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Abstract

The polymorphism of the male-specific portion of the Y chromosome has been increasingly used to
describe the composition of the European gene pool and to reconstruct its formation. Here the
theoretical grounds and the limitations of this approach are presented, together with the different views
on debated issues. The emerging picture for the composition of the male gene pool of the continent is
illustrated, but local peculiarities that represent departures from the main trends are also highlighted,
in order to illustrate the main unifying feature, i.e. the overlay of recent patterns onto more ancient
ones. A synopsis of the main findings and conclusions obtained in regional studies has also been
compiled.
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Introduction

The reconstruction of the history of human populations by means of genetic markers is a
gigantic scientific enterprise which brings together the genetics, anthropology and, more
recently, the history, archaeology and forensic medicine communities. In this context, the
Y chromosome is playing a pivotal role, for reasons that have been repeatedly authoritatively
reviewed (Jobling and Tyler-Smith 1995; Bertranpetit 2000; Renfrew et al. 2000;
Cavalli-Sforza and Feldman 2003; Garrigan and Hammer 2006). This review attempts to
provide a picture of the state of the art as far as Europe is concerned. For conciseness,
only territories strictly within European borders are considered, and also comparisons with
the results obtained with other markers are avoided. In order to make the entire context
accessible to the non-specialized reader, a summary of the properties of this genomic region
and of its place in population genetics theory is also given. An in-depth view of some
regions of the continent will follow, as well as the main conclusions obtained for some
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‘outlier’ populations. Whenever possible the reader is addressed to previous reviews and by
no means can the literature cited here be considered exhaustive.

Mendelism and the Y chromosome

To the unfamiliar reader, the Y chromosome is known as a chromosome that determines, as
a whole, the male sex and has no homologue in the individual’s chromosome set. However,
from the Mendelian point of view, it consists of three distinct portions, known as PARI1
(pseudo-autosomal region 1), MSY and PAR2 (for a review see Jobling and Tyler-Smith
2003). Here we are concerned only with the MSY (male-specific region; also known as
NRY, or non-recombining region) as it is the only portion that is entirely transmitted
from male to male, being free from homologue-homologue recombination (i.e. with the
X chromosome). With few exceptions DNA variation referred to in the present review
resides within the MSY. Since the MSY is present as a single copy in each individual
genome, all alleles at variable positions are found . cis (i.e on the same DNA molecule),
thus constituting a single haplotype. Typically, the subject’s haplotype is transmitted
unaltered to his male offspring except when a mutation occurs. This haploid state renders
markers of the MSY particularly easy to type as only one allele has to be detected and no
phase reconstruction is required.

Genetic markers in the MSY

The MSY consists of ~60 Mb of DNA, 30 Mb of which represent the euchromatic portion
(Skaletsky et al. 2003). This amount of genetic material contains markers that belong to
the same classes observed in the autosomes and thus represent a repertoire larger than in
mitochondrial DNA (mtDNA). In the MSY, variation in the modules of alphoid DNA,
deletions and inversions of large stretches of DNA are observed, as well as variations of
smaller magnitude such as Alu insertions, single nucleotide polymorphisms (SNPs) and
variation in the 2-5bp repeats of microsatellites (short tandem repeats, STRs). All of the
above, alone or in combination, have been used for population studies but SNPs and STRs
are by far the most popular.

There are >57 000 SNPs of the Y chromosome reported in the SNP database at the time
of writing, of which one-third validated. In the Y chromosome literature, SNPs are often
referred to as stable binary or biallelic markers as they arise by mutational events that occur
with a very low frequency (of the order of 10™® per base pair per generation).
The consequence is that the chance of two consecutive events hitting exactly the same
nucleotide pair is very low. Moreover, there is only a one in three chance that a putative
second event reintroduces the pre-existing nucleotide in a mutated position, making this
true reversion a very unlikely event. Inferences drawn on the phylogeny reconstructed with
numerous markers confirmed this prediction with few, though notable, exceptions (Hammer
et al. 1998; Underhill et al. 2000; YCC 2002). Similar considerations hold true also for
Alu insertions, as specific mechanisms to precisely excise an inserted element (reversion) are
not known.

A direct extension of these concepts is that all MSY copies (each carried by a different
subject) bearing the same allelic variant at a given position can all be considered, as a first
approximation, descendants of the first one in which that particular mutational event
occurred (i.e. have a monophyletic origin). When considering more than one position on the
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Figure 1. Definition and properties of clades within a hypothetical MSY haplogroup Z. Mutations at
different MSY sites are represented by symbols. Each clade is defined by the presence of the ancestral
(plesiomorphic) or derived (apomorphic) state at each of the three sites. Haplogroup names are
reported at the tip of each clade, and follow the YCC (2002) nomenclature system. A * is used for
paragroups defined by the lack of the derived state at some sites; a lowercase letter is used for nested
clades (e.g. Z2a into Z2). Experimental results determining the assignment of subjects to a particular
clade are reported on the right. Here ‘present’ and ‘absent’ are referred to the derived (mutated) state
at each site (some of the results not compatible with the tree shown are also reported). Note that,
with these population data alone, the relative order of mutations defining Z1 and Z2 cannot be
reconstructed, and the particular succession shown here is arbitrary. Dating procedures (see text) can
be used to distinguish among different possibilities.

same DNA molecule, the particular combination of allelic variants (the haplotype) thus
represents a record of all mutational events that occurred on the lineage leading to that
haplotype. Alleles shared by two haplotypes testify that they have common ancestry, whereas
alleles that differentiate two haplotypes testify that they belong to lineages that diverged some
time in the past and, since then, accumulated a different series of mutations (Figure 1).
All haplotypes based on SNPs can be then viewed as the final branches (leaves) of a
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phylogenetic tree. The root of the tree is represented by a haplotype (not necessarily found
today and thus to be inferred) carrying the ancestral state at all positions found to be variable
today. This is also called most recent common ancestor (MRCA), to signify that all variation
existing when the MRCA existed, or earlier, has gone extinct. The principles and methods of
phylogenetic reconstruction from experimental data can be found in basic books (e.g. Page
and Holmes 1998). Hammer and Zegura (2002) also give an instructive parallel with classic
cladistic theory.

