1
2 , . . . , J 1

n (1). We have:

C2
1 +

n(1)∑

i=1

wi C1
i = 1 +

n(1)∑

i=1

2i−12i = 1 +
n(1)∑

i=1

22i−1 = 1 +
2n(1)∑

i=1

2i −
n(1)∑

i=1

22i .

Springer

8 Ann Oper Res (2007) 150:3–15

Since
∑n(1)

i=1 22i = 2
∑n(1)

i=1 22i−1, we can write:
∑n(1)

i=1 22i−1 =
∑2n(1)

i=1 2i − 2
∑n(1)

i=1 22i−1.
Hence, we obtain:

∑n(1)
i=1 22i−1 = 1

3 (
∑2n(1)

i=1 2i) = 1
3 (22n(1)+1 − 2).

In conclusion, the quantity C2
1 +

∑n(1)
i=1 wi C1

i is equal to 1
3 (1 + 22n(1)+1), and the thesis

follows. !

In order to prove that the above instance has an exponential number of nondominated
pairs, consider that, for any value 1 ≤ Q2 ≤ 2n(1), there is a subset of J 1 whose total length
equals Q2 − 1. This implies that there is a feasible solution to 1||

∑
wi C1

i , C2
max ≤ Q2 where

C2
max = Q2 and

∑
wi C1

i = 1
3 (1 + 22n(1)+1) − Q2. This is clearly a nondominated solution

and therefore we have 2n(1) nondominated pairs.

4 Separability property for f max

In this section, we describe a procedure for reducing a k-agent problem to a (k−1)-agent
problem, when the cost function of agent k is the maximum of regular functions. Under
certain conditions on the other objective functions, this property may be exploited to devise
efficient solution algorithms for the original problem.

The decomposition procedure operates in two phases, and can be outlined as follows.
Consider a decision problem with k agents in which the cost function of the k-th agent is the
maximum of regular functions:

1||g1, g2, . . . , gk−1, f k
max (1)

The first phase consists in defining suitable reserved time intervals for the jobs of the k-th
agent. Such intervals are forbidden to the remaining k − 1 agents, who have therefore to
deal with a problem with forbidden intervals. As it will be clarified by Lemmas 4.1 and 4.2,
due to the regularity of the all cost functions, given a preemptive solution to the problem
with forbidden intervals, we may easily obtain a non-preemptive solution yielding the same
cost values for all agents. The second phase consists in actually solving the problem with
forbidden intervals. For certain cost functions gh of the remaining k − 1 agents, this can be
efficiently done by solving an equivalent instance of

1||g1, g2, . . . , gk−1. (2)

The phases of the procedure are illustrated in the following sections.

4.1 Reserved intervals for agent k

In this section we always refer to the jobs of agent k, so we omit k in Ck
i , J k

i , Qk
Since f k

max = maxi=1,...,n(k){ f k
i (Ck

i (σ))}, for each job of agent k we can define a deadline
Di such that fi (Ci) ≤ Q for Ci ≤ Di and fi (Ci) > Q for Ci > Di . In other words, job Ji

must complete no later than Di in a feasible solution.
In what follows, we call the latest start time (L Si) of job Ji the maximum value the

starting time of Ji can attain in a feasible schedule such that Ci ≤ Di for all Ji ∈ J k . The
values L Si can be computed as follows. Number the k-jobs in nondecreasing order of Di .
Schedule the last job Jn(k) to start at time Dn(k) − pn(k). Continue backwards, letting L Si :=

Springer

Ann Oper Res (2007) 150:3–15 9

min{Di , L Si+1} − pi , for all i = n(k) − 1, . . . , 1. Clearly, if job Ji starts after time L Si , then
at least one k-job (say, J#) attains f#(C#) > Q.

