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1. Introduction

Random hyperspherical harmonics {T�}�∈N are Gaussian Laplace eigenfunctions on 
the unit d-dimensional sphere Sd (d ≥ 2). They are the Fourier components of isotropic 
Gaussian spherical random fields, therefore used in a wide range of disciplines; in par-
ticular, for d = 2 they play a key role in cosmology – in connection with the analysis 
of the Cosmic Microwave Background radiation data – as well as in medical imaging 
and atmospheric sciences, see [13, Chapter 1] for more details. For these reasons, in the 
last years the investigation of their geometry received a great attention, in particular 
the asymptotic behavior, for large eigenvalues (as � → +∞), of their nonlinear statistics 
{X̃�}�∈N , see [17,18,15,9,6,24,16] and the references therein. The main goal of most of 
these papers is to study first and second order fluctuations for X̃� to be some geometric 
functional of the excursion sets of T�, such as the so-called Lipschitz-Killing curvatures 
[1, Section 6.3] that in dimension 2 are the area, the boundary length and the Euler-
Poincaré characteristic. Hence it is clear that X̃� may be a function of the sole T� (in the 
case of the excursion measure for instance) or a function of T� and its derivatives.

The above mentioned references take advantage of Wiener-Itô theory, the random 
variables {X̃�}�∈N being square integrable functionals of Gaussian fields. In this frame-
work, the techniques developed allow one to establish Central Limit Theorems (CLTs) 
via a powerful combination of chaotic expansions and fourth moment theory by Nourdin 
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and Peccati [19]. It is well known that the link between Malliavin calculus and Stein’s 
method established by these two authors permits to get estimates on the rate of con-
vergence to the limiting Gaussian law in various probability metrics [19, Appendix C.2], 
at least when a finite number of chaoses are involved. For general functionals instead, 
the so-called second order Poincaré inequality [20] may be evoked, even in its improved 
version [26].

However, the existing results in the literature for the above mentioned geometric func-
tionals {X̃�}�∈N (which do have an infinite chaos expansion) of random hyperspherical 
harmonics {T�}�∈N only deal with the Wasserstein distance, see e.g. [15,6,22]. The typical 
situation is a single chaotic component dominating the whole series expansion, entailing 
the Wasserstein distance to be controlled by the square root of the fourth cumulant of 
this leading term plus the L2(P )-norm of the series tail. Moreover, generally there are 
no information on the optimal speed of convergence.

A natural question is whether or not these results could be upgraded to stronger 
probability metrics. Here we address this issue, indeed we are interested in quantitative 
CLTs in Total Variation distance [19, Section C.2] for nonlinear statistics {X̃�}�∈N of 
random hyperspherical harmonics {T�}�∈N in the high energy limit (as � → +∞). We are 
able to solve the problem for integral functionals of the sole T�, that are regular enough 
in the Malliavin sense, by taking advantage of a recent result in [4]. In this paper, the 
authors prove some regularization lemmas that enable one to upgrade the distance of 
convergence from smooth Wasserstein to Total Variation (in a quantitative way) for 
any sequence of random variables which are smooth and non-degenerate in some sense. 
The price to pay is to control the smooth Wasserstein distance between the sequence of 
their Malliavin covariance matrices and its limit, that however does not need to be the 
Malliavin covariance matrix of the limit. Remarkably, this technique requires neither the 
sequence of random variables of interest to be functionals of a Gaussian field nor the 
limit law to be Normal, situations that naturally occur since the underlying randomness 
may be not Gaussian [3,8] or related functionals may show non-Normal second order 
fluctuations [14].

Let us write down explicitly our functional of interest: we consider

X̃� = X� − E[X�]√
Var(X�)

where X� :=
∫
Sd

ϕ(T�(x))dx,

ϕ : R → R being square integrable w.r.t. the Gaussian density. In [15], the authors 
prove that, under mild assumptions, the above functional X̃� converges in Wasserstein 
distance towards a Gaussian random variable as � → +∞; in order to strengthen this 
result, in light of [4], we need to investigate the asymptotic behavior of the Malliavin 
covariance of X̃�, that we denote by σ�. Under some additional regularity properties on 
the function ϕ which are needed to ensure the existence of Malliavin derivatives of X̃�, we 
are able to prove the convergence in Wasserstein distance of σ� towards a non-degenerate 
deterministic limit, that together with the uniform boundedness of Malliavin-Sobolev 
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norms of X̃� guarantees the convergence in Total Variation distance for X̃�. To the best 
of our knowledge, ours is the first quantitative Limit Theorem in Total Variation distance 
for nonlinear functionals of random hyperspherical harmonics having an infinite chaotic 
expansion, generalizing in particular the work [15].

As a bonus, we gain some new results on the asymptotic behavior of Malliavin deriva-
tives of these functionals, and some novel estimates on the moments of products of 
powers of Gegenbauer polynomials (the latter describing the covariance structure of the 
random hyperspherical harmonics {T�}�∈N) thus extending some formulas in [12,22] (see 
Lemma 5.6 and Lemma 5.7). For our investigation we also exploit an explicit link be-
tween the diagram formula for moments of Hermite polynomials and the graph theory, 
inspired by [12] (see Lemma 5.3). In particular, we extrapolate a graph from each of 
these diagrams and use the fact that every connected graph can be covered by a tree, 
eventually studying only the contribution coming from these trees. In order to make the 
reading pleasant and smooth, we collect the proofs of these key results on Gegenbauer 
integrals in Appendix A.1 and Appendix A.2.

Finally, it is worth stressing that in the context of Gaussian approximations for ran-
dom variables that are functionals of an underlying Gaussian field, the second order 
Poincaré inequality by Vidotto [26] has led to quantitative CLTs for nonlinear function-
als of stationary Gaussian fields related to the Breuer-Major theorem, with presumably 
optimal rates of convergence in Total Variation distance. However, we choose to exploit 
the technique developed in [4] with a view to a subsequent generalization of our result to 
the interesting case of random eigenfunctions of the standard flat torus (arithmetic ran-
dom waves), where the attainable limit laws include linear combinations of independent 
chi-square distributed random variables [14,5]. Moreover, it turns out that in order to 
obtain fruitful bounds via the second order Poincaré inequality for the Gaussian approx-
imation of our functional of interest X̃�, the estimates on moments of products of powers 
of Gegenbauer polynomials should be much finer than those required by the approach 
developed in [4] (the one that we follow).

1.1. Notation

Throughout this manuscript we denote with ν the standard Gaussian law on R and 
with Z ∼ N (0, 1) a standard Gaussian random variable (r.v.). When we will speak 
about Malliavin calculus and chaos expansion based on Z, we just intend the classical 
one dimensional approach in the space L2(ν) := L2(R, B(R), ν) (see e.g. [19, Chapter 
1]), where B(R) denotes the Borel-σ field on the real line. In particular, we will denote 
by L and Dk (for integers k ≥ 1) the Ornstein-Uhlenbeck operator and the k-th order 
Malliavin derivative, respectively. As usual, Dom(L) and Dk,p (for p ≥ 1) will stand, 
respectively, for the set of random variables measurable w.r.t. σ(Z) on which L is well 
defined and that are derivable in Malliavin sense up to order k, whose derivatives all 
belong to Lp(P ) := Lp(Ω, F , P ). Here and in what follows (Ω, F , P ) will denote a prob-
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ability space and without loss of generality we may assume the random objects in this 
paper are defined on this common probability space.

Conventions. In this paper we set N := {0, 1, 2 . . . } and N∗ = N \ {0}. Given two 
sequences of positive numbers {an}n∈N and {bn}n∈N , we write an ∼ bn if limn→∞

an

bn
=

1, an = O(bn) if {an

bn
}n is asymptotically bounded and an = o(bn) if limn→∞

an

bn
= 0.
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2. Motivations and main results

For an integer d ≥ 2, we denote by Sd ⊂ Rd+1 the d-dimensional unit sphere. Accord-
ingly, we set B(Sd) as the Borel σ-field and we write Leb(dx) = dx for the Lebesgue 
measure on (Sd, B(Sd)). It is known that 

∫
Sd dx = 2π d+1

2 /Γ(d+1
2 ) =: μd, Γ being the 

Gamma function. For f : Sd → R and λ ≥ 0, we consider the Helmotz equation

ΔSdf = −λf, (2.1)

where ΔSd denote the Laplacian operator on Sd. The eigenvalues are of the form −λ =
−λ�;d = −�(� + d − 1) for � ∈ N, and the dimension of the �-th eigenspace is

n0;d = 1 and n�;d = 2� + d− 1
�

(
� + d− 2
�− 1

)
, � ∈ N∗.

Notice that

n�;2 = 2� + 1 and n�;d ∼ 2
(d− 1)!�

d−1 as � → +∞. (2.2)

We choose the family of real-valued hyperspherical harmonics [27, Section 9.3] (Y�,m;d)
n�;d
m=1

as orthonormal system of the �-th eigenspace. We recall that Y�,m;d, m = 1, . . . , n�;d, are 
the restriction to Sd of harmonic polynomials of degree � ∈ N in d + 1 variables.
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2.1. Random hyperspherical harmonics

For � ∈ N∗, we define the �-th random hyperspherical harmonic T� on Sd through

T�(x) =
√

μd

n�;d

n�;d∑
m=1

a�,mY�,m;d(x), x ∈ Sd, (2.3)

where (a�,m)n�;d
m=1 are standard Gaussian i.i.d. random variables in R and 

√
μd/n�;d is a 

normalizing factor. Then x �→ T�(x) is a random eigenfunction of the Helmotz equation 
(2.1), with eigenvalue −λ�;d. Moreover, T� is an isotropic and centered Gaussian random 
field on Sd with covariance kernel (see [2, Section 9.6])

Cov (T�(x), T�(y)) = μd

n�;d

n�;d∑
m=1

Y�,m;d(x)Y�,m;d(y) = G�;d(〈x, y〉), x, y ∈ Sd. (2.4)

Hereafter G�;d denotes the �-th Gegenbauer polynomial [23, §4.7] (for d = 2, G�;2 ≡ P�, 
that is, the Legendre polynomial of degree �) and 〈x, y〉 = cos d(x, y), where d(x, y) is the 
geodesic distance between x, y ∈ Sd. Recall that Gegenbauer polynomials are orthogonal 
on [−1, 1] w.r.t. the weight (1 − t2)(d−2)/2. We take G�;d(1) = 1, so Var(T�(x)) = 1, 
x ∈ Sd.