With the increasing number of known markers, the MSY phylogenetic tree has grown
in the number of terminal branches and complexity. After a pioneering era, the search for
markers exploited high-throughput methods that were first applied to samples representative
of the entire world population and, later, oriented to resolve in finer detail some specific
lineages (Underhill et al. 1997, 2000, 2001; Hammer et al. 1998, 2001; Shen et al. 2000,
Thomson et al. 2000; Cruciani et al. 2002; Hammer and Zegura 2002). However, due to the
composition of the screening panels in each study and the quest for markers that could
distinguish populations from specific areas of the world, the current set of MSY markers is
still considered to contain ascertainment bias. This can affect quantitative measurements of
population affinities, and efforts to overcome this problem with unbiased re-sequencing
projects have been carried out (Wilder et al. 2004a).

A general consensus has been reached on the nomenclature of lineages, with alternating
letters and numbers from the deepest to the terminal branches (YCC 2002). Each lineage
defined by biallelic markers is referred to as a haplogroup, whereas the term haplotype has
been restricted to a combination of alleles at STRs (see below). The discovery of new SNPs
or of carriers of novel combinations of the previously known SNPs requires a revision of
the tree. An advanced version was compiled by Jobling and Tyler-Smith (2003) and tree
maintenance is curated at various sites (see Appendix). It is important to realize that, even in
the most updated state, the tree includes ‘paragroups’, i.e. lineages (branches) defined by the
absence rather than the presence of a derived allele at (a) certain position(s) (Figure 1).
Inferences based on paragroups have to be treated cautiously as these cannot be assumed to
have a monophyletic origin (Weale et al. 2003).

Another important class of markers is represented by short tandem repeats (STRs).
These include loci with different length of the basic repeat, and extensive searches for
developing them as markers have been performed (Kayser et al. 2004 and references
therein). Mutation at these loci occurs by addition/subtraction of a number of repeats that
in the majority of cases is one. This latter feature fits the theoretical ‘Stepwise Mutational
Model’, which allows the calculation of expectations for the rate of accumulation of diversity
and the distribution of allele sizes. In any case, the monophyletic origin of STR alleles
cannot be assumed, as any allele of a given size can be generated by a number of events from
an entire set of parental alleles. Mutation rates at STR loci are orders of magnitude higher
than for SNPs, with a relevant heterogeneity among loci. Estimates of mutation rates can be
obtained by a variety of direct methods, i.e. comparison of father’s vs. son’s haplotypes
(see the compilation by Gusmao et al. 2005) as well as changes in allele sizes in deep-rooting
pedigrees (Heyer et al. 1997; Bianchi et al. 1998; Foster et al. 1998). Evolutionary
methods can be also used. Luca et al. (2005) used coalescent reconstructions and obtained
locus-specific values comparable to those of the previous methods. Zhivotovsky et al. (2004)
obtained an average mutation rate from population rather than family data, considering
known foundation events as starting points for the production of the level of diversity
observed today. Perhaps unexpectedly, their estimate was three to fourfold lower than the
average of direct measurements, a finding that was recently interpreted in light of fluctuating
demographies of subsets of the same population (Zhivotovsky et al. 2006).
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Because of the above features, the evolutionary path which led to the observed haplotype
diversity at STRs cannot be reconstructed in the form of a tree consisting of only divergent
branches. Instead, reticulations must be allowed for, in graphs known as networks
(Bandelt et al. 1999).

Nomenclature for haplotypes defined by STR loci varies from paper to paper. It has been
proposed that a unified set of markers be utilized for forensic purposes (Pascali et al. 1999).
The corresponding population data are deposited at http://www.ystr.org/index.html, which
has become a relevant resource to locate populations of the world harbouring haplotypes
identical or similar to a particular type, also for evolutionary studies.

Is the MSY a neutral marker?

A thorough discussion of Y-chromosomal lesions and their effects is beyond the scopes of
this review. However, evolutionary neutrality is one of the main prerequisites if one wants to
use a genetic marker to draw inferences on population processes dependent on time. It is
also to be noted that the complete linkage along the MSY (see above) determines that even a
single marker subject to selection would impose its own evolutionary trajectory to all
markers i cis, a phenomenon called hitchhiking. Under this circumstance the entire
evolution of the MSY would appear distorted, no matter which marker is observed.

A reproductive advantage of some structural features of the chromosome has been
postulated when examining its complete sequence (Rozen et al. 2003; Skaletsky et al. 2003),
but this is mainly significant for selection during the emergence of the human lineage, i.e. a
time period which long predates that of concern here. Differences in inter-individual fitness
due to the standing Y-chromosomal variation are of more direct relevance here.
These differences can be classically ascribed to enhancement or reduction either in
reproductive success or in viability/mortality. Examples of the first type derive mainly from
the common occurrence of variations in copy number and arrangement in the cluster of
DAZ genes (Reijo et al. 1995) and their association with sperm counts (Krausz and
Degl’Innocenti 2006). These were then shown to be non-randomly associated with specific
haplogroups (Paracchini et al. 2000, 2002; Krausz et al. 2001; Fernandes et al. 2004;
Repping et al. 2004, 2006). Paradoxically, one such haplogroup not only reaches notable
frequencies in Europe, but has attained near-fixation in various Northern populations. In a
recent paper Fernandes et al. (2006) confirmed weak or null selection on chromosomes
bearing different DAZ haplotypes. In addition, it should be remembered that the practice of
monogamy, eventually coupled with control over family size, is able to damp the selective
consequences of differential sperm counts (Andersson 1994).

A growing body of literature is also accumulating on the association of Y-chromosomal
markers with variables of medical relevance (Charchar et al. 2003; Krausz et al. 2004).
The lineage-specific magnitude of differential mortality and its impact in shaping the
frequencies of specific lineages are far from being ascertained. Some of the variables that
have been scrutinized affect mortality mainly in post-reproductive life and hence have a
little selective impact. Moreover, variation of many of them is largely accounted for by
environmental factors (e.g. diet or lifestyle), leading to the expectation of possible
population-specific selective effects, if any. In any case, it can be predicted that the
mounting information on the physiological role of Y-borne genes will promote a burst of
studies in this field.
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Finally, pure population genetic data can be examined for evidence for selection.
The issue is summarized excellently by Jobling and Tyler-Smith (2003), who tentatively
concluded in favour of evolutionary neutrality.