Consider now, for each k-job Ji , the latest processing interval [L Si , Di]. Let I =
∪n(k)

i=1[L Si , Di]. Set I consists of a number β ≤ n(k) of intervals, I1,h1 , Ih1,h2 , . . . , Ihβ−1,n(k),
call them reserved intervals for agent k. Each reserved interval Iu,v ranges from L Su to Dv .
Note that, by construction, ||Iu,v|| = Dv − L Su =

∑v
i=u pi . We say that jobs Ju, Ju+1, . . . , Jv

are associated with Iu,v .

4.2 Preemptive problem with forbidden intervals

Consider now the variant of Problem (1) in which preemption is allowed:

1|pmtn|g1, . . . , gk−1, f k
max. (3)

The following lemmas extend known results on preemption redundancy for classical (single-
agent) scheduling problems, see, e.g., Conway, Maxwell, and Miller (1967).

Lemma 4.1. If a feasible solution to 1|pmtn|g1, . . . , gk−1, f k
max exists, then there is a feasible

solution to 1||g1, . . . , gk−1, f k
max.

Proof: Just observe that if in the feasible solution to 1|pmtn|g1, . . . , gk−1, f k
max there is a job

Ji (of any agent), ending at Ci , which is preempted at least once, we can always schedule the
whole Ji in interval [Ci − pi , Ci], moving other (parts of) jobs backwards, without increasing
the completion time of any job. Repeating this for each preempted job, we eventually obtain
a nonpreemptive solution. !

Lemma 4.2. If there exists a feasible solution to 1|pmtn|g1, . . . , gk−1, f k
max, there is one

in which each k-job is nonpreemptively scheduled in the reserved interval with which it is
associated.

Proof: In a feasible solution to 1|pmtn|g1, . . . , gk−1, f k
max, all the k-jobs associated with

interval Iu,v complete before Dk
v . Hence, if we move all the portions of each such job to

exactly fit the interval Iu,v , we obtain a solution in which the completion time of no h-job
(h ∈ A\{k}) has increased, since we only moved pieces of h-jobs backwards. !

Lemma 4.2 allows us to fix the position of the k-jobs in a feasible solution to Problem (3).
We have therefore showed that, in order to solve the original Problem (1) with k agents

we may equivalently solve an instance of a preemptive problem involving only agents
1, . . . , k − 1, in which intervals I = {I1,h1 , Ih1,h2 , . . . , Ihβ−1,n(k)} cannot be used. We indi-
cate such problem as:

1|pmtn, I |g1, . . . , gk−1. (4)

and call it problem with forbidden intervals.

Springer

10 Ann Oper Res (2007) 150:3–15

4.3 Solving problem 1|pmtn, I |g1, . . . , gk−1

In some cases the preemptive problem with forbidden intervals, and consequently the original
instance, can be solved efficiently by a simple sequencing rule. In other cases, it is necessary
to define an auxiliary problem, as it is shown in the following paragraphs.

4.3.1 SPT sequencing for 1|pmtn, I |
∑

C1
i

Consider the single-agent problem 1|pmtn, I |
∑

C1
i . The following proposition holds.

Proposition 4.3. Problem 1|pmtn, I |
∑

C1
i , with set of forbidden intervals I , is solved by

sequencing the 1-jobs in shortest-processing-time order.

Proof: The result follows straightforwardly by a pairwise interchange argument. !

Referring to the case k = 2, Lemma 4.1, Lemma 4.2 and Proposition 4.3 ensure that a
feasible solution to 1||

∑
C1

i , f 2
max can be derived from a feasible solution to 1|pmtn, I |

∑
C1

i ,
where I is the set of intervals reserved to agent 2. Observe that the same result does not
hold if f 1 is

∑
wi C1

i . In fact, sequencing the 1-jobs according to non-increasing wi/pi

order (Smith’s rule), does not ensure optimality when forbidden intervals exist. The problem
1||

∑
wi C1

i , f 2
max is in fact NP-hard (Table 1).