2.2. Statistics of random hyperspherical harmonics

We are interested in functionals of random hyperspherical harmonics of the type

X� :=
∫
Sd

ϕ(T�(x))dx, (2.5)

where ϕ ∈ L2(ν). In particular, we study the asymptotic behavior of the sequence of 
random variables {X�}�∈N as � → +∞ by means of chaotic decompositions [19, §2.2]: if 
Z ∼ N (0, 1), then ϕ(Z) can be written as an orthogonal series in L2(P ) as follows

ϕ(Z) =
∑
q≥0

bq
q!Hq(Z), where bq := E[ϕ(Z)Hq(Z)], (2.6)

where, from now on, Hq denotes the Hermite polynomial in R of order q (see e.g. [19, 
§1.4]). Substituting (2.6) into (2.5) gives the chaotic expansion for X�:

X� = X�[0] +
∑
q≥2

X�[q] where X�[q] := bq
q!

∫
Sd

Hq(T�(x)) dx (2.7)

(the term corresponding to q = 1 is null because of the orthogonality of hyperspherical 
harmonics). By standard properties of Hermite polynomials [19, §2.2] one gets
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E[X�] = X�[0] = E[ϕ(Z)]μd, Var(X�) =
∑
q≥2

b2q
q!

∫
(Sd)2

G�;d(〈x, y〉)q dxdy. (2.8)

Remark 2.1. The asymptotic behavior of the q-th moment of Gegenbauer polynomials 
is recalled in Proposition 4.1. We just notice here that G�;d(t) = (−1)�G�;d(−t), so if 
both � and q are odd the q-th moment of G�;d vanishes. Hence we take only even �: by 
� → +∞ we mean as � goes to infinity along even �.

We now define the standardized statistic

X̃� = X� − E[X�]√
Var(X�)

, (2.9)

that is the r.v. whose asymptotic behavior we are interested in. Notice that X̃� has 
Hermite rank 2 if and only if b2 �= 0 (see (2.6)). Let us first recall the well known central 
limit theorem stated in [15], which is proved under the Wasserstein distance

dW(X,Y ) := sup
h∈Lip(1)

|E[h(X)] − E[h(Y )]| . (2.10)

Here, X and Y are random variables, Lip(1) denotes the space of functions h : R → R

such that |h(x) − h(y)| ≤ |x − y|, ∀x, y ∈ R.

Theorem 2.2 (Theorem 1.7 in [15]). Let ϕ be as in (2.6) such that b2 �= 0. Then, as 
� → +∞,

Var(X�) ∼
b22
2

(μd)2

n�;d
, (2.11)

and moreover

dW(X̃�, Z) = O
(
�−

1
2
)
. (2.12)

The main goal of this paper is to strengthen and upgrade Theorem 2.2 from Wasser-
stein to Total Variation distance, which is defined as follows: for random variables X
and Y ,

dTV(X,Y ) := sup
A∈B(R)

|P (X ∈ A) − P (Y ∈ A)| . (2.13)

2.3. Statement of the main result

The assumptions on ϕ in Theorem 2.2 are rather weak: it suffices that ϕ is a square 
integrable function w.r.t. the Gaussian measure ν and b2 �= 0. In order to investigate 
the convergence for X� towards the Gaussian law in Total Variation distance, we need 
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ϕ(Z) to satisfy some additional regularity properties in the Malliavin sense. These are 
summarized in the following condition.

Assumption 2.3. Let ϕ(Z) fulfill (2.6). We assume that b2 �= 0. Moreover, ϕ(Z) ∈
Dom(L) and ϕ(Z), Lϕ(Z) ∈ ∩k≥0 ∩p≥2 Dk,p, that is, for every k ∈ N and p ≥ 2 the k-th 
order Malliavin derivative of ϕ(Z) and of Lϕ(Z), given by

Dkϕ(Z) =
∑
q≥k

bq
(q − k)!Hq−k(Z) and DkLϕ(Z) = −

∑
q≥k

q
bq

(q − k)!Hq−k(Z),

(2.14)
exist and belong to Lp(P ). Furthermore, the same properties are satisfied by the function 
φ ∈ L2(ν) defined by

φ(z) :=
∑
q≥2

|bq|
q! Hq(z), (2.15)

that is, φ(Z) ∈ Dom(L) and φ(Z), Lφ(Z) ∈ ∩k≥0 ∩p≥2 Dk,p: for k ∈ N and p ≥ 2,

Dkφ(Z) =
∑

q≥2∨k

|bq|
(q − k)!Hq−k(Z) and DkLφ(Z) = −

∑
q≥2∨k

q
|bq|

(q − k)!Hq−k(Z)

(2.16)
both belong to Lp(P ).

From now on we assume that Assumption 2.3 holds. The requested Malliavin reg-
ularity will not be really surprising once the mathematical tools we are going to use 
will become clear (namely, the use of Proposition 3.1). As a meaningful example, take 
ϕ(z) = etz, where t ∈ R denote a parameter. Then ϕ satisfies the well known represen-
tation

etz = e t2
2
∑
q≥0

tq

q! Hq(z), z ∈ R,

it does not live in a finite number of Wiener chaoses, and it satisfies Assumption 2.3. Let 
us now give right away a sufficient condition for ϕ to satisfy Assumption 2.3.

Proposition 2.4. Suppose that there exist C, R > 0 such that |bq| ≤ CRq for every q ≥ 0
in (2.6). Then Assumption 2.3 holds.

The proof of Proposition 2.4 is a consequence of the multiplier theorem for Wiener 
chaos series and Meyer’s inequality (see [21, §1.4.3 and §1.5]), hence we omit the details 
for brevity sake.

We are now in a position to state the main result of this paper.
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Theorem 2.5. Let ϕ satisfy Assumption 2.3, then, for any 0 < ε < 1, as � → +∞,

dTV(X̃�, Z) = Oε

(
�−

1−ε
2
)

(2.17)

where Oε means that the constants involved in the O-notation depend on ε.

It is worth noticing that, conditionally on Theorem 2.2 and the use of Proposition 3.1
below, our result, i.e., the upper bound in (2.17) for the Total Variation distance, cannot 
be improved. Indeed, the upper bound given in Proposition 3.1 for dTV(X̃�, Z) cannot 
be smaller than dW (X̃�, Z)1−ε, and dW (X̃�, Z) = O(�− 1

2 ).
Theorem 2.5 is the first result on the convergence of statistics of random hyper-

spherical harmonics (in particular having an infinite chaos expansion) in Total Variation 
distance. For ϕ = Hq the q-th Hermite polynomial with q ≥ 2, or for ϕ equal to a 
linear combination of such Hermite polynomials, bounding from above dTV(X̃�, Z) is an 
application of the fourth moment theorem by Nourdin and Peccati, see [18] for results 
in the two-dimensional case and [15,22] for higher dimensions.

An intermediate key step to prove our main result relies on the investigation of the 
asymptotic behavior of the sequence of Malliavin derivatives of X�; we stress that this 
analysis leads to some results of independent interest, see Proposition 3.2 and Proposi-
tion 3.3 for more details.

Besides the case of higher Hermite rank functionals, that we do believe it can be 
dealt with by using the same approach as the one developed for the proof of Theo-
rem 2.5 though involving heavier computations, we leave as a topic for future research 
the interesting case of the indicator function: for u ∈ R,

ϕ(z) = 1[u,+∞)(z), z ∈ R,

thus X� is the so-called excursion area at level u, see [18]. Indeed, ϕ(Z) is not derivable 
in Malliavin sense, and the Assumption 2.3 is not satisfied.

3. Proof of the main result

In this Section we explain the main ideas behind our argument, eventually giving the 
proof of our main result.

3.1. Proof strategy

To show the main ideas of the proof of Theorem 2.5 and of the results that we are going 
to use, we need to introduce some properties associated with the Malliavin regularity of 
the random variables at hands. We give here a result developed in [4], holding in a purely 
abstract Malliavin calculus setting (see [4, §2.1]), that is, based on a random noise that 
does not need to be Gaussian (see e.g. the one used in [3]). Let us resume it here briefly. 
First of all, it is assumed that the following ingredients are given:
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• a set E ⊂ ∩p≥2L
p(Ω) such that for every n ∈ N∗, f ∈ C∞

p (Rn) and F =
(F1, . . . , Fn) ∈ En then f(F ) ∈ E (so, E is an algebra);

• a Hilbert space H, whose inner product and associated norm will be denoted by 
〈·, ·〉H and | · |H respectively; we let Lp(Ω; H) stand for the set of the r.v.’s taking 
values in H whose norm has moment of order p.

Hereafter C∞
p (Rn) denotes the set of functions f : Rn → R that are continuously 

differentiable up to any order and all derivatives have polynomial growth.
In this environment, it is assumed that there exist two linear operators

D : E → ∩p≥2L
p(Ω;H) and L : E → E

such that

(M1) for every F ∈ E and h ∈ H, DhF := 〈DF, h〉H ∈ E ;
(M2) for every n ∈ N∗, f ∈ C∞

p (Rn) and F = (F1, . . . , Fn) ∈ En one has

Df(F ) =
n∑

i=1
∂xi

f(F )DFi ∈ E ;

(M3) for every F, G ∈ E one has E[LF G] = −E[〈DF, DG〉H] = E[F LG].

Thus, we recognize that these are settings and properties typically fulfilled in Malliavin 
calculus (but not in any Malliavin calculus framework - for example this is not in the 
case of jump processes, where the chain rule (M2) does not hold in general, see e.g. the 
discussion and the references quoted in [4, §1]). Hence, we call D the Malliavin derivative 
and L the Ornstein-Uhlenbeck operator. The higher order Malliavin derivatives can be 
defined straightforwardly: for k ≥ 2,

Dk : E → ∩p≥2L
p(Ω;H⊗k)

is the multilinear operator such that for every h1, . . . , hk ∈ H and F ∈ E ,

Dk
h1,...,hk

F := 〈DkF, h1 ⊗ · · · ⊗ hk〉H⊗k = Dhk
Dk−1

h1,...,hk−1
F.