The Y chromosome in population genetics theory

The MSY occupies a special place in population genetics theory, as it is a uniparental marker
in much the same way as the mtDNA, but with some peculiar features.

In a population of N males and N females, each autosome is represented in 4N copies,
whereas the effective number of copies of MSY and mtDNA is N each. Thus, at face value,
these latter are expected to have an equal effective size and thus to be exposed to similar drift
effects assuming a panmictic population, four times stronger than autosomes. Experimental
data revealed considerable departures from this expectation. First, the MSY long revealed a
low level of diversity per unit of DNA length (Malaspina et al. 1990; Shen et al. 2000), which
was compensated only by specific searches in regions particularly prone to mutation
(Wilder et al. 2004a). These findings were interpreted as a signature of possible selection on
the chromosome with a consequent young genealogy (Thomson et al. 2000), even younger
than mtDNA. However, in recent years, it is becoming increasingly clear that the role of
other factors that affect the evolutionary rate have not been taken in due account
(Wilder et al. 2004b). In fact, multiple features of human reproductive and migratory
behaviour cause populations to depart from panmixia. Three deserve attention here.

First, populations with large variances of family size (number of offspring) have reduced
effective sizes (Ne). In these populations the null contribution of many subjects who do not
reproduce is compensated by a few subjects who leave a very large number of offspring.
Inheritance of family size (Austerlitz and Heyer 1998; Helgason et al. 2003) further
enhances this effect. Indeed, biological and social factors allow only men to reach very large
numbers of children, giving only to the male portion of the population the chance to reach
high variances, i.e. small Ne. This is the case for polygyny, and MSY data seem to indicate
that this was practised long before the shift to monogamy (Dupanloup et al. 2003).
Furthermore, social rank may act in maintaining male reproductive differentials through
generations. The extreme cases in which copies of the same MSY have been spread in
millions over large geographical areas beginning from founders of ruling clans have been
documented (Zerjal et al. 2003; Xue et al. 2005; Moore et al. 2006).

Second, inter-generational time may not be the same for males and females. Also in this
case heritability of this trait enhances its genetic consequences (Tremblay and Vezina 2000;
Helgason et al. 2003).

Third, some societies practice patrilocality while others are matrilocal, with an expected
more even spatial distribution for female-borne and male-borne genes in the two cases,
respectively. Oota et al. (2001) first reported MSY and mtDNA findings in sympatric
populations with opposite practices. By exploiting the same data, Hamilton et al. (2005)
showed that patrilocal and matrilocal societies are less and more open, respectively, to
genetic inputs from the corresponding sex.

In summary, while the MSY is intrinsically prone to genetic drift, the above factors sum
up in further enhancing it, with the overall result of rendering MSY polymorphism very
variable in time (temporal changes in haplotype frequencies) and in space (changes in
haplotype frequencies among populations, often between neighbouring ones). This expands
the usefulness of MSY diversity in describing population divergence over short periods of
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Figure 2. Map of southern Europe showing local vagaries in haplogroup frequencies. Each dot
represents a sampling location in Italy and Greece. Upward arrows indicate 19 instances in which one
haplogroup (of the 10 searched) had a frequency 0.1 or more higher than its frequency in the
corresponding whole national sample. With the sampling size used, only 9.6 such instances were
expected by random fluctuations. These vagaries, attributable to founder and/or drift effects, may
obscure locally the continent-wide clines. Data from Di Giacomo et al. (2003).

time and limited geographic regions, given that appropriate fast-evolving markers are used
(Kayser et al. 2001). However, since the above-mentioned factors act together and are
heavily dependent on ethnicity (e.g. Wood et al. 2005), their overall effect on variation of
MSY vs. mtDNA vs. autosomes cannot be generalized across populations or societies and
cannot be assumed equal at the continental vs. the local scales (Hammer et al. 2001, 2003).
Also, parameters of DNA diversity commonly used to infer demographic processes are
sensitive to this high level of structuring and an improper pooling of experimental data may
produce misleading results (Hammer et al. 2003).

The MSY markers showed the highest quotas of population divergence among continents
ever recorded for different portions of the genome (Hammer and Zegura 2002; Romualdi
et al. 2002). However, figures for the MSY and mtDNA converged when markers derived
from similar re-sequencing surveys were used (Wilder et al. 2004a). When the role of
mutation rate was kept putatively constant by using NRY markers and markers with a similar
sequence from the X chromosome, world populations showed a higher degree of structuring
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for the MSY at the inter- and intra-continental scale (Scozzari et al. 1997; Karafet et al.
1998). Seielstad et al. (1998) compiled data showing a stronger dependence of
between-population differentiation on distance for the MSY as compared to both the
autosomes and mtDNA, and proposed the idea of a higher proportion of females than males
migrating at each generation, increasing the female-mediated gene flow and reducing
divergence for all portions of the genome except the MSY (see also Kayser et al. 2001).
Others (Malaspina et al. 2000; Karafet et al. 2001) showed that the same regression changes
dramatically depending on the geographic area from which populations originated,
replicating findings from large datasets of classical genetic markers (figure 2 in
Cavalli-Sforza and Feldman 2003). Finally, Wilder et al. (2004a) dismissed the hypothesis
that patterns of genetic structure on the continental and global scales are shaped by the
higher rate of migration among females than among males.

At a more local scale it is not uncommon to observe high degrees of differentiation
(as compared to the average from autosomes) among populations living nearby, or in the same
nation. This is partially expected when ethnic, linguistic or tribal affiliations contribute to the
partial segregation of subsets of the entire population (e.g. Marjanovic et al. 2005; Sengupta
et al. 2006). However, it was shown that also in the absence of these barriers, populations are
structured for the MSY at the microgeographic scale, most likely due to local founder and/or
drift effects (e.g. Capelli et al. 2003; Di Giacomo et al. 2003) (Figure 2).

The dating revolution

For geneticists, as for archaeologists, it was an ambition to know from when, in the past,
the objects (here the MSY haplotypes) under observation come. Genetic dating, i.e. the
estimation of the antiquity of an entire phylogenetic tree or of some of its branches based
solely on genetic data, is now possible with increasing levels of confidence. This is obtained
from the observed level of variation, by means of a variety of methods that consider SNP and
other biallelic markers, STRs, or both. Methodological details cannot be given here and
the reader is referred to Balding et al. (2001, chapters 7 and 8) and Jobling et al. (2004)
(chapter 6.6) for further reading. One important feature is that advanced methods allow for
models of populations which varied in size through time and split at some time in the past.
As compared to a basic model with a panmictic population of constant size, this simulates
much better what is considered to be the rule rather than the exception in many cases
worldwide, and in particular in Europe.