4.3.2 Auxiliary problem with modified deadlines

In other cases, for different combinations of the objective functions g1, . . . , gk−1, the problem
with forbidden intervals (4) may be solved by resorting to an auxiliary instance of a problem
without forbidden intervals. In particular if, for all h ∈ A\{k}, the cost functions are of the
type:

1. gh = f h
max, or

2. gh =
∑

U h
i ,

we can define an auxiliary problem by Procedure 4.4 below, where we use the symbol dh
i

indifferently to denote a due date, if f h =
∑

Ui , or a deadline, computed as in Section 4.1,
if f h = fmax.

Procedure 4.4

Input: Problem with forbidden intervals I : 1|pmtn, I |g1, g2, . . . , gk−1 and values dh
i for

h ∈ A\{k}, i ∈ J h.
Output: Auxiliary instance of the problem 1|pmtn|g1, g2, . . . , gk−1 with modified due dates

(or deadlines) Dh
i , for h ∈ A\{k}, i ∈ J h.

Begin
For each job J h

i of each agent h ∈ A\{k}:

1. if dh
i falls outside of any forbidden interval, subtract from dh

i the total length of all the
forbidden intervals preceding dh

i , i.e., define the modified due date

Dh
i := d A

h −
∑

u,v:Dk
v≤dh

i

||Iu,v||

Springer

Ann Oper Res (2007) 150:3–15 11

2. else if dh
i falls within the forbidden interval Ip,q , do the same, but instead of dh

i use
the left extreme of Ip,q , i.e.,

Dh
i := L Sp −

∑

u,v:Dk
v<dh

i

||Iu,v||

Return Dh
i for all h ∈ A\{k}, i ∈ J h .

End

The following proposition summarizes the results obtained in the previous paragraphs.

Proposition 4.5. Problem (1)

1||g1, g2, . . . , gk−1, f k
max

with gh = f h
max, or gh =

∑
U h

i for all h ∈ A\{k}, is feasible if and only if the instance of
Problem (2)

1||g1, g2, . . . , gk−1

obtained modifying the due dates and deadlines according to Procedure 4.4 is feasible.

Proof: Lemma 4.1 ensures that Problem (1)

1||g1, g2, . . . , gk−1, f k
max

and Problem (3)

1|pmtn|g1, g2, . . . , gk−1, f k
max

are equivalent from the feasibility viewpoint. On the other hand, Lemma 4.2 shows that we
may always non-preemptively schedule the k-jobs in the associated reserved intervals, and
therefore Problem (3) can be solved by solving an instance of Problem (4)

1|pmtn, I |g1, g2, . . . , gk−1.

When the cost functions of the first k − 1 agents consist of minimizing the maximum of
regular functions or the number of late jobs (gh = f h

max, or gh =
∑

U h
i for all h ∈ A\{k}),

we may define an auxiliary instance of the Problem

1|pmtn|g1, g2, . . . , gk−1 (5)

in which the due dates and deadlines of the jobs have been modified according to Procedure
4.4. Such modified due dates and deadlines account for the reserved intervals associated with
the k-jobs. Since preemption is allowed, it is not hard to see that if and only if the auxiliary
instance of (2) is feasible then so is the instance of Problem (4) with forbidden intervals.

Springer

12 Ann Oper Res (2007) 150:3–15

Invoking again Lemma 4.1, Problem (5) is in turn equivalent to the nonpreemptive Problem (2)

1||g1, g2, . . . , gk−1.

This proves that, when gh = f h
max, or gh =

∑
U h

i for all h ∈ A\{k}, Problems (2) and (1)
are indeed equivalent. !

The previous proposition emphasizes that it is always possible to reduce an instance of
Problem (1), when gh = f h

max, or gh =
∑

U h
i for all h ∈ A\{k}, to an equivalent instance of

Problem (2) in polynomial time.

5 Polynomial special cases

In this section, we apply the concepts introduced in Section 4 to provide polynomial algo-
rithms for some relevant cases.

5.1 1||
∑

C1
i , f 2

max, . . . , f k
max and 1|| f 1

max, f 2
max, . . . , f k

max

Let us first address the polynomial solvability of problem 1||
∑

C1
i , f 2

max, . . . , f k
max.