Notice that, when dealing with a concrete Malliavin calculus, one can choose E either 
the set of the simple functionals or the set D∞ of the r.v.’s whose Malliavin derivative 
of any order does exist and has finite moment of any power.

In order to introduce the result in [4] that we are going to use, we first need to define 
the involved Malliavin-Sobolev norms: for F = (F1, . . . , Fn) ∈ En, we set

|F |1,q =
q∑ n∑

|DkFi|H⊗k , |F |q = |F | + |F |1,q, ‖F‖k,p = ‖|F |k‖p, (3.1)

k=1 i=1
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where ‖ · ‖p is the standard norm in Lp(Ω). Then, for k ∈ N∗ and p ≥ 2, we set

Dk,p = E‖·‖k,p and Dk,∞ = ∩p≥2D
k,p.

We also extend the operator L in the usual way: for F = (F1, . . . , Fn) ∈ En, we set 
LF = (LF1, . . . , LFn) and ‖F‖OU = ‖F‖2 + ‖LF‖2. And we define Dom(L) = E‖·‖OU .

Now, fix q ∈ N and F = (F1, . . . , Fn) ∈ (Dq+1,∞)n. If F = (F1, . . . , Fn) ∈ (Dom(L))n
and LF = (LF1, . . . , LFn) ∈ (Dq,∞)n, the following quantities are well posed:

Cq(F ) =
(
|F |1,q+1 + |LF |q

)q(1 + |F |1,q+1
)4nq

,

Cq,p(F ) = ‖Cq(F )‖p,
Qq(F ) = Cq,2(F )‖(detσF )−1‖q2q,

(3.2)

in which p ≥ 2 and σF is the Malliavin covariance matrix of F , that is,

(σF )i,j = 〈DFi, DFj〉H, i, j = 1, . . . , n. (3.3)

Notice that the quantity Cq,p(F ), respectively Qq(F ), in (3.2) is in principle well posed 
whenever Fi ∈ Dq+1,p̄ for a suitable p̄ ≥ p, respectively p̄ ≥ 2.

We are now ready to state the result in [4] on which our asymptotic analysis will be 
based:

Proposition 3.1. Let F and G be random vectors in Rn such that

Mq(F,G) := Cq,1(F ) + Qq(G) < ∞,

for every q ≥ 1. Let U > 0 be a real random variable such that ‖U−1‖q < ∞ for every 
q ≥ 1. Then for every ε > 0 there exist Cε > 0 and qε > 1 such that

dTV(F,G) ≤ Cε

(
Mqε(F,G) + ‖U−1‖2/ε

)(
dW(F,G) + dW(detσF , U)

)1−ε
.

This is actually [4, Proposition 3.12], see in particular (3.30), with the choice p =
p′ = 1 (remark that, as it immediately and clearly follows from the proof, there is a 
misprint in the requests therein: it is erroneously asked that Cq,1(G), Qq(F ) < ∞ instead 
of Cq,1(F ), Qq(G) < ∞).

Our plan is to use Proposition 3.1 with F = X̃� and G = Z ∼ N (0, 1). Indeed, in 
our framework, the underlying Hilbert space is H = L2(Sd, B(Sd), Leb), the random 
eigenfunction T� admitting the isonormal representation (4.1). Thus

σ� = σX̃�
=

∫
Sd

|DyX̃�|2 dy. (3.4)

First, Assumption 2.3 will guarantee that all the involved Malliavin functionals are well 
defined (we will give more details about Malliavin calculus for Gaussian random fields in 
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§ 4.2). Theorem 2.2 already ensures that dW(X̃�, Z) → 0 (giving also an estimation of the 
speed of convergence). Therefore, we obtain the stronger convergence dTV(X̃�, Z) → 0
(together with a useful upper bound on the rate), once we prove that:

(H1) there exists a deterministic U > 0 such that dW(σ�, U) → 0 with some speed,
(H2) for every q ≥ 1, sup� Mq(X̃�, Z) < ∞, where Mq(X̃�, Z) is defined in Proposi-

tion 3.1.

3.2. Proof of Theorem 2.5

Concerning (H1), we will prove the following key result.

Theorem 3.2. Let σ� be the Malliavin covariance of X̃�. Under Assumption 2.3, we have

|E[σ�] − 2| = O (η�;d) and Var(σ�) = O
(
�−11d=2 + �−(d−1)/21d≥3

)
,

where

η�;d = 1d=2

(
1b4 �=0

log �
�

+ 1b4=0
1
�

)
+ 1

�
1d≥3.

As for (H2), it is enough to prove that, uniformly in �, all the moments of the main 
Malliavin operators involved in Mq(X̃�, Z) are bounded. This is why we will prove the 
following result.

Proposition 3.3. Under Assumption 2.3, for every k ∈ N and n ≥ 1, there exists C̃n,k,d >

0 such that

sup
� even

E[|D(k)X̃�|nH⊗k ] ≤ C̃n,k,d and sup
� even

E[|D(k)LX̃�|nH⊗k ] ≤ C̃n,k,d.

We postpone the proofs of Proposition 3.2 and of Proposition 3.3 to Sections con-
structed ad hoc (see § 5 and § 6 respectively). Based on such results, the proof of the 
CLT in Total Variation distance (Theorem 2.5) follows.

Proof of Theorem 2.5 assuming Propositions 3.2 and 3.3. We use Proposition 3.1 with 
F = X̃�, G = Z and U = 2. We have

dW(σ�, 2) ≤ ‖σ� − 2‖1 ≤ ‖σ� − 2‖2 ≤ Var(σ�)1/2 + |E[σ�] − 2| → 0

and then, recalling the asymptotic behavior of σ� in Proposition 3.2 we obtain

dW(σ�, 2) =

⎧⎪⎪⎨
⎪⎪⎩
O(�−1/2) d = 2, 3
O(�−3/4) d = 4
O(�−1) d ≥ 5

(3.5)
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Since G = Z ∼ N (0, 1), DG = 1, that gives σG = 1, DkG = 0 for every k ≥ 2 and 
LG = −G, so that (see (3.1)-(3.2)) Qq(G) = Q1(G) < ∞ for every q ≥ 1. As for Cq,1(X̃�), 
we have

Cq,1(X̃�) = ‖Cq(X̃�)‖1 = E[
(
|X̃�|1,q+1 + |LX̃�|q

)q(1 + |X̃�|1,q+1
)4q]

≤ E[
(
|X̃�|1,q+1 + |LX̃�|q

)2q] 1
2E[

(
1 + |X̃�|1,q+1

)8q] 1
2

≤ (E[|X̃�|2q1,q+1]
1
2 + E[|LX̃�|2q]

1
2 )(1 + E[|X̃�|8q1,q+1]

1
2 )

and Proposition 3.3 allows one to check that sup� Cq,1(X̃�) < ∞ for every q ≥ 1. Then, 
Theorem 2.5 ensures that, for ε > 0,

dTV(X̃�, Z) ≤ Cε

(
dW(X̃�, Z) + dW(detσ�, 2)

)1−ε
.

Now, combining the above estimate on dW(σ�, 2) and the result on dW(X̃�, Z) in Theo-
rem 2.2, we conclude the proof. �

Comparing (2.12) and (3.5), when applying Proposition 3.1 the presence of dW(σ�, 2)
does not worsen the quantitative convergence rate for dTV(X̃�, Z): in fact, whenever 
d ≥ 2 we obtain that dTV(X̃�, Z) = Oε(dW(X̃�, Z)1−ε), for any ε > 0 close to 0. In 
other words, the term coming from the Malliavin covariance does not slow down the 
convergence speed.

4. Background on Gaussian random fields

In this Section we recall the isonormal representation for random hyperspherical har-
monics along with the Wiener-Itô chaos theory, finally we deal with Malliavin calculus 
for Gaussian fields.

4.1. Isonormal representation and Wiener chaos expansion

Let us recall the equivalent way to introduce random hyperspherical harmonics as 
isonormal Gaussian random fields (for details, see [19, Chapter 2]). We denote H =
L2(Sd, B(Sd), Leb) the real separable Hilbert space of square integrable functions on Sd

w.r.t. the Lebesgue measure, with inner product 〈f, g〉H =
∫
Sd f(x)g(x)dx. Let W denote 

a Gaussian white noise on Sd. Then the Gaussian field T� in (2.3) can be represented (in 
law) as

T�(x) =
∫
Sd

√
n�;d

μd
G�;d(〈x, y〉)W (dy), x ∈ Sd. (4.1)

Using (4.1), the covariance function of the random field T� is given by

E[T�(x)T�(y)] = G�;d(〈x, y〉), x, y ∈ Sd, (4.2)
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in fact (4.2) is an immediate consequence of the following reproducing property: for every 
x, y ∈ Sd, ∫

Sd

G�;d(〈x, z〉)G�;d(〈z, y〉)dz = μd

n�;d
G�;d(〈x, y〉). (4.3)

For later use, we recall the asymptotic behavior as � → ∞ of the moments of the 
Gegenbauer polynomials, that we resume as follows.

Proposition 4.1. For q ∈ N, q ≥ 2, set

cq;d =

⎧⎨
⎩
(
2 d

2−1
(

d
2 − 1

)
!
)q ∫∞

0 J d
2−1(u)qu−q( d

2−1)+d−1du if q ≥ 3,
(d−1)!μd

4μd−1
if q = 2,

(4.4)

where J d
2−1 is the Bessel function of order d2 − 1.

For q ≥ 2 and d ≥ 2, the function Sd � y �→
∫
Sd G�;d(〈x, y〉)qdx is constant. Moreover, 

the following properties hold.
For d ≥ 2 one has 

∫
Sd G�;d(〈x, y〉)2dx = μd

n�;d
and, as � → ∞,

∫
Sd

G�;d(〈x, y〉)2dx = 2μd−1
c2;d
�d−1 (1 + o2;d(1)). (4.5)

Set now q ≥ 3. Then

• if d ≥ 3, then ∫
Sd

G�;d(〈x, y〉)qdx = 2μd−1
cq;d
�d

(1 + oq;d(1)); (4.6)

• if d = 2, the behavior differs according to q �= 4 (being as in (4.6)) and q = 4:

∫
S2

G�;2(〈x, y〉)qdx ≡
∫
S2

P�(〈x, y〉)qdx =
{

12 log �
π�2 (1 + o4;2(1)) q = 4

4πcq;2
�2 (1 + oq;2(1)) q = 3 or q ≥ 5.