Combining stable binary and STR markers seems particularly powerful. The idea
(de Knijff 2000) is that the origin of a novel haplogroup is a singular event (see above) and,
at that moment, there is a null variance for STR allele sizes on the particular chromosome
that undergoes the SNP mutation. From that point on, all descendant chromosomes (that
belong to the same new haplogroup) will start to accumulate STR variation. Hence, STR
variation can be used to date the nodes of the SNP-based tree, i.e. the haplogroups. A variety
of measures and methods have been developed to translate the observed STR variation into
an absolute number of generations (Goldstein et al. 1995; Slatkin 1995; Wilson and Balding
1998; Bandelt et al. 1999; Cooper et al. 1999a, 1999b; Stumpf and Goldstein 2001;
Zhivotovsky 2001). Although to a different extent, the results obtained with all the above
methods depend on the values assumed for the basic determinant in the STR mutational
process, i.e. the mutation rate. The use of different figures within the range proposed
eventually affects the outcome of dating procedures. Luca et al. (2005) showed that
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coalescent methods are able to predict locus-specific figures for mutation rates similar to
those obtained in father—son transmissions and that using lower values in input produces
convergent results. This adds confidence to the posterior dating estimates returned by these
methods.

The possibility of obtaining dating estimates for MSY haplogroups (as well as for other
regions of the genome) offers an unprecedented way of testing hypotheses on events that
shaped the composition of entire populations’ gene pools, by setting at least upper or lower
bounds for population splits, admixtures, expansions, bottlenecks, etc. It thus represents a
conceptual breakthrough as an escape to the circular argument in which external evidence
(such as that provided by archaeology) is used to derive dating estimates for the genetic data
and these latter, in turn, are taken as supporting evidence for historical reconstructions.
However, great caution must be exerted in using dating results in the reconstruction of
population history. A genetic variant can be introduced into a population’s gene pool only
after it first arose by mutation (the age of the molecule must predate the age of the gene pool
harbouring it). However there is a tendency to consider that, if a gene pool contains a given
variant, the gene pool dates back to the time of origin of that variant (age of the gene pool
equal to the age of the molecule). Such a conclusion is unwarranted, because the gene pool
may have formed long after the initial mutation generating the variant. Indeed, a proper
phylogenetic resolution, obtained with numerous markers that identify different time depths,
is definitely required to associate the composition of the gene pool with a certain antiquity.
The issue raised a vivid debate (for an update see Barbujani and Chikhi 2006; Torroni et al.
2006). The above misconception has affected the way MSY data have been interpreted,
particularly where Europe is concerned, in view of the mainly-Palaeolithic vs.
mainly-Neolithic models for the peopling of the continent (see below).

Detecting MSY diversity in Europe

We are concerned here with how the polymorphism of the MSY can be exploited to
reconstruct the build up of the present-day European gene pool. It is obvious that, since the
first arrival of modern humans into the continent, the whole process consisted of numerous
episodes scattered in time, some of which may have left a signature stronger than others.
Basically, this can be viewed as an increase of complexity, due to the repeated addition of
new variation to the pre-existing background by two main mechanisms: Immigration of
differentiated MSY copies from outer regions, and accumulation of novel MSY variants
generated by new mutations i loco. There are no a priori reasons to adopt a gradualistic view
in which this increase in complexity was progressive (linear) in time. For example,
population genetic theory leads to the prediction that new mutations accumulate particularly
during demographic expansions, as these involve a greater retention of genetic variation
(Harpending et al. 1998). Moreover, local gene pools which occupy only a portion of the
continent may have been subjected to different events that added to their complexity.

The question for the geneticist is whether a DNA polymorphism which is able to mark
a specific episode indeed exists and is known. A high resolution power is obtained with a
large number of markers and with a sampling scheme that is able to represent a possible
micro-differentiation (e.g. with multiple and closely spaced sampling locations, or
accounting for ethnic subdivision, language affiliation or surname etymology). It is then
not surprising that, with the increasing availability of markers, recent works have become
able to detect the genetic signatures of events that affected local populations (see Table I).
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To achieve this goal, however, it is often necessary to type a large number of markers in
a large number of subjects, a requirement that has prompted the development of high
throughput methods for both SNPs (reviewed in Sobrino et al. 2005) and STRs (e.g. Bosch
et al. 2002; Butler et al. 2002).

Also, the same need prompted two distinct experimental approaches. Most investigations
are ‘population oriented’, i.e. they analyse the entire repertoire of haplogroups in their
population samples and discuss them in light of similar data obtained in other populations.
This type of studies provides a picture of the composition on entire gene pools, that can be
used to partition the total variation in its intra- and inter-population components, and to
represent population affinities/differences by a wealth of multivariate methods. Conversely,
in the ‘lineage oriented’ approach a deep analysis of one or few clades of the phylogenetic
tree with their internal markers is performed in large collections of samples. This type of
phylogeographic studies is able to disclose more immediately the entire home range for a
haplogroup and to identify areas with frequency peaks. Also, it is able to highlight spots for
the emergence of nested clades (internal lineages defined by additional markers).
In summary, they can give a picture for the spread of one or a few components of the
male gene pool. The relevance of the underlying population processes may vary from place
to place, and must be weighted against information derived from other haplogroups.
Underhill et al. (2001) used this approach to re-analyse the data of 2000.

Works performed until 2000 used markers that mostly identified what are now known to
be the deepest clades of the tree, and continent-wide samplings that could barely represent
heterogeneity at the sub-national level. Nevertheless, they were invaluable as they produced
a general view of the genetic landscape of Europe from the MSY perspective, which should
be taken in due account by all later works (also those which used other genomic regions).
In discussing the data, they considered what are thought to be the most important events in
the formation of the gene pool of the entire continent, i.e. the Palaeolithic peopling and the
introduction of farming in the Neolithic.