This result can be stated by observing that all the jobs of agents having fmax as cost
function may be indeed regarded as the jobs of a single agent, and the approach described in
Section 4.3.1 can be adopted.

Theorem 5.1. 1||
∑

C1
i , f 2

max, . . . , f k
max can be solved in time O(n(1) log n(1) + ñ log ñ),

where ñ =
∑

h∈A\{1} n(h).

Proof: If k = 2, the problem is 1||
∑

C1
i , f 2

max. From Proposition 4.3, we may easily solve
the problem with forbidden intervals by sequencing the 1-jobs in SPT order. Consider now
the general case of k agents. We may proceed exactly in the same way as for k = 2 and
consider all the jobs of agents 2, 3, . . . , k as if they were jobs of a single agent. Thus we
order all the jobs in

⋃
h∈A\{1} J h in nondecreasing order of the deadlines Di and, starting from

one with the largest deadline, compute backward the L Si := min{Di , L Si+1} − pi in order
to define proper reserved intervals for those jobs. After this, the k-agent problem is indeed
equivalent to 1||

∑
C1

i , f 2
max.

Let us turn to complexity issues. In the k = 2 case, the complexity can be measured for
the basic steps of the procedure as follows. The definition of reserved intervals for the 2-
jobs implies that the 2-jobs are ordered first. The complexity for this is O(n(2) log n(2)).
Moreover, the computation of the reserved intervals takes time O(n(2)). The definition and
the solution of the auxiliary preemptive instance requires O(n(1) log n(1)) time for the SPT
ordering of the 1-jobs and O(n(1) + n(2)) time to reconstruct the preemptive schedule. The
solution of the original instance of 1||

∑
C1

i , f 2
max is obtained from the preemptive schedule

in time O(n(1) + n(2)). The overall complexity is thus dominated by the ordering steps and
it is therefore O(n(1) log n(1) + n(2) log n(2)).

For the general case with k agents, the complexity result immediately follows observing
that the cardinality of the job set

⋃
h∈A\{1} J h is equal to

∑
h∈A\{1} n(h). !

In Agnetis et al. (2004), a different procedure was proposed for solving 1||
∑

C1
i , f 2

max,
having the same complexity, based on an adaptation of a well-known algorithm for the
single-agent problem 1|prec| fmax due to Lawler (1973).

Springer

Ann Oper Res (2007) 150:3–15 13

Let us now turn to problem 1|| f 1
max, . . . , f k

max. By the same arguments of Theorem 5.1, it
is easy to prove that the following result holds.

Theorem 5.2. 1|| f 1
max, . . . , f k

max can be solved in time O(n log n) where n =
∑

h∈A n(h).

This result allows to solve the decision problem 1|| f 1
max, f 2

max with a better complexity than
using the algorithm presented in Agnetis et al. (2004), i.e., O(n(1)2 + n(2) log n(2)).

5.2 1||
∑

U 1
i , . . . ,

∑
U p

i , f p+1
max , . . . , f k

max

In view of the decomposition procedure described in Section 4, this problem reduces to
solving an auxiliary instance of 1||

∑
U 1

i , . . . ,
∑

U p
i . Hence, for p = 1 the problem is

solvable by an algorithm due to Moore (1968), while for p = 2 the problem can be solved by
dynamic programming with an algorithm described in Agnetis et al. (2004). We next show
that it is indeed possible to solve the problem in polynomial time for any fixed number p ≥ 1
of agents. The following lemma relates to the structure of a feasible schedule.

Lemma 5.3. For any feasible instance of 1||
∑

U 1
i , . . . ,

∑
U p

i , there is a feasible schedule
σ ∗ in which all the late jobs are scheduled consecutively at the end of the schedule, and all the
early jobs are scheduled consecutively in Earliest Due Date (EDD) order at the beginning
of the schedule.