(4.7)

Proof details can be found in [15, Proposition 1.1]), see also [17,18]. It is worth noticing 
that constants cq;d in (4.4) are strictly positive for every q and d; in particular, for odd 
q this result is highly non trivial, see [10].

Let us now briefly recall the notion of Wiener chaos. Let W denote the Gaussian noise 
as in (4.1) and set F = σ(

∫
Sd f(x)W (dx) : f ∈ H), where H = L2(Sd, B(Sd), Leb). 

Then every random variable F ∈ L2(Ω, F , P ) admits the Wiener chaos expansion



L. Caramellino et al. / Journal of Functional Analysis 286 (2024) 110239 15
F =
∑
q≥0

Jq(F ),

where Jq is the orthogonal projection operator on the q-th chaos, which is the closure 
in L2(Ω, F , P ) of Span(Hq(T (f)) : f ∈ H, ‖f‖H = 1), where T (f) =

∫
Sd f(x)W (dx)

and Hq denotes the Hermite polynomial in R of degree q (see [21, Chapter 1]). Once the 
Wiener chaos expansion is defined, we can introduce the Ornstein-Uhlenbeck operator 
L, which will play an important role in our approach: for F ∈ L2(Ω, F , P ), one says that 
F ∈ Dom(L) if and only if 

∑
q≥1 q

2E[Jq(F )2] < ∞ and in such a case,

LF = −
∑
q≥1

qJq(F ). (4.8)

4.2. Malliavin calculus for Gaussian random fields

In this section we show that the standard Malliavin calculus for Gaussian random 
fields fulfills the requests in § 3.1. All details can be found fully explained in [19, §2.3]
or [21].

Let W be the Gaussian noise in (4.1) and let S denote the set of the simple functionals, 
defined as follows: F ∈ S if there exist m ≥ 1, f ∈ C∞

p (Rm) and g1, . . . , gm ∈ H such 
that

F = f
(
T (g1), . . . , T (gm)

)
, with T (gi) =

∫
Sd

gi(x)W (dx), (4.9)

We recall that S is dense in Lp(Ω) := Lp(Ω, F , P ).
Given k ∈ N, we denote with H⊗k and H�k, respectively, the k-th tensor product 

and the k-th symmetric tensor product. Let F ∈ S be given by (4.9) and k ∈ N. The 
k-th Malliavin derivative is the element of L2(Ω; H�k) defined by

D(k)F =
m∑

i1,...,ik=1

∂kf

∂xi1 · · · ∂xik

(T (g1), . . . , T (gm)) gi1 ⊗ · · · ⊗ gim .

For k ∈ N and p ≥ 1, the space Dk,p is defined as the closure of S with respect to the 
norm

‖F‖Dk,p =
(
E[|F |p] + E[‖F‖pH ] + . . . + E[‖D(k)F‖p

H⊗k ]
) 1

p

and the Malliavin derivative can be extended to the set Dk,p, being the domain of D(k)

in Lp(Ω; R). In particular, the space Dk,2 is a Hilbert space with respect to the inner 
product

〈F,G〉Dk,2 = E[FG] +
k∑

E[〈D(r)F,D(r)G〉H�r ].

r=1
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Moreover, the chain rule property does hold: for every φ ∈ C1
b (Rm) and F = (F1, . . . , Fm)

with Fi ∈ D1,p, i = 1, . . . , m, for some p ≥ 1, then φ(F ) ∈ D1,p and

Dφ(F ) =
k∑

r=1

∂φ

∂xr
(F )DFr. (4.10)

It is well known that such a Malliavin calculus framework satisfies the abstract hy-
potheses required in [4, §2.1] and resumed here in §3.1 (see e.g. [21] or [19]): just take 
E = S, H = H = L2(Sd, B(Sd), Leb) and L as the Ornstein-Uhlenbeck operator de-
fined in (4.8). In particular, the duality relationship (M3) does hold for F, G ∈ D2,2 and 
therefore, it holds true on E .

To conclude, we give some formulas that will be used in the sequel. Let T� be the 
Gaussian random field in (4.1) and let Hq denote the Hermite polynomial in R of degree 
q ∈ N. As an immediate consequence of the chain rule (4.10), for q ∈ N and p ≥ 1 then 
Hq(T�(x)) ∈ D1,p and, from (4.9), (4.1) and H ′

q = qHq−1,

DyHq(T�(x)) = qHq−1(T�(x))DyT�(x) = qHq−1(T�(x))
√

n�;d

μd
G�;d(〈x, y〉).

Iterating the argument, Hq(T�(x)) ∈ Dk,p for every k ∈ N and

D(k)
y1,...,yk

Hq(T�(x)) =
(n�;d

μd

) k
2 q!
(q − k)!Hq−k(T�(x))

k∏
r=1

G�;d(〈x, yr〉). (4.11)

Moreover, by developing standard density arguments, (4.11) gives 
∫
Sd Hq(T�(x))dx ∈

Dk,p and

D(k)
y1,...,yk

∫
Sd

Hq(T�(x))dx =
(n�;d

μd

) k
2 q!
(q − k)!

∫
Sd

Hq−k(T�(x))
k∏

r=1
G�;d(〈x, yr〉)dx. (4.12)

5. Convergence of Malliavin covariances

In this section we prove Lemma 3.2. Recalling the (finite dimensional) chaos expansion 
for ϕ(Z) in (2.6) and substituting it in (2.5), we obtain the following expansion for X�:

X� = md +
∑
q≥2

bq
q!

∫
Sd

Hq(T�(x))dx, (5.1)

where md = E[X�] = E[ϕ(Z)]μd. Notice also that (5.1) says that the projection on the 
chaos of order 1 is null, as an immediate consequence of the fact that 

∫
Sd T�(x)dx = 0. 

Following (5.1), the chaos expansion of the normalized r.v. X̃� is given by
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X̃� = 1
v�;d

∑
q≥2

bq
q!

∫
Sd

Hq(T�(x))dx, where v2
�;d = Var(X�). (5.2)

We stress that, by (2.11) from Theorem 2.2 and (2.2),

v�;d ∼ b2cd�
− d−1

2 . (5.3)

5.1. On the diagram formula and cross moments of Gegenbauer polynomials

Now we introduce some notation and results that are useful to prove Lemma 3.2. We 
first provide a reformulation of the well known diagram formula for Hermite polynomials 
[13, Proposition 4.15], equivalently of a particular case of the standard Feynman diagram 
representation of moments of Wick products [11, Theorem 3.12].

Definition 5.1. For q1, . . . , qn ∈ N, we define Aq1,...,qn as the set given by the indexes 
{kij}ni,j=1 such that for every i, j = 1, . . . , n,

ki,j ∈ N, kii = 0, kij = kji and
n∑

j=1
kij = qi. (5.4)

Lemma 5.2. Let n ≥ 2 and let (Z1, . . . , Zn) be a n-dimensional centered Gaussian vector. 
For q1, . . . , qn ∈ N, consider Aq1,...,qn as in Definition 5.1. Then,

E[
n∏

r=1
Hqr(Zr)] =

n∏
r=1

qr! ×
∑

{ki,j}n
i,j=1∈Aq1,...,qn

n∏
i,j=1
i<j

E[ZiZj ]kij

kij !
. (5.5)

In particular, taking Z1 = · · · = Zn = Z ∼ N (0, 1), one has

E[
n∏

r=1
Hqr(Z)] =

n∏
r=1

qr! ×
∑

{ki,j}n
i,j=1∈Aq1,...,qn

n∏
i,j=1
i<j

1
kij !

. (5.6)

We remark that (5.5) is tailored for our purposes. Besides, as it does not involve 
diagrams but merely an explicit set of indexes (see Aq1,...,qn), it appears more friendly 
than the usual diagram formula (see (A.1)). Its proof makes a strong use of non trivial 
combinatorics arguments. Since combinatorial tools are limited to this special case, for 
the sake of readability we postpone the proof of (5.5) to Appendix A.1. Let us see now 
how we apply such result.

For fixed n ≥ 2 and x1, . . . , xn ∈ Sd, the random vector (T�(x1), . . . , T�(xn)) is a 
centered Gaussian random vector whose covariances are given by (see (4.2))

E[T�(xi)T�(xj)] = G�;d(〈xi, xj〉), i, j = 1, . . . , n.
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When dealing with our proofs, we often need to compute and/or estimate quantities of 
the type

∫
(Sd)n

E[
n∏

r=1
Hqr(T�(xr))]dx.

By using (5.5), we have

∫
(Sd)n

E[
n∏

r=1
Hqr(T�(xr))]dx =

n∏
r=1

qr! ×
∑

{ki,j}n
i,j=1∈Aq1,...,qn

∫
(Sd)n

n∏
i,j=1
i<j

G�;d(〈xi, xj〉)kij

kij !
dx.

(5.7)
Therefore, it would be very useful to get a good estimate for the integrals appearing in 
the r.h.s. of (5.7), that is, for cross moments of Gegenbauer polynomials. To this purpose 
we need to introduce the concept of extrapolated graph from a given κ = {kij}ni,j=1 ∈
Aq1,...,qn . Such graph is defined as the pair Gκ = (V, Eκ) in which the set of the nodes is 
given by V = {1, . . . , n} and the set of the edges is given as follows: the edge (i, j) does 
exist iff kij �= 0 (notice that, since kii = 0, there are no self-loops). The use of graphs is 
a key point in our approach, that is why in Appendix A.2 we recall the main definitions 
and properties.

Lemma 5.3. For n ∈ N∗, let κ = {kij}ni,j=1 ∈ Aq1,...,qn be fixed. Let Gκ denote the 
extrapolated graph from κ and Nκ denote the number of connected components of Gκ. 
Then,

∫
(Sd)n

n∏
i,j=1
i<j

G�;d(〈xi, xj〉)2kijdx ≤ Cd(Nκ)
�(d−1)(n−Nκ) (5.8)

where Cd(Nκ) = (8μdμd−1c2;d)n−NκμNκ

d , c2;d being given in (4.4). As a consequence, for 
n = 2p,

∫
(Sd)2p

2p∏
i,j=1
i<j

G�;d(〈xi, xj〉)2kijdx ≤ Cd;p

�(d−1)p , (5.9)

where Cd;p = (2(d − 1)!μ2
d)2pμ

p
d.