Anatomically and behaviourally modern humans entered Europe from the Levant and
rapidly dispersed into the continent between 46 000 and 41 000 ybp (Mellars 2006). This is
considered to be the seeding event in the formation of the continental MSY gene pool.
In fact, although genomic data are compatible with the presence of ancient molecular types
possibly carried by Neanderthals in modern Europeans (Green et al. 2006; Plagnol and Wall
2006), typing of ancient mtDNA has indicated that early modern humans were carriers of
molecular types within the range of present-day diversity (Caramelli et al. 2003), and
pre-existing types have not survived (Currat and Excoffier 2004). On the other hand, it is
entirely possible that molecules older than 46 000 ybp survive in the extant European MSY
gene pool. In fact, the number of elapsed generations (<2000) is of the same magnitude as a
reasonable effective male population size for the entire continent. Since the expected time to
the MRCA (in generations) is twice the number of gene copies for stationary populations, it
is possible that the diversity present among all ancient European MSY's has not gone entirely
extinct. While the time to the MRCA is shortened in growing populations (as was certainly
the case for the European population over this period), even modest levels of ancient gene
flow with Asia may have maintained old molecules in Europe.

Farming (including domestication and animal breeding) began in the Fertile Crescent,
was imported in Europe in association with Neolithic industries starting from 10000 ybp,
and is now long practised in the entire continent. Different views of this process have been
proposed on archaeological grounds (Cavalli-Sforza et al. 1994, chapter 5.2; Jobling et al.
2004, chapter 10, and references therein). The basic question is whether the spread of
agricultural knowledge was conveyed mostly by the peoples who practised it
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(Demic Diffusion Model, DDM, with the associated movement of genes) or whether it was
mainly an acculturation process, with pre-existing hunter—gatherers learning and using
techniques from the newcomers (Cultural Diffusion Model, CDM) but with a low degree of
interbreeding (SPIWA model in Renfrew 2001). Genetics thus appears to be the optimal
tool to solve the issue. While the relevance of the MSY data in favour of one or the other will
be discussed below, here it is important to note that agriculture can sustain a much higher
population density than the previously practised hunting—gathering. This increase has been
estimated at 5-50-fold within the first millennium of change (Cavalli-Sforza and Bodmer
1971, chapter 8.10; Cavalli-Sforza et al. 1994, chapter 2.7), which means a progressive burst
of the population as agriculture moved from East to West within Europe.

Europe: The coarse picture

In discussing the distribution of MSY variation, the use of haplogroup names and its
technicalities cannot be avoided (YCC 2002) (Figure 1). As some lineages have changed
their labels due to advancements in the reconstruction of the phylogeny, for ease of
consultation the picture given in Jobling and Tyler-Smith (2003) will be taken as reference
unless otherwise specified, by giving the original and unified haplogroup names.

In 2000 two seminal papers produced a largely convergent picture of the MSY landscape
of Europe by using large and entirely independent population samples (3677, 48
populations and 1007, 25 populations) and two different sets of markers. Rosser et al.
(2000) typed 12 haplogroups using markers described in a number of previous papers.
Semino et al. (2000a) reported on the occurrence of 19 haplogroups, the majority of which
had been described by Underhill et al. (2000). The results tightly overlapped in showing:

e a frequency of the order of 50% or more for the P clade [hgl =P*(xRla) and
Eul8 =R1*(xR1al)] from central Europe to the West;

e a frequency of the order of 30% or more for the Rla clade [hg3 =Rla and Eul9 =Rlal]
in central-eastern Europe and the Balkans, to the exclusion of Albania and Greece;

e a frequency of the order of 15-20% or more for the J clade [hg9 =] and Eu9 =]2, plus
part of Eul0, which includes J1] in southern Italy, Greece, Albania and south-eastern
Balkan peninsula, in continuity with even higher frequencies in Turkey and the Middle
East;

e a frequency of the order of 30% or more for the N3 clade [hgl6=N3 and
Eul3+Eul4=N3] on the eastern coast of the Baltic Sea and at the northern
European—Asian border;

e frequencies of roughly 5-15% for the E clade [hg21 =E and Eu2+ Eu3+ Eu4=E] in
Iberia, southern Italy and southern Balkans, rising to approximately 25% in Greece.
High frequencies of the E clade were known for Africa but not for the Middle East,
interrupting the geographic continuity.

Rosser et al. (2000) analysed in detail the geographical arrangement of haplogroup
frequencies and identified a clinal variation for five of them. For hgl and hg9 the cline
spanned the entire continent, and the overall frequency of the latter led to an estimate for
the Neolithic contribution similar to that obtained from mtDNA and classical markers.
Conversely, in the remaining three cases the cline was more localized and, for hg3 and hgl6,
may result from recent genetic inputs, mainly in northern and north-eastern Europe.
These authors also identified genetic barriers, in the form of lines of abrupt frequency
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change, and attributed a greater importance to geographic than linguistic factors in
subdividing populations. They hypothesized that many kinds of barriers are probably recent
on an evolutionary timescale, as compared to the establishment of clines.

Semino et al. (2000a) stressed on the antiquity of the different haplogroups to obtain a
temporal picture. A multivariate analysis showed two clusters of populations geographically
consistent with glacial refugia, meaning that re-expansion after the Last Glacial Maximum
(LGM) was a major determinant of the present genetic landscape. In doing that, they
obscured the genetic input marked by haplogroup N3, considered to be recent (Zerjal et al.
1997). The pooled frequency of three haplogroups (Eu9+EulO+Eull=G+]) was
regressed on the distance from the Middle East, concluding that they mark the movements
of people in the Neolithic. As these, together with Eu4, account for only 22%, they
concluded that most of the MSY diversity in Europe is accounted for by haplogroups that
date back to a more distant past.

Subsequent works questioned this latter view, re-estimating the Palaeolithic vs. Neolithic
contribution in Europeans under the assumption that the extant Basque and Middle Eastern
populations are representative of the parental sources (Barbujani and Bertorelle 2001;
Chikhi et al. 2002; Dupanloup et al. 2004). This resulted in an average figure of 65% for
the Neolithic contribution, decreasing from east to west into the continent and strongly
supporting the DDM. While these studies have the intrinsic value of comparing populations
rather than molecules, they are subject to the caveat that ancestral traits (haplogroups)
shared by an ancient coancestry (symplesiomorphic) enhance the similarity between the
parental and the test populations, leading to distorted estimates of admixture.