Proof: Consider an optimal schedule σ ∗ and move all the late jobs to the end of the schedule,
thus obtaining a new schedule σ ′. Clearly,

∑
U h

i (σ ′) ≤
∑

U h
i (σ ∗), for h = 1, . . . , p, since

we are moving backward the early jobs. Consider now all the early jobs in σ ′, that are
sequenced consecutively at the beginning of the schedule, and resequence them in EDD
order. This does not increase the number of late jobs, thus completing the proof. !

In the remaining part of this section we assume that the n̂ =
∑p

h=1 n(h) jobs in
⋃p

h=1 J h

are numbered from J1 to Jn̂ according to the overall EDD order.
We next illustrate a recursion relation that can be exploited to design a polynomial time

(for fixed p) dynamic programming algorithm for 1||
∑

U 1
i , . . . ,

∑
U p

i .
Let C(i, l1, . . . , l p) be the minimum completion time of the last early job in a schedule

of the first i jobs (i.e., job set {J1, . . . , Ji }) in which there are at most lh late h-jobs, h =
1, . . . , p, and denote by σ (i, l1, . . . , l p) the corresponding schedule. By definition, we set
C(i, l1, . . . , l p) = ∞ if no such schedule exists.

The basic idea of the algorithm is that if job Ji ∈ J h is early in σ (i, l1, . . . , l p), then it is the
last early job in this schedule, and its completion time is given by C(i − 1, l1, . . . , l p) + pi .
If Ji ∈ J h is late, then the makespan of the early jobs is the same as in σ (i − 1, l1, . . . , lh −
1, . . . , l p). In conclusion, the following relations hold:

Boundary Conditions

C(0, l1, . . . , l p) = 0 if lh ≥ 0 , h = 1, . . . , p

C(i, l1, . . . , l p) = ∞ if i < 0 or lh < 0 for some h = 1, . . . , p

Springer

14 Ann Oper Res (2007) 150:3–15

Recursion Relation

f (i, l1, . . . , l p) =
{

∞ if C(i − 1, l1, . . . , l p) + pi > di

0 otherwise

C(i, l1, . . . , l p) = min
{

C(i − 1, l1, . . . , l p) + pi + f (i, l1, . . . , l p);
C(i − 1, l1, . . . , lh−1, lh − 1, lh+1, . . . , l p), where Ji ∈ J h

}

Lemma 5.4. If C(i, l1, . . . , l p) is finite, then it is the minimum completion time of the last
early job over all feasible schedules for the job set {J1, . . . , Ji }, with at most lh late h-jobs,
h = 1, . . . , p. If C(i, l1, . . . , l p) is infinite, then there is no such feasible schedule.

Proof: The proof is by induction on i . Clearly the property holds for i = 1, for any lh =
1, . . . , n(h), with h = 1, . . . , p. Now, assume that the property holds until (i − 1). We will
show that the property holds also for i and for any lh = 1, . . . , n(h), and h = 1, . . . , p. Let
σ be a feasible schedule for the job set {J1, . . . , Ji }, such that the completion time τ of
the last early job in σ is minimum among all feasible schedules with at most lh late h-
jobs, h = 1, . . . , p. Without loss of generality, assume that Ji ∈ J ĥ . If Ji is late in σ , then,
from the inductive hypothesis, τ = C(i − 1, l1, . . . , lĥ−1, lĥ − 1, lĥ+1, . . . , l p). If Ji is early
in σ then, again from the inductive hypothesis, τ = C(i − 1, l1, . . . , l p) + pi . Hence, the
above recursion relation correctly chooses the smallest between the two quantities. Note that
the schedule attaining C(i, l1, . . . , l p) is feasible if either C(i − 1, l1, . . . , l p) + pi < di or
C(i − 1, l1, . . . , lĥ−1, lĥ − 1, lĥ+1, . . . , l p) < ∞. If none of the two holds, there can be no
feasible schedule of {J1, . . . , Ji } with at most lh late h-jobs, h = 1, . . . , p, and the algorithm
sets C(i, l1, . . . , l p) = ∞. !