The proof of Lemma 5.3 relies on an accurate study based on a rewriting of the 
integrals in the l.h.s. of (5.8) in terms of special connected graphs. As these arguments 
are developed exclusively for Lemma 5.3, we postpone the proof in an appendix ad hoc 
(see Appendix A.2).
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We remark that, in principle, (5.9) might be useful to get some estimates on concate-
nated sums of products of so-called Clebsch-Gordan coefficients {CL,M

�1,m1,�2,m2
} that we 

define by

Y�1,m1;d(x)Y�2,m2;d(x) =
�1+�2∑
L=0

nL;d∑
M=1

CL,M
�1,m1,�2,m2;dYL,M ;d(x), x ∈ Sd.

This is because there exists a precise link between such quantities and moments of Gegen-
bauer polynomials which can be established via the addition formula (2.4). However, it 
is not clear whether it is actually possible to obtain optimal or novel estimates, even if in 
dimension d > 2 a little is known about these coefficients. (See [13, §3.5] for a complete 
discussion in the case of the 2-sphere).

5.2. Proof of Theorem 3.2

We are now in a position to prove Theorem 3.2, that is the main result on the con-
vergence in Wasserstein distance for the Malliavin covariances of X̃�, as � → +∞. Let us 
anticipate that the proof requires a finer different method for the case d = 2 than d ≥ 3. 
Therefore, as it will be clear from reading the proof, we will have to split in two different 
approaches.

Proof of Theorem 3.2. By using (4.12) (with k = 1) and classical density arguments, 
the Malliavin derivative DX̃� : Ω → H is given by

DyX̃� = 1
v�;d

√
n�;d

μd

∑
q≥2

bq
(q − 1)!

∫
Sd

Hq−1(T�(x))G�;d(〈x, y〉)dx.

Following (3.3), with n = 1 and H = H = L2(Sd, B(Sd), Leb), we can write down the 
Malliavin covariance σ� of X̃�:

σ� =
∫
Sd

|DyX̃�|2dy = 1
v2
�;d

n�;d

μd

∑
q,p≥2

bqbp
(q − 1)!(p− 1)!

×
∫
Sd

∫
(Sd)2

Hq−1(T�(x))Hp−1(T�(z))G�;d(〈x, y〉)G�;d(〈z, y〉)dxdzdy.

By using the duplication formula (4.3), we obtain

σ� = 1
v2
�;d

∑
q,p≥2

bqbp
(q − 1)!(p− 1)!

∫
(Sd)2

Hq−1(T�(x))Hp−1(T�(z))G�;d(〈x, z〉)dxdz. (5.10)

Therefore, by (4.2),
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E[σ�] = 1
v2
�;d

∑
q,p≥2

bqbp
(q − 1)!(p− 1)!

∫
(Sd)2

E[Hq−1(T�(x))Hp−1(T�(z))]G�;d(〈x, z〉)dxdz

= 1
v2
�;d

∑
q≥2

b2q
(q − 1)!

∫
(Sd)2

G�;d(〈x, z〉)qdxdz.

Then, from the asymptotics for moment of Gegenbauer polynomials in Proposition 4.1
and from (5.3), we have that

E[σ�] − 2 = O

(
1d≥3

1
�

+ 1d=2

(
1b4 �=0

log �
�

+ 1b4=0
1
�

))

as � → ∞. In the above result we underline that the difference between d = 2 and d ≥ 3
changes the asymptotic behavior when b4 �= 0.

Now we study the variance of σ�. Denoting with dx := dx1dx2dx3dx4, we have that

E[σ2
� ] = 1

v4
�;d

∑
q1,q2,q3,q4≥2

( 4∏
j=1

bqj
(qj − 1)!

)

×
∫

(Sd)4

E[
4∏

i=1
Hqi−1(T�(xi))]G�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx.

By using Lemma 5.2, we have

E[σ2
� ] = 1

v4
�;d

∑
q1,q2,q3,q4≥2

( 4∏
j=1

bqj
(qj − 1)!

) 4∏
r=1

(qr − 1)!
∑

{ki,j}4
i,j=1∈Aq1−1,...,q4−1

4∏
i,j=1
i<j

1
kij !

×
∫

(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)kijG�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx.

Let us first study the case q1 = q2 and q3 = q4 and k13 = k14 = k23 = k24 = 0, so that 
k12 = q1 − 1 and k34 = q3 − 1. Then we have to deal with

∑
q1,q3≥2

b2q1b
2
q3

(q1 − 1)!(q3 − 1)!

∫
(Sd)4

G�;d(〈x1, x2〉)q1G�;d(〈x3, x4〉)q3dx

and this is exactly v4
�;d E[σ�]2. Then we define Nq1−1,q2−1,q3−1,q4−1 as the set of κ =

{kij}4
i,j=1 such that

k12 = q1 − 1 = q2 − 1, k34 = q3 − 1 = q4 − 1, k13 = k14 = k23 = k24 = 0

and we set
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Cq1−1,q2−1,q3−1,q4−1 = Aq1−1,...,q4−1 \ Nq1−1,q2−1,q3−1,q4−1. (5.11)

Hence we obtain

Var(σ�) = E[σ2
� ] − E[σ�]2 = 1

v4
�;d

∑
q1,q2,q3,q4≥2

4∏
i=1

bqi
(qi − 1)!

4∏
r=1

(qr − 1)!

×
∑

{ki,j}4
i,j=1∈Cq1−1,...,q4−1

4∏
i,j=1
i<j

1
kij !

∫
(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)kijG�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx,

so that

Var(σ�) ≤
1

v4
�;d

∑
q1,q2,q3,q4≥2

4∏
i=1

|bqi |
(qi − 1)!

4∏
r=1

(qr − 1)!

×
∑

{ki,j}4
i,j=1∈Cq1−1,...,q4−1

4∏
i,j=1
i<j

1
kij !

∣∣∣ ∫
(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)kijG�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx
∣∣∣

(5.12)

We now prove that, thanks to Lemma 5.3, there exists c > 0 such that for every 
{ki,j}ni,j=1 ∈ Cq1−1,...,q4−1,

∣∣∣ ∫
(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)kijG�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx
∣∣∣ ≤ cd

�2d−2+ d−1
2

. (5.13)

For a fixed κ = {kij}4
i,j=1 ∈ Cq1−1,...,q4−1, let Nκ be the number of the connected 

components of the extrapolated graph Gκ. We observe that Nκ ∈ {1, 2}, recall in fact 
that by (5.1) for any i there exists at least an index j �= i such that kij > 0 (here, 
qi − 1 ≥ 1 for every i). So, we split our reasoning according to Nκ = 1 and Nκ = 2.

Case 1: Nκ = 1. By using the Cauchy-Schwarz inequality we have

∣∣∣ ∫
(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)kijG�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx
∣∣∣

≤
( ∫

(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)2kijdx
)1/2( ∫

(Sd)4

G�;d(〈x1, x2〉)2G�;d(〈x3, x4〉)2dx
)1/2

Estimating the first factor by means of (5.8) with Nκ = 1 and computing the second 
factor by means of (4.5), straightforward computations give (5.13)
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1 2

34

(a)

1 2

34

(b)

1 2

34

(c)

Fig. 1. All possible extrapolated graphs Gκ from κ = {kij}4
i,j=1 having exactly two connected components.

Case 2: Nκ = 2. Fig. 1 shows all possible extrapolated graphs having 2 connected 
components. We notice that the graph in (a) is extrapolated by an element κ = {kij}4

i,j=1
belonging to Nq1−1,...,q4−1. Such indexes have been already deleted, so we study the cases 
shown in (b) and in (c).

As for case (b), we have

∣∣∣ ∫
(Sd)4

4∏
i,j=1
i<j

G�;d(〈xi, xj〉)kijG�;d(〈x1, x2〉)G�;d(〈x3, x4〉)dx
∣∣∣

=
∣∣∣ ∫
(Sd)4

G�;d(〈x1, x2〉)G�;d(〈x1, x3〉)q1−1G�;d(〈x2, x4〉)q2−1G�;d(〈x3, x4〉)dx
∣∣∣.

Assume that q1 = 2 or q2 = 2. W.l.g. we set q1 = 2. Then, using (4.3), we have

∣∣∣ ∫
(Sd)4

G�;d(〈x1, x2〉)G�;d(〈x1, x3〉)G�;d(〈x2, x4〉)q2−1G�;d(〈x3, x4〉)dx1dx2dx3dx4

∣∣∣
=

∣∣∣ μd

n�;d

∫
(Sd)3

G�;d(〈x2, x3〉)G�;d(〈x2, x4〉)q2−1G�;d(〈x3, x4〉)dx2dx3dx4

∣∣∣
=

∣∣∣ μ2
d

n2
�;d

∫
(Sd)2

G�;d(〈x2, x4〉)q2dx2dx4

∣∣∣
≤ μ2

d

n2
�;d

∫
(Sd)2

G�;d(〈x2, x4〉)2dx2dx4 ≤ cd
�3d−3 ,

the last inequality following from (4.5). If instead q1 ≥ 3 and q2 ≥ 3,

∣∣∣ ∫
d 4

G�;d(〈x1, x2〉)G�;d(〈x1, x3〉)q1−1G�;d(〈x2, x4〉)q2−1G�;d(〈x3, x4〉)dx
∣∣∣
(S )
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≤
∫

(Sd)4

G�;d(〈x1, x3〉)2G�;d(〈x2, x4〉)2|G�;d(〈x3, x4〉)|dx

By integrating first w.r.t. x1, then w.r.t. x2 and by using (4.5), we get

∣∣∣ ∫
(Sd)4

G�;d(〈x1, x2〉)G�;d(〈x1, x3〉)q1−1G�;d(〈x2, x4〉)q2−1G�;d(〈x3, x4〉)dx
∣∣∣

≤ cd
�2d−2

∫
(Sd)2

|G�;d(〈x3, x4〉)|dx3dx4.

Now we use the Cauchy-Schwarz inequality and again apply (4.5). We finally obtain 
(5.13).

Case (c) in Fig. 1 can be treated analogously, so (5.13) finally holds.
Coming back to the study of Var(σ�), we use (5.3), we insert the estimates (5.13) in 

(5.12) and we have

Var(σ�) ≤
cd �

2d−2

�2d−2+ d−1
2

∑
q1,q2,q3,q4≥2

4∏
i=1

|bqi |
(qi − 1)!