Based on SNPs, populations facing the Mediterranean basin were clustered into three
groupings (Capelli et al. 2006b): Near Eastern Arab, Mediterranean and North African.
The observed pattern was ascribed to the Neolithic demographic expansion and subsequent
westward migration by Phoenicians and Greeks that contributed to the distribution of
Y chromosome types of most likely Near East origin.

Other works addressed specifically individual haplogroups over the continent and beyond.
Zerjal et al. (1997) described a variant that identifies haplogroup N3 (=hgl6) and
determined the frequency of the derived allele in populations worldwide and the associated
STR variation. The origin of this allele was most likely located in Asia 2—4 kya. The derived
allele turned out to mark a relevant male-mediated gene flow between northern Asia and
northern Europe, especially with populations speaking Finno-Permic languages.

The analysis of haplogroup I with newly developed markers (Rootsi et al. 2004) revealed
a quota of diversity genuinely aboriginal of Europe. Three internal clades were estimated
to have diverged and spread from glacial refugia in the Upper Palaeolithic/Mesolithic.
In addition, the divergence of I1b2 within I1b in Iberia/Southern France provided a clue for
the first peopling of Sardinia, where I1b2 reaches 40%.

Studies on haplogroup E showed that in Europe this is mostly represented by its internal
lineage E3bl, with a focal distribution in the southern Balkans (Semino et al. 2004).
By combining SNP and STR typing, it was possible to show that the European focus is
phylogenetically distinct from two similar foci centred in Morocco and Ethiopia, respectively
(Cruciani et al. 2004). The recent identification of new SNPs marking these phyletic
distinctions (Cruciani et al. 2006) also confirms that Europe is characterized by a new
molecular type, different from the aboriginal E3b chromosomes from Africa. The clinal
frequency distribution of E-M78 within Europe testifies to important dispersal(s), most
likely Neolithic or post-Neolithic. These took place from the Balkans, where the highest
frequencies are observed, in all directions, as far as Iberia to the west and, most likely,
Turkey to the southeast.
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Semino et al. (2004) also considered haplogroup ], whose internal structure and
distribution have been extensively worked out (Nebel et al. 2000, 2001, 2002; Sengupta
et al. 2006). They inferred that two internal subclades had different histories. J2e shows
a focal distribution centred in the south-western Balkans from where it probably spread.
Conversely, the rest of J2 seems to be the result of population movements from the Middle
East, in agreement with the observed similarity between its distribution and that of Neolithic
painted pottery (King and Underhill 2002). These conclusions were refined by observing
that the dispersal of haplogroup J is characterized by a significant degree of molecular
radiation, with a higher incidence of more derived sub-haplogroups from Turkey westward.
Here ] diversity is not simply a subset of that present in the area where this haplogroup
first originated, pointing to a punctuation in the peopling of southern Europe in the
post-Neolithic (Malaspina et al. 2001; Di Giacomo et al. 2003). Interestingly, this
haplogroup has also been associated with the Jewish diaspora (Hammer et al. 2000).

A general picture of frequency variation in space can also be detected with STR
haplotypes. Gusmao et al. (2003) concluded in favour of a long-range cline for a cluster of
related haplotypes found to belong to haplogroup P and for a more short-range cline for a
cluster belonging to haplogroup E3b. Quintana-Murci et al. (2003) suggested a marked
genetic differentiation between the East and the West Mediterranean for DYS392.

A comprehensive picture of Europe was obtained by Roewer et al. (2005) from >12 000
males typed for seven STRs [data deposited in Y Chromosome Haplotype Reference
Database (www.ystr.org), see below]. They observed a geographical pattern of diversity
resembling that obtained with SNPs and that was, however, attributed to relatively recent
events. This conclusion was based on the observation of a major genetic division between a
Slavic-speaking cluster to the East from a western-Romance-speaking cluster to the West,
separated by a central European block of Germanic- and Italo-Dalmatian-speaking
populations (language classification as in http://www.ethnologue.com/). Also, some of the
lines of discontinuity recall political systems that were established in historical times. Finally,
these authors notice the substantial contribution to the present gene pool which is evident at
the eastern and north-eastern edge of the continent, attributing it to the various waves of
immigration by nomadic Asian populations, as postulated also by Wells et al. (2001).

Iberia

From the point of view of human peopling, Iberia has long represented a geographical
cul-de-sac; in fact, land bridges were never present at the Gibraltar Strait (Stringer and
Andrews 2005), which implies that peopling was possible only through the Pyrenean gate
until the appropriate seafaring technologies enabling a contribution from North Africa
became available.

Accordingly, all reports agree in showing strong MSY differentiation between Iberia and
North Africa (Capelli et al. 2006b and references therein). The MSY picture in Iberia is
dominated by haplogroups belonging to the R1*(xR1a) clade [hgl +hg22 (Rosser et al.
2000) or Eul8 (Semino et al. 2000a)]. High frequencies of these haplogroups characterize
the entire western Europe, but are uncommon in north-western Africa, ruling out a
considerable gene flow from this latter area. Within R1, haplogroup R1b3f was found
specifically in Iberian populations. This haplogroup is found on both sides of the Pyrenees
but particularly in the Basques (11%). By STR typing, the origin of this haplogroup was
most likely located in Iberia and its age was estimated at 2300-3500 ybp (Hurles et al. 1999).
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It thus represents an ideal tool to explore the degree of gene flow towards the rest of Europe
and across the linguistic barrier separating the Basque (a non-Indo-European language)
from other languages spoken in Iberia (all Indo-European).

A useful marker to measure the low north African contribution is within haplogroup
E. Only with a proper phylogenetic resolution of this clade was it possible to recognize that
in the rest of Europe haplogroup E is represented mostly by E3bl, whereas the most
represented E branch in Morocco is E3b2 (Bosch et al. 2001; Cruciani et al. 2002, 2004;
Arredi et al. 2004). The latter is found at frequencies of 4-12% in Portugal but at only
<5.4% in Spain (mainly in the south). The same haplogroup indicates the peculiar ancestry
of the Pasiegos, where it represents 28%.

Gene flow from the Mediterranean is testified by the frequencies of haplogroup J2, which
are higher on the eastern Spanish coast.