Theorem 5.5. An instance of 1||
∑

U 1
i ≤ Q1, . . . ,

∑
U p

i ≤ Q p is feasible if and only if
C(n̂, Q1, . . . , Q p) < ∞. This value can be computed in time O(

∑p
h=1 n(h)

∏p
j=1 n(j)).

Proof: The first part of the theorem is a straightforward consequence of Lemma 5.4. Let us
now turn to complexity. Computing each C(i, l1, . . . , l p) requires constant time, and therefore
computing all of them requires O(

∑p
h=1 n(h)

∏p
j=1 n(j)) time. !

Note that the algorithm qualifies as polynomial if the number p of agents whose cost
function is the number of late jobs is fixed.

6 Conclusions

In this paper we have investigated the complexity of some scheduling problems in which
several agents have to negotiate the usage of a common processing resource. The focus of
this paper was the problem of finding a schedule attaining minimum quality requirements
specified by each single agent. The model presented in this paper can be regarded as a tool
for complex negotiation processes. A lot has to be done in the area of modeling multi-agent
scheduling situations.! From the modeling viewpoint, connections with concepts of bargaining theory (e.g. Nash

solution or other solution concepts in the case of k = 2, see for instance Osborne and

Springer

Ann Oper Res (2007) 150:3–15 15

Rubinstein (1994) when specialized to the scheduling context might deserve further inves-
tigation.! From the theoretical viewpoint, the problem 1||

∑
U 1

i ,
∑

C2
i is minimally open. Depending

on its status, other multi-agent problems might deserve further investigation.! From the algorithmic viewpoint, there is a need for effective enumeration algorithms as
well as approximation algorithms and polynomial approximation schemes for NP-hard
cases.

Acknowledgments The authors wish to thank one anonymous referee for helpful comments and suggestions.

References

Agnetis, A., P.B. Mirchandani, D. Pacciarelli, and A. Pacifici. (2004). “Scheduling Problems with Two Com-
peting Agents.” Operations Research, 52(2), 229–242.

Arbib, C., S. Smriglio, and M. Servilio. (2004). “A Competitive Scheduling Problem and its Relevance to
UMTS Channel Assignment.” Networks, 44(2), 132–141.

Baker, K.R. J.C. Smith. (2003). “A Multiple-Criterion Model for Machine Scheduling.” Journal of Scheduling,
6(1), 7–16.

Brewer, P.J. and C.R. Plott (1996). “A Binary Conflict Ascending Price (BICAP) Mechanism for the Decen-
tralized Allocation of the Right to Use Railroad Tracks.” International Journal of Industrial Organization,
14, 857–886.

Chen, Y., Y. Peng, T. Finin, Y. Labrou, S. Cost, B. Chu, J. Yao’, R. Sun, and B. Wilhelm. (1999). “A Negotiation-
Based Multi-Agent System for Supply Chain Management.” In Proc. of the Agents’99 Workshop “Agent-
Based Decision-Support for Managing the Internet-Enabled Supply-Chain,” Seattle, WA, pp. 15–20.

Conway, R.W., W.L. Maxwell, and L.W. Miller. (1967). Theory of Scheduling. Reading, MA: Addison Wesley.
Huang, X. and J.C. Hallam. (1995). “Spring-Based Negotiation for Conflict Resolution in AGV Scheduling.”

In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics.
Kim, K., B.C. Poulon, C.J. Petrie, and V.R. Lesser. (2000). “Compensatory Negotiation for Agent-Based

Project Schedule Coordination.” CIFE Working Paper #55. Stanford University.
Lawler, E.L. (1973). “Optimal Sequencing of a Single Machine Subject to Precedence Constraints.” Manage-

ment Science, 19, 544–546.
Moore, J.M. (1968). “An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late

Jobs.” Management Science, 15, 102–109.
Osborne, M.J. and A. Rubinstein. (1994). A Course in Game Theory. Cambridge: MIT Press.
T’kindt, V. and J.C. Billaut. (2002). Multicriteria Scheduling. Berlin: Springer-Verlag.

Springer