4∏
r=1

(qr−1)!
∑

{ki,j}4
i,j=1∈Aq1−1,...,q4−1

4∏
i,j=1
i<j

1
kij !

We now use (5.6) and Assumption 2.3: for Z ∼ N (0, 1),

Var(σ�) ≤
cd �

2d−2

�2d−2+ d−1
2

∑
q1,q2,q3,q4≥2

4∏
i=1

|bqi |
(qi − 1)!E

[ 4∏
r=1

Hqr−1(Z)
]

= cd

�
d−1
2

E
[(∑

q≥2

|bq|
(q − 1)!Hq−1(Z)

)4]
= cd

�
d−1
2

E[|Dφ(Z)|4]= O(�−
d−1
2 ),

This concludes the proof for the case d ≥ 3. If d = 2, the above estimate gives 
Var(σ�) = O(�− 1

2 ), which is not enough as it would give, in Theorem 2.5, Oε(�−
1−ε
4 )

instead of Oε(�−
1−ε
2 ). This, in turn, would imply that the convergence speed in Total 

Variation distance depends on the dimension. However, in the case d = 2 we can actu-
ally prove that Var(σ�) = O(�−1), allowing us to reach the optimal bound Oε(�−

1−ε
2 ) in 

Theorem 2.5. So, when d = 2 we need to improve the estimates of the integrals in (5.12). 
The proof strategy is different and needs a long analysis, in what follows we give the 
main steps, leaving the technical details to a supplementary file (see also [7, Appendix 
B]).
Let us come back to (5.12) for d = 2, in particular G�;2 = P� the �-th Legendre poly-
nomial. By recalling (5.3), by applying the estimate in Proposition 5.4 below, by using 
(5.6) and Assumption 2.3, we get
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Var(σ�) ≤ C�2 × 1
�3

∑
q1,q2,q3,q4≥2

4∏
i=1

|bqi |
(qi − 1)!E

[ 4∏
r=1

Hqr−1(Z)
]

≤ C

�
E
[(∑

q≥2

|bq|
(q − 1)!Hq−1(Z)

)4]
= C

�
E[|Dφ(Z)|4] = O(�−1),

hence the proof is concluded. �
Proposition 5.4. There exists C > 0 such that for every q1, . . . , q4 ≥ 2 and κ =
{kij}4

i,j=1 ∈ Cq1−1,...,q4−1 (see (5.11)) one has

∣∣∣∣∣∣∣
∫

(S2)4

P�(〈x1, x2〉)k12+1
∏

i<j,i<3
P�(〈xi, xj〉)kij P�(〈x3, x4〉)k34+1dx

∣∣∣∣∣∣∣ ≤
C

�3
. (5.14)

The proof of Proposition 5.4 is technical, so for the brevity sake it is fully collected 
in §SM2 of the supplementary file (see also [7, Appendix B.2]). In what follows we just 
give a key result which is of independent interest, i.e., Lemma 5.6, and its consequences 
in terms of cross moments of Gegenbauer polynomials (Lemma 5.7).

5.2.1. Concatenated sums of Gaunt integrals

Definition 5.5. For d ≥ 2, q ∈ N and n1, . . . , nq ∈ {0, . . . , n�;d}, the generalized Gaunt 
integral on Sd is:

G�n1,...,�nq
=

∫
Sd

q∏
i=1

Y�ni
(x)dx.

The following result, which extends Lemma 1.5 in [22], gives a useful representation 
of convolutions of Gaunt integrals on Sd. This is of interest in itself, in particular for the 
analysis of some random functionals on Sd which are beyond the scopes of this paper.

Lemma 5.6. For q ∈ N and n, n1, . . . , nq ∈ {0, . . . , n�;d} one has

n�;d∑
m1,...,mr

G�m1,...,�mr,�n G�m1,...,�mr,�n1,...,�nq
=

(n�;d

μd

)r−1
γ̂�;r G�n,�n1,...,�nq

where

γ̂�;r = n�;d
μd−1

μd

1∫
G�;d(t)r+1(√1 − t2

)d−2
dt. (5.15)
−1
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Proof.. From (2.4) we have∑
m1,...,mr

G�m1,...,�mr,�n G�m1,...,�mr,�n1,...,nq
=

=
∑

m1,...,mr

∫
(Sd)2

r∏
i=1

Y�mi
(x)Y�mi

(y)Y�n(x)
q∏

j=1
Y�nj

(y)dxdy

=
(n�;d

μd

)r
∫

(Sd)2

G�;d(〈x, y〉)r Y�n(x)
q∏

j=1
Y�nj

(y)dxdy.

Since 
((

μd−1n�;d
μd

) 1
2
Gj;d

)r�

j=0
is an orthonormal system on [−1, 1] with the weight function 

(1 − t2)d/2−1 (see [23]), we can write

G�;d(t)r =
r�∑
j=0

γj,�;rGj;d(t) (5.16)

where, for j = 0, 1, . . . , r�

γj,�;r = nj;d
μd−1

μd

1∫
−1

G�;d(t)rGj;d(t)
(√

1 − t2
)d−2

dt. (5.17)

Substituting (5.16), we have∑
m1,...,mr

G�m1,...,�mr,�n G�m1,...,�mr,�n1,...,nq

=
(n�;d

μd

)r
∫

(Sd)2

r�∑
j=0

γj,�;rGj;d(〈x, y〉) Y�n(x)
q∏

i=1
Y�ni

(y)dxdy

=
(n�;d

μd

)r−1 r�∑
j=0

γj,�;r

∫
(Sd)2

n�;d∑
h=0

Yjh(x)Yjh(y) Y�n(x)
q∏

i=1
Y�ni

(y)dxdy

=
(n�;d

μd

)r−1 r�∑
j=0

γj,�;r

n�;d∑
h=0

∫
Sd

Yjh(x)Y�n(x)dx

︸ ︷︷ ︸
=1j=�1h=n

∫
Sd

Yjh(y)
q∏

i=1
Y�ni

(y)dy

=
(n�;d

μd

)r−1
γ�,�;r

∫
Sd

Y�n(y)
q∏

i=1
Y�ni

(y)dy

=
(n�;d

μd

)r−1
γ�,�;r G�n,�n1,...,�nq

.
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Since γ̂�;r = γ�,�;r, the statement follows. �
As a consequence of Lemma 5.6, we state the following properties for cross moments 

of Gegenbauer polynomials (which is of independent interest).

Lemma 5.7. For d ≥ 2, the following statements hold:

1. for q1, q2 ≥ 2 there exists a positive constant cd,1 such that

∫
(Sd)3 G�;d(〈x1, x2〉)G�;d(〈x1, x4〉)q1G�;d(〈x2, x4〉)q2dx1dx2dx4

= cd,1
∫
(Sd)2 G�;d(〈x, y〉)q1+1dxdy

∫
(Sd)2 G�;d(〈x, y〉)q2+1dxdy;

(5.18)

2. for q1, q2 ≥ 2 and q3 ≥ 1 there exists a positive constant cd,2 such that

∫
(Sd)4 G�;d(〈x1, x2〉)G�;d(〈x1, x4〉)q1G�;d(〈x2, x3〉)q2G�;d(〈x3, x4〉)q3dx
= cd,2

∏3
i=1

∫
(Sd)2 G�;d(〈x, y〉)qi+1dxdy;

(5.19)

3. for q1, q2 ≥ 2 and q3 ≥ 0 there exists a positive constant cd,3 such that

∫
(Sd)4 G�;d(〈x1, x2〉)G�;d(〈x1, x4〉)q1G�;d(〈x2, x3〉)q2G�;d(〈x2, x4〉)q3G�;d(〈x3, x4〉)dx
= cd,3

∏3
i=1

∫
(Sd)2 G�;d(〈x, y〉)qi+1dxdy.

(5.20)

The proof of Lemma 5.7 can be found in §SM1 (see also [7, Appendix B.1]).

6. Uniform boundedness of Malliavin-Sobolev norms

This section is devoted to the proof of Proposition 3.3, that is, all moments of 
|D(k)X̃�|H⊗k and of |D(k)LX̃�|H⊗k are uniformly bounded in �.

Proof of Proposition 3.3. Without loss of generality, we can assume that n is even. So, 
we fix k ∈ N and n = 2p, p ∈ N. We first prove that sup� even E[|D(k)X̃�|2pH⊗k ] is finite.

Recall the chaos expansion (5.2) and by using (4.12), it easily follows that

D(k)
y1,...yk

X̃� = 1
v�;d

(
n�;d

μd

) k
2 ∑
q≥2∨k

bq
(q − k)!

∫
Sd

Hq−k(T�(x))
k∏

i=1
G�;d(〈x, yi〉)dx.

Thus,

E[|D(k)X̃�|2pH⊗k ] = E
[( ∫

d k

|D(k)
y1,...,yk

X̃�|2dy1dy2 . . . dyk

)p]

(S )
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= 1
v2p
�;d

E
[( ∑

q1,q2≥2∨k

bq1bq2
(q1 − k)!(q2 − k)!

×
∫

(Sd)2

Hq1−k(T�(y))Hq2−k(T�(z))G�;d(〈y, z〉)kdydz
)p]

= 1
v2p
�;d

∑
qi≥2∨k,i=1,...,2p

2p∏
i=1

bqi
(qi − k)!

2p∏
r=1

(qr − k)!
∑

{ki,j}2p
i,j=1
i<j

∈Aq1−k,...,q2p−k

2p∏
i,j=1
i<j

1
ki,j !

×
∫

(Sd)2p

2p∏
i,j=1
i<j

G�;d(〈xi, xj〉)ki,j

p∏
s=1

G�;d(〈xs, xs+p〉)kdx,

in which we have used (5.5). We start to estimate the integrals in the above r.h.s. Using 
the Cauchy Schwarz inequality and (5.9), it follows that

∣∣∣ ∫
(Sd)2p

2p∏
i,j=1
i<j

G�;d(〈xi, xj〉)ki,j

p∏
s=1

G�;d(〈xs, xs+p〉)kdx
∣∣∣

≤
( ∫

(Sd)2p

2p∏
i,j=1
i<j

G�;d(〈xi, xj〉)2ki,jdx

∫
(Sd)2p

p∏
s=1

G�;d(〈xs, xs+p〉)2kdx
) 1

2 ≤ Cd;p

�(d−1)p .