Italy

Italy has long shown a line of genetic discontinuity separating the north from the south of the
peninsula (Piazza et al. 1988) and overlapping with a linguistic boundary (Barbujani and
Sokal 1990). This is faithfully replicated by MSY data. Northern Italy ranks among central
European countries as far as haplogroup R1*(xR1a) is concerned (=Eul8). Conversely,
haplogroup J (=Eu9 + part of Eul0) characterizes to a large extent southern locations.
There is a consensus in considering the presence of this haplogroup a more or less
immediate consequence of the spread of peoples triggered by the Neolithic agricultural
revolution. However, uncertainties persist on when it attained the high frequencies observed
today in southern Italy. While some papers favour the first wave of Neolithic farmers
[documented at the sixth millennium BC (Malone 2003)], others conclude for a much later
arrival in bulk numbers, during the Greek colonization (establishment of Magna Graecia) in
the first millennium BC. The available data on Sicily favour this latter hypothesis.

Calabria and Sicily are characterized by the presence of haplogroup E3b3 at frequencies of
3-13%, which may testify of direct introgression from North Africa. Also, they indicate a
considerable degree of micro-differentiation, in agreement with the long-standing isolation
of many villages, due to the mainly mountainous landscape.

MSY analysis has also shown that the MSY gene pool in Corsica is similar to north-central
Italy, in sharp discontinuity with the geographically close Sardinia.

Sardinia

Sardinia is known as a genetic outlier (Modiano et al. 1986; Cavalli-Sforza et al. 1994,
chapter 5.6), with an additional relevant internal heterogeneity that correlates with linguistic
differentiation between dialects (Cappello et al. 1996). The MSY pool of Sardinians is
dominated by haplogroup I1b2, which is very rare elsewhere. This haplogroup also carries a
distinctive pattern at the YCAII dinucleotide STR. Both these features were noticed early,
but important clues to interpret the origins of the Sardinian gene pool derive from recent
phylogeographic studies (Rootsi et al. 2004). Outside Sardinia I1b2 is found around the
Pyrenees (6-7%) and in the rest of France and of Iberia, the British Isles (Capelli et al. 2003)
and the Czech Republic (Luca et al. 2007). This suggests that I11b2 arose somewhere in
central-western Europe and was already present among the first humans who colonized
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the island about 9000 kya. Later immigrations in historical times (which are known to have
affected the coastal region more than the inner region) would have diluted the frequency
of I1b2 outside the so-called ‘archaic’ mountainous area.

Sardinia also shows increased frequencies of haplogroup G, a finding that has no
immediate explanations. The dispersal of this haplogroup was initially related to the
Neolithic spread of peoples (Underhill et al. 2001) but this view was reconsidered after
finding that its distribution in Europe does not overlap that of the alleged ‘Neolithic’
haplogroup J. A focus of haplogroup G is found in some populations of the Caucasus
(Nasidze et al. 2003).

Central-western Europe and the British Isles

The Basques and populations of the British Isles display the highest frequencies of
haplogroup R1*(xR1a) [=Eul8 and hgl], with the possible exception of east Anglia. Based
on SNDP haplogroups, Wilson et al. (2001) identified Wales, Ireland and the Basques as a
homogeneous group in which the Neolithic transition did not entail a major demographic
shift. Interestingly, the similarity between these populations extends also to STR markers,
with the sharing of a predominant haplotype (the so-called Atlantic Modal Haplotype,
AMH) at high frequency. The consequence is a remarkable reduction in diversity
for both the populations and the entire R1*(xRla) clade. The relatively young age
for the AMH in the entire western European edge remains a puzzling finding if one
considers that the R1*(xRla) clade is a paradigm of the Palaeolithic peopling of the
continent.

With the same approach, two additional haplotypes (within haplogroups I and Rla,
respectively) enabled the recognition of genetic inputs from mainland Europe in later times.

Taking advantage of the ancient (10th century AD) establishment of surnames as markers
of local kinship systems, studies of the MSY in the British Isles have exploited for the first
time the association with surnames to understand more precisely the origins of certain
haplogroups or STR haplotypes (Hill et al. 2000; Jobling 2001; King et al. 2006; McEvoy
and Bradley 2006; McEvoy et al. 2006; Moore et al. 2006). The linguistic origin of surnames
was also recently exploited to distinguish the Slavic component into a German population
sample (Immel et al. 2006).

In continental central Europe a greater diversity is observed. Germany and Denmark
show a focus of haplogroup Ilc (10-12%) and share with Scandinavia the highest
frequencies of I1a (Rootsi et al. 2004).

Central Europe is crossed by a line which separates high frequencies of haplogroup
P*(xR1a) to the west from high frequencies of Rla to the east. This was initially broadly
located from the eastern Alps to the Baltic Sea (Malaspina et al. 2000). Recently it was found
that this discrepancy in frequencies is more pronounced at the German-Polish border
(Roewer et al. 2005), but much smoother more southerly (Luca et al. 2007). Its presence
immediately north of the Alps remains to be tested.

The Carpathians and the Balkans

The Carpathian ridge is a semi-circular landmark that separates a continuously hilly/
mountainous area to the west from huge steppes to the east, thus representing a strong
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ecological discontinuity. The present-day Romania overlaps with both sides and an analysis
of multiple Romanian samples showed that a haplogroup frequency discontinuity indeed
exists, also in this case accounted for mainly by haplogroup Rla (higher frequencies east of
the Carpathians).

Hungary is the sole country in central-southern Europe in which a Uralic language is
spoken, after the Magyar conquest in the ninth century AD. Instead, the MSY
data and particularly the low frequencies of haplogroup N3 (a very specific marker in this
case) rule out a massive genetic contribution of Uralic-speaking populations to
the present-day Hungarian gene pool, favouring a process of linguistic replacement
(Table I).

The study of populations in the territory of the former Yugoslavia epitomizes the
importance of having the proper genetic markers to reconstruct population affinities and
splits. This region is strongly characterized by haplogroups I and E3bl (see above), which
differentiate it from central-western Europe. Additional markers within these lineages are
able to improve the distinction between the two regions and among Balkan populations. It is
to be expected that additional markers that resolve the haplogroups E3bl, Ila and Ilb
(Underhill et al. 2005; Cruciani et al. 2006) will aid in understanding the formation of
the MSY genetic landscape of the region.

It is important to observe that, in spite of a bulk geographic continuity with Greece by
land, and through the Ionian Sea, populations of this area display relatively low frequencies
of lineages within haplogroup J2 (with the exception of J2e), i.e. little input of what
are considered typical markers of the Neolithic diffusion or of post-Neolithic
movements ensuing it. Conversely, these haplogroups seem to have undergone a more
pronounced entry along the eastern edge of the Balkan peninsula and along the Black Sea
coasts.

Greece and Greek Islands

Greece, Crete and the Aegean Islands is a key area to understand the migrations of early
farmers to the rest of Europe. A detailed view of the role of Neolithic processes in shaping
the Turkish gene pool has been proposed (Cinnioglu et al. 2004). Together with Turkey,
Greece and the Aegean appear clearly as a source for haplogroup J2, but the timing for
further movements to the west has not yet been fully established. The well documented
expansion of the Ancient Greek world, consisting of repeated colonizations, is an immediate
candidate process to have spread in the first millennium BC haplogroups that can be dated
to an earlier phase of the Neolithic. This punctuation in the dispersal of ‘Neolithic’ genes has
been hypothesized (Malaspina et al. 2001; Di Giacomo et al. 2003) based on haplogroup J,
but further phyletic resolution of other haplogroups is needed. The present-day landscape of
Greece is also characterized by a small-scale heterogeneity distinct from the continent-wide
clines (Figure 2). This potentially provides the possibility of finding haplogroups or STR
haplotypes linking the territories of colonies to those of the respective mother cities, as these
relationships are historically known.

Greece and Crete also bring the signature of gene flow from north-eastern Europe, mainly
represented by frequencies of R1a like nowhere else in southern Europe. This haplogroup is
particularly abundant in Thessaly and underwent a further increase in eastern Crete
(Di Giacomo et al. 2003).
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Scandinavia and the Baltic

The region displays the signature of relatively recent immigration of Finno-Ugric speakers
but without extensive contacts with the entirety of Uralic-speaking peoples. In fact, in this
latter case higher frequencies of haplogroups N2, Q and C would be observed. The overall
pattern is not consistent with isolation by distance but, instead, genetic boundaries testify of
colonization of discrete areas with later smoothing of the initial differences. Both language
replacement and genetic input from Indo-European speakers explain the detectable
divergence between Estonia and Latvia/Lithuania (Table I).

The well studied Saami represent a case in which different samplings have produced
drastically divergent conclusions, as could be predicted from a highly fragmented population
with different subgroups practising different lifestyles (Cavalli-Sforza et al. 1994, p. 273).

Concluding remarks

At every meiosis, genetic recombination determines that each individual transmits his or her
autosomal haploid genome as a set of DNA segments, each of which is extracted with a
probability of 0.5 from the two copies received from his or her parents. The MSY is one
additional segment and, furthermore, can be transmitted only by males to their male
offspring. Taken together, these two mechanisms must sound as a warning against
considering the genetic picture of populations provided by the MSY as the sole possible
representative of the history of their entire gene pools. Instead, the MSY marks only one of
the possible realizations of the evolutionary process, with its own genealogy, age and place of
origin for the MRCA, which do not coincide with the genealogies and MRCAs of other
genomic regions. The maternally inherited mtDNA represents a mirror situation. In this
respect Europe is no exception and it is not surprising that many instances of populations
in which different dynamics can be inferred from the two uniparental markers have
been documented.

The main unifying feature emerging from the MSY genetic landscape of Europe is the
overlay of recent patterns onto more ancient ones. To date, the ancient (pre-Neolithic)
genetic landscape has the form of three major components. Some of the subsequent
(Neolithic and post-Neolithic) additions have also been identified, but the work is far from
complete.

First, the genetic signature of the Neolithic is appearing as a patchwork, in which the seas
have represented more of a bridge than a barrier, while the Balkan peninsula (i.e. the most
obvious route of entry by land) does not give consistently a signal of strong immigration
and flow.

Second, more recent events (from the Bronze age to present) are beginning to
demonstrate their effects on the present gene pool. More and more of these processes can
be identified, as precise archaeologically-inferred and/or historically-documented events
represent useful null hypotheses to be tested. These include back-migrations to Asia,
migrations and resettlements at the microgeographic level, and local population expansions
attributable to technological developments, favourable local environmental conditions and
successful ruling systems. The strategy to arrive at the appropriate markers to highlight them
(f not already available) is relatively straightforward; the amelioration of the phyletic
resolution in certain haplogroups can be pursued, and sets of STRs can be chosen so that
their amount of variation is not saturated and allows the exploration of the time-depth of
interest.
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Working out the establishment of underlying more ancient clines seems to be a much
harder task. The model of three post-glacial re-expansions from a Pyrenean, a Balkan and
a yet unidentified refugia to explain the distributions of the three main haplogroups
R1b (or P*(xR1la) =Eul8=Hg 1), I (=Eu7 + Eu8 = part of hg2) and Rla (=Eul9 =hg3),
respectively, is not entirely satisfactory. For example, it fits with the observation of a low
frequency of R1b in north-eastern Europe despite its origin has to be placed somewhere
in Central Asia. Under this hypothesis, the high frequencies in the extreme west of Europe
would be the result of further purification by drift or by a bottleneck during the LGM
followed by re-expansion. This, however, contrasts with the view of the Basques as a relict
population surrounded by other populations that suffered to a much larger extent from
Neolithic immigration (see Hurles et al. 1999).

The interpretation of the Rla distribution is also disputable, with at least three competing
models. Passarino et al. (2001) propose post-LLGM eastward movements. Wells et al. (2001)
also place the origin of this haplogroup in southern Russia/Ukraine, but associate its
eastward spread with the much later movement of Indo-Iranian speakers 3000-1000 BC.
Finally, Quintana-Murci et al. (2001) place the origin of R1la at a relatively recent date, and
favour the idea that it marks the spread of Indo-European speakers from Central Asia into
modern Iran via an Eastern-Caspian route as well as into India, with an entry into Europe
from the north-east.

Here, too, a better phyletic resolution can be useful but in this case the most informative
markers are represented by relatively old lineages that have most likely survived at low
frequencies and are being replaced by recently derived variants. Searching for markers of this
kind requires the identification of populations or isolates that have been relatively spared
from recent immigration and drift.
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