We insert the above estimate and, by using the asymptotics of v�;d in (5.3) and the 
representation (5.6), it follows that

E[|D(k)X̃�|2pH⊗k ] ≤ 1
v2p
�;d

Cd;p

�(d−1)p

×
∑

qi≥2∨k,i=1,...,2p

( 2p∏
i=1

|bqi |
(qi − k)!

) 2p∏
r=1

(qr − k)!
∑

{ki,j}2p
i,j=1
i<j

∈Aq1−k,...,q2p−k

2p∏
i,j=1
i<j

1
ki,j !

≤
Const

(
�(d−1)p + o( 1

�(d−1)p )
)

�(d−1)p ×
∑

qi≥2∨k,i=1,...,2p

( 2p∏
i=1

|bqi |
(qi − k)!

)
E[

2p∏
r=1

Hqr−k(Z)]

= Const(1 + o(1))E
[∣∣∣ ∑

q≥2∨k

|bq|
(q − k)!Hq−k(Z)

∣∣∣2p].
Hereafter Const denotes a positive constant, possibly changing from a line to another and 
possibly depending on d and p but independent of �. Now, by (2.16) in Assumption 2.3, 
we obtain

supE[|D(k)X̃�|2pH⊗k ] ≤ ConstE[|Dkφ(Z)|2p] < ∞.

�
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Concerning the study of E[|D(k)LX̃�|2pH⊗k ], by using (4.8) we have

LX̃� = − 1
v�;d

∑
q≥2

bq
(q − 1)!

∫
Sd

Hq(T�(x))dx.

By comparing this expansion with (5.2), one deduces that one can repeat the same 
computations with bq replaced by −qbq. Hence,

sup
�

E[|D(k)LX̃�|2pH⊗k ] ≤ ConstE
[∣∣∣ ∑

q≥2∨k

q|bq|
(q − k)!Hq−k(Z)

∣∣∣2p] = ConstE[|DkLφ(Z)|2p]

and this is finite again because of (2.16) in Assumption 2.3. This concludes the proof. �
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Appendix A

A.1. Proof of Lemma 5.2

This section is devoted to the proof of Lemma 5.2, which is based on the follow-
ing diagram formula [13, Proposition 4.15]: for n ≥ 1, for a centered Gaussian vector 
(Z1, . . . , Zn) in Rn and for every q1, . . . , qn ∈ N one has

E[
n∏

r=1
Hqr(Zr)] =

∑
G∈ΓF (q1,...,qn)

∏
1≤i<j≤n

E(ZiZj)kij(G), (A.1)

where ΓF (q1, . . . , qn) is the set of no-flat diagram of order (q1, . . . , qn) and kij(G) is the 
number of edges from row i to row j of the diagram. Let us recall (see [13, §4.3.1], in 
particular the figure at page 97) that a diagram G of order (q1, . . . , qn) is a set of points 
{(i, h) : 1 ≤ i ≤ n, 1 ≤ h ≤ qi} called vertices and a partition of these points into pairs

{((i, h), (j, k)) : 1 ≤ i ≤ j ≤ n; 1 ≤ h ≤ qi, 1 ≤ k ≤ qj}

called edges, such that (i, h) �= (j, k) (self loops are not allowed) and moreover, every 
vertex of the diagram is linked to one and only one vertex through an edge. One can 
graphically represent G by a set of n rows, where the i-th row contains qi dots. The 
h-th dot (from left to right) of the i-th row represents the point (i, h). The edges of the 
diagram are represented as lines connecting the two corresponding dots. A diagram is 
no-flat if for all edges ((i, h), (j, k)) we have i �= j. It graphically means that we can 
connect only dots that are in two different rows.
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Proof of Lemma 5.2. We start from the diagram formula (A.1). For a diagram in 
ΓF (q1, . . . , qn), let Ri denote its i-th row, i = 1, . . . , n. Consider the first row R1. In 
R1 we have q1 dots; we fix a partition of q1 dots in n − 1 groups of dots. We order the 
groups and denote them R1j, j = 2, . . . , n: R1j is the group of dots in R1 that are linked 
with dots in the j-th row. We denote with k1j the number of dots in R1j , that coin-
cides with the number of edges connecting row 1 with row j. We fix k12 ∈ {0, . . . , q1}. 
There are 

(
q1
k12

)
choices for k12 dots in the first row. In general for j = 3, . . . n, we fix 

k1j = 0, . . . , (q1 −
∑j−1

h=2 k1h) to have that

n∑
j=2

k1j = q1.

For j = 3, . . . , n there are 
(q1−∑j−1

h=2 k1h
k1j

)
choices for k1j . Then, the number of choices of 

{k1,j}nj=2 according to the above condition is

n∏
j=1

(
q1 −

∑j−1
r=1 k1r

k1j

)
= q1!∏n

j=1 k1j !
.

We recall that kii = 0 for i = 1, . . . , n because we are considering no-flat diagrams. In 
practice we have computed the number of partitions of q1 dots in n − 1 groups. We can 
do the same for the other rows. And so we have that the number of partition of qi that 
is

n∏
j=1

(
qi −

∑j−1
r=1 kir

kij

)
= qi!∏n

j=1 kij !
.

Notice that kij = kji. Now we are able to compute the number of diagrams for fixed 
{kij}ni,j=1. We recall that kij represent the number of dots of the i-th row and of the j-th 
row that are linked. There are kij ! way to match the dots. Then the number of no-flat 
diagrams for a fixed {kij}ni,j=1 is

n∏
i=1

qi!∏n
j=1 kij !

n∏
r,s=1
r<s

krs! =
n∏

r=1
qr!

n∏
i,j=1
i<j

1
kij

.

In order to conclude, it remains to determine the set of all admissible {kij}ni,j=1. Recalling 
that, for a fixed no-flat diagram, kij is the number of edges connecting row i with 
row j, then of course kij = kji. Moreover, kii = 0 because the diagram is no-flat and ∑n

j=1 kij = qi for every i, as every vertex belongs to a unique edge. This means that 
{kij}ni,j=1 ∈ Aq1,...,qn (see Definition 5.1). The statement now follows. �
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A.2. Proof of Lemma 5.3

Before presenting the proof of Lemma 5.3, we start by recalling some elementary 
concepts of graph theory [25].

A graph is a set of point called nodes linked together by lines called edges. Formally, a 
graph is a pair G = (V, E) of sets, where V is the set of nodes and E is the set of edges. 
We can identify E with a subset of V ×V . Precisely, if V = {x1, . . . , xn} and there exists 
an edge between xi and xj , then the pair (xi, xj) ∈ E. A subgraph of G = (V, E) is a 
graph G′ = (V ′, E′) where V ′ ⊂ V and E′ is the set of all the edges of E that link only 
nodes in V ′. We say that a node x has degree m if there are m edges that are incident 
to x, the case m = 0 meaning that the node is isolated.

A path between two nodes x, y of G is a sequence of edges connecting x with y and 
joining a sequence of distinct nodes, so, in particular, all edges of the path are distinct. 
We say that two nodes x, y of a graph G are connected if G contains a path between x
and y. A graph is said to be connected if every pair of nodes in the graph is connected. A 
connected component of a graph G is connected subgraph of the graph that is maximal. 
We can consider a graph as the union of its connected components.

In our treatment we are interested in a particular class of connected graphs: the trees. 
A tree is a connected graph where each pair of nodes is connected by exactly one path. 
We first observe that in a tree there exists a non-empty subset of nodes with degree 1. In 
fact, equivalently, a tree is a connected graph in which every subgraph (and in particular 
the graph itself) contains at least one node with degree 1. Hence when we delete some 
of 1 degree nodes, the subgraph that we obtain is also a tree, that has again a subset 
of new 1 degree nodes. If we progressively delete the 1 degree nodes, we finally obtain a 
empty graph.

The last and most important property (for our treatment) of connected graphs is the 
following: a connected graph G always contains a spanning tree, i.e. a subgraph of G that 
is a tree and contains all nodes of G. Now we prove Lemma 5.3.

Proof of Lemma 5.3. Let κ = {kij}ni,j=1 ∈ Aq1−1,...,qn−1 (see (5.5)). We extrapolate from 
κ the graph G = (V, E) with V = {x1, . . . , xn} and (xi, xj) ∈ E iff kij �= 0. We recall 
that for every i = 1, . . . , n, kii = 0, then there are no self loops in G.

Let N be the number of the connected components of G and we denote with Gh, 
h = 1, . . . , N these components. We denote with mh the number of nodes in Gh. Then ∑N

h=1 mh = n. We observe that if xi is a node of Gh1 , xj is a node of Gh2 and h1 �= h2
then kij = 0. This justifies the following equality:

∫
(Sd)n

∏n
i,j=1
i<j

G�;d(〈xi, xj〉)2kijdx1 . . . dxn

=
∏N

h=1
∫
(Sd)mh

∏
xir ,xis∈Gh

G�;d(〈xir , xis)2kirisdxi1 . . . dximh
.

(A.2)

Now we observe that if Gh is a tree, the 1 degree nodes of Gh are the variables xir for 
which there exists one and only one is such that kiris �= 0. Hence there is one and only 
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one polynomial G�;d in the variable xir in the integral (A.2). We identify the action of 
deleting 1 degree nodes with that of integrating the polynomial G�;d(〈xir , xis〉) in the 
variable xir . Our connected components are not always trees, but we know that there 
always exists the spanning tree. So for all Gh, we consider the spanning tree G̃h, and 
delete the edges of Gh that are not in G̃h. This deleting operation corresponds, when 
studying the integral in the r.h.s. of (A.2), with the estimate |G�;d(〈xir , xis〉)| ≤ 1 for 
each pair (xir , xis) giving the deleted edge. Since in a tree with mh nodes there are 
mh − 1 edges, the resulting estimate consists in integrating mh − 1 polynomials.

It follows that

∫
(Sd)n

n∏
i,j=1
i<j

G�;d(〈xi, xj〉)2kijdx =
N∏

h=1

∫
(Sd)mh

∏
xir ,xis∈Gh

G�;d(〈xir , xis)2kirisdxi1 . . . dximh

≤
N∏

h=1

∫
(Sd)mh

∏
xir ,xis∈G̃h

G�;d(〈xir , xis)2kirisdxi1 . . . dximh

≤
N∏

h=1

∫
(Sd)mh

∏
xir ,xis∈G̃h

G�;d(〈xir , xis)2dxi1 . . . dximh

≤
N∏

h=1

(8μdμd−1c2;d)mhμN
d

�(d−1)(mh−1) = (8μdμd−1c2;d)n−NμN
d

�(d−1)(
∑N

h=1 mh−N)

= (8μdμd−1c2;d)n−NμN
d

�(d−1)(n−N) .

We end by observing that the maximum number N of connected components in a graph 
that contains n = 2p nodes is p, when there aren’t 0 degree nodes. Moreover there are 
exactly p connected components when all subgraph contains exactly 2 nodes. Then, being 
8μdμd−1c2;d > 1, we have

∫
(Sd)2p

2p∏
i,j=1
i<j

G�;d(〈xi, xj〉)2kijdx ≤ Cd;p

�(d−1)p (A.3)

where Cd;p = (2(d − 1)!μ2
d)2pμ

p
d, thus concluding the proof. �

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /
10 .1016 /j .jfa .2023 .110239.

References

[1] R. Adler, J. Taylor, Random Fields and Geometry, Springer Monographs in Mathematics, Springer, 
New York, 2007.

https://doi.org/10.1016/j.jfa.2023.110239
https://doi.org/10.1016/j.jfa.2023.110239
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibFA868488740AA25870CED6B9169951FBs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibFA868488740AA25870CED6B9169951FBs1


32 L. Caramellino et al. / Journal of Functional Analysis 286 (2024) 110239
[2] E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and Its Applica-
tions., vol. 71, Cambridge University Press, Cambridge, 1999.

[3] V. Bally, L. Caramellino, G. Poly, Non universality for the variance of the number of real roots of 
random trigonometric polynomials, Probab. Theory Relat. Fields 174 (3–4) (2019) 887–927.

[4] V. Bally, L. Caramellino, G. Poly, Regularization lemmas and convergence in total variation, Elec-
tron. J. Probab. 25 (74) (2020), 20 pp.

[5] V. Cammarota, Nodal area distribution for arithmetic random waves, Trans. Am. Math. Soc. 372 (5) 
(2019) 3539–3564.

[6] V. Cammarota, D. Marinucci, A quantitative central limit theorem for the Euler-Poincaré charac-
teristic of random spherical eigenfunctions, Ann. Probab. 46 (6) (2018) 3188–3228.

[7] L. Caramellino, G. Giorgio, M. Rossi, Convergence in Total Variation for nonlinear functionals of 
random hyperspherical harmonics, arXiv :2206 .02605, 2022.

[8] M.-C. Chang, H. Nguyen, O. Nguyen, V. Vu, Random eigenfunctions on flat tori: universality for 
the number of intersections, Int. Math. Res. Not. 24 (2020) 9933–9973.

[9] C. Durastanti, Adaptive global thresholding on the sphere, J. Multivar. Anal. 151 (2016) 110–132.
[10] F. Grotto, L. Maini, A.P. Todino, Fluctuations of polyspectra in spherical and Euclidean random 

wave models, arXiv :2303 .09506, 2023.
[11] S. Janson, Gaussian Hilbert Spaces, Cambridge University Press, 1997.
[12] D. Marinucci, A central limit theorem and higher order results for the angular bispectrum, Probab. 

Theory Relat. Fields 141 (3–4) (2008) 389–409.
[13] D. Marinucci, G. Peccati, Random Fields on the Sphere: Representations, Limit Theorems and 

Cosmological Applications, London Mathematical Society Lecture Notes, Cambridge University 
Press, Cambridge, 2011.

[14] D. Marinucci, G. Peccati, M. Rossi, I. Wigman, Non-universality of nodal length distribution for 
arithmetic random waves, Geom. Funct. Anal. 26 (3) (2016) 926–960.

[15] D. Marinucci, M. Rossi, Stein-Malliavin approximation for nonlinear functionals of random eigen-
functions on Sd, J. Funct. Anal. 268 (8) (2015) 2379–2420.

[16] D. Marinucci, M. Rossi, I. Wigman, The asymptotic equivalence of the sample trispectrum and the 
nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (1) (2020) 
374–390.

[17] D. Marinucci, I. Wigman, The defect variance of random spherical harmonics, J. Phys. A, Math. 
Theor. 44 (35) (2011).

[18] D. Marinucci, I. Wigman, On nonlinear functionals of random spherical eigenfunctions, Commun. 
Math. Phys. 327 (3) (2014) 849–872.

[19] I. Nourdin, G. Peccati, Normal Approximations with Malliavin Calculus: from Stein’s Method to 
Universality, Cambridge University Press, 2012.

[20] I. Nourdin, G. Peccati, G. Reinert, Second order Poincaré inequalities and CLTs on Wiener space, 
J. Funct. Anal. 257 (2) (2009) 593–609.

[21] D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer-Verlag, Berlin, 
2006.

[22] M. Rossi, The defect of random hyperspherical harmonics, J. Theor. Probab. 32 (4) (2019) 
2135–2165.

[23] G. Szegö, Orthogonal Polynomials, American Mathematical Society, Providence, Rhode Island, 
1939.

[24] A.P. Todino, A quantitative central limit theorem for the excursion area of random spherical har-
monics over subdomains of S2, J. Math. Phys. 60 (2) (2019).

[25] R. van der Hofstad, Random Graphs and Complex Networks, Cambridge Series in Statistical and 
Probabilistic Mathematics, vol. 1, Cambridge University Press, Cambridge, 2017.

[26] A. Vidotto, An improved second order Poincaré inequality for functionals of Gaussian fields, J. 
Theor. Probab. 33 (1) (2020) 396–427.

[27] N.Ja. Vilenkin, A.U. Klimyk, Representation of Lie Groups and Special Functions, Mathematics 
and Its Applications (Soviet Series), vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1993.

http://refhub.elsevier.com/S0022-1236(23)00396-8/bib46C7C213C67B718E1D450048061EF2FEs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib46C7C213C67B718E1D450048061EF2FEs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib41C2BBC80A4D94DB6144F814F54EBD3Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib41C2BBC80A4D94DB6144F814F54EBD3Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibDE8CFE9BC9C2CF954FD9DB6D45E9CAF6s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibDE8CFE9BC9C2CF954FD9DB6D45E9CAF6s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib13089CDBEE90BE3A257283CD3D98B415s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib13089CDBEE90BE3A257283CD3D98B415s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib529B172EE049D332F1B7F99950EE319Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib529B172EE049D332F1B7F99950EE319Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib47453B80DB4CAEB1EF7AF607266D47EAs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib47453B80DB4CAEB1EF7AF607266D47EAs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibD11413408DC4F91AF72EBF678BCF624As1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibD11413408DC4F91AF72EBF678BCF624As1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibDB78E637947745CF73C8F299CCFFC850s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibC8794FACEBD0BF4F072859CA5B761307s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibC8794FACEBD0BF4F072859CA5B761307s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib80119D294B6F3FE6A47BAD5647B9CB8As1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibC50A5FD8A3F255D313191DF5CBD82C08s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibC50A5FD8A3F255D313191DF5CBD82C08s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibEAB4EB43F79C34C9D9A95CFB8907C1F2s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibEAB4EB43F79C34C9D9A95CFB8907C1F2s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibEAB4EB43F79C34C9D9A95CFB8907C1F2s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib75C18C946B7F80705E1D016914DACC1As1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib75C18C946B7F80705E1D016914DACC1As1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib47E80F641963842B19CD5D98350A731Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib47E80F641963842B19CD5D98350A731Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibA0E92CDEF024461F54126727B29457B5s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibA0E92CDEF024461F54126727B29457B5s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibA0E92CDEF024461F54126727B29457B5s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibE1622F4524A5B863D6FCE7975F3A7BE7s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bibE1622F4524A5B863D6FCE7975F3A7BE7s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib0F29407F6B3CE20920733993339D23B9s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib0F29407F6B3CE20920733993339D23B9s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib05EA003FB15DC8015C9177E3939304EBs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib05EA003FB15DC8015C9177E3939304EBs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib41A45D5F8EEBC2EACF23ED3FBF997076s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib41A45D5F8EEBC2EACF23ED3FBF997076s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib840F253AA98D7DC25D0D33A0BB2C1E19s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib840F253AA98D7DC25D0D33A0BB2C1E19s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib28D275D07DD088C246C72A1CF2467827s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib28D275D07DD088C246C72A1CF2467827s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib7D089FE0CF37E285698B6250CBABE8D1s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib7D089FE0CF37E285698B6250CBABE8D1s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib09EE1CB90E795DED3F583BD7D74B49F1s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib09EE1CB90E795DED3F583BD7D74B49F1s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib8615F4CB94F460FE994F3E6FDF946C2Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib8615F4CB94F460FE994F3E6FDF946C2Fs1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib9E8D709604D78872BC5BE0A0199322F9s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib9E8D709604D78872BC5BE0A0199322F9s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib5CDB9C9B52A6C038C3F7B42D1F0F15F0s1
http://refhub.elsevier.com/S0022-1236(23)00396-8/bib5CDB9C9B52A6C038C3F7B42D1F0F15F0s1

	Convergence in Total Variation for nonlinear functionals of random hyperspherical harmonics
	1 Introduction
	1.1 Notation
	Acknowledgments

	2 Motivations and main results
	2.1 Random hyperspherical harmonics
	2.2 Statistics of random hyperspherical harmonics
	2.3 Statement of the main result

	3 Proof of the main result
	3.1 Proof strategy
	3.2 Proof of Theorem 2.5

	4 Background on Gaussian random fields
	4.1 Isonormal representation and Wiener chaos expansion
	4.2 Malliavin calculus for Gaussian random fields

	5 Convergence of Malliavin covariances
	5.1 On the diagram formula and cross moments of Gegenbauer polynomials
	5.2 Proof of Theorem 3.2
	5.2.1 Concatenated sums of Gaunt integrals


	6 Uniform boundedness of Malliavin-Sobolev norms
	Data availability
	Appendix B Supplementary material
	References


