Hints for a General Understanding of the Epitaxial Rules for van der Waals Epitaxy from Ge-Sb-Te Alloys

Fabrizio Arciprete,* Jos Emiel Boschker, Stefano Cecchi,⁎ Eugenio Zallo, Valeria Bragaglia, and Raffaella Calarco

In this study, a generalized guideline is identified to predict the interaction between two-dimensional (2D) layered materials and substrate surfaces. Additionally, the van der Waals (vdW) heterostructures commensurability, the phase formation and the strain relaxation are identified during interface growth. To achieve such a general overview, the case of Ge-Sb-Te (GST) alloys on InAs(111) is studied. In this system, low-lattice mismatch conditions are fulfilled to avoid relaxation due to formation of misfit dislocations and allow to correctly identify vdW epitaxy. At the same time, the substrate can be efficiently prepared into self- and un-passivated surfaces to clarify the role of the surface interaction. Furthermore, the GST epilayer exhibits two different highly ordered 2D structures and a three-dimensional disordered structure, allowing to directly infer the nature of the epitaxy. This study opens the way for the design and mastering of vdW epitaxial growth of 2D heterostructures as well as hybrid 2D and non-layered materials.

1. Introduction

The capability of growing high-quality heteroepitaxial films of cutting-edge crystalline materials, such as two-dimensional (2D) materials, is a prerequisite for the development of forefront technological applications. 2D materials (and their heterostructures) are stacked structures that involve weak van der Waals (vdW) interactions between adjacent blocks and strong covalent bonding within each block. This feature opens up to the possibility of isolating 2D crystal sheets to be used as building blocks to create stacked sequences of 2D crystals called vdW heterostructures that show novel properties and exotic physical phenomena. However, the route toward industrial implementation imposes the development of large-scale deposition, implying mastering vdW epitaxial growth.[9] Despite the renewed interest and intense research efforts of the last few years,[10] a general description and a complete comprehension of vdW epitaxy would help to quickly address many issues. For instance, when using graphene or other 2D crystals as buffer layers, for vdW epitaxy the underlying substrates may still interact with the growing film.[8–15] An intermediate behavior in the growth between 2D and 3D materials has also been observed, actually allowing strain engineering in these materials.[16–23] Epitaxial rules for 2D materials are therefore highly desirable to allow the prediction of substrate surface interaction, vdW heterostructures commensurability, and strain relaxation during interface growth. The formation of the vdW gaps is a fundamental feature that determines the behavior of a 2D material.[24] In this regard, the electronic properties and the morphology of the substrate surface play a key role at the very early stages of the film growth. The formation of bonds between the growing film and the substrate can occur on dangling bonds and on defects,[13,23] as well as at kinks and step edges preventing the formation of vdW gaps and determining the accumulation of strain.[26] Different symmetries between the substrate and the epilayer can also induce a certain amount of strain.[26] Hence, if the deposited 2D material is not fully relaxed, vdW epitaxy has not occurred.

In order to contribute to a general description of the vdW epitaxy, here we investigated an exemplary case based on chalcogenide (GeTe)ₙ(Sb₂Te₅)ₓ alloys (Ge-Sb-Te or GST) on InAs(111). GST is a key phase change material (PCM), widely studied for its cutting-edge technological applications. It is a prominent
material for phase change memories,[25] a mature technology manufactured on a foundry basis in the past 15–20 years.[26,27] Very recently, it has attracted new interest as the most advanced emerging non-volatile memory technology for neuromorphic applications.[28–30] Depending on m and n, prototypical GST can have various compositions along the pseudobinary tie line between the 3D material GeTe and the 2D material Sb2Te3. The latter exhibits a sequence of quintuple layer (QL) blocks along the [111] direction intercalated by vdW gaps. Crystalline GST exhibits a metastable cubic rocksalt structure, with intrinsic vacancies randomly distributed in the Ge/Sb sublattice,[13] and an ordered cubic structure where the vacancies are organized in vacancy layers (VLs) along the [111] direction. When the VLs are completely depleted, GST undergoes a transition to a stable trigonal phase, with vdW gaps intercalating blocks of different sizes (number of layers) depending on composition: 7 for Ge5Sb2Te12 (m = 1, n = 1), 9 for Ge5Sb2Te12 (m = 2, n = 1) and 11 for Ge5Sb2Te12 (m = 3, n = 1).[32] A real vdW epitaxy has been successfully demonstrated, despite the high lattice mismatch, between the 2D chalcogenide Sb2Te3 and passivated (no empty or half-filled dangling bonds) Si(111) substrates, [13] while coincident lattices are formed with un-passivated reconstructed Si(111) surfaces. vdW epitaxy has also been obtained for other chalcogenides, even for highly mismatched interfaces, like, e.g., ZrTe5/InAs(111)[34] or MoSe2/GaAs.[35] However, in the case of high-lattice mismatch, the epilayer usually relaxes quickly also for conventional materials by the formation of misfit dislocations. This can hamper the possibility to discriminate vdW epitaxy, which is typically detected by probing whether the growing layer relaxes immediately. Therefore, to be able to correctly identify vdW epitaxy, to study low-lattice mismatch conditions is necessary. This is the case of the growth of GST on InAs(111)B samples studied here. Furthermore, InAs(111)B surfaces can be efficiently passivated allowing the understanding of the role of the surface quality as well as of different surface reconstructions, self-passivated and un-passivated. In addition, the fact that GST alloys exhibit not only a 2D highly ordered trigonal structure, but also an ordered cubic structure with VLs or a rocksalt metastable phase with no vdW gaps can help to infer the nature of the epitaxy by observing the structure of the deposited GST.

2. Results and Discussion

GST films were grown by molecular beam epitaxy (MBE) (see Experimental Section for further details) on InAs(111) substrates (lattice mismatch ~1%) of both polarities, i.e., In- and As-terminated surfaces. MBE-grown films for memory applications demonstrated excellent electrical performances.[16,27] Four different samples were grown on three different substrate surface reconstructions: InAs(111)A-2 × 2 and InAs(111)B-2 × 2 and −1 × 1. Both 2 × 2 reconstructions are self-passivated, while the −1 × 1 is meta-stable or stabilized by surface defects, thus un-passivated (see Supporting Information). Only the 2 × 2 reconstructions would allow vdW epitaxy. Reproducing well-known literature recipes,[38–42] different surface morphologies (Table 1) can be obtained on the respective substrate surface reconstructions, from very flat surfaces to mixed flat/rough surfaces, as evaluated from reflection high energy electron diffraction (RHEED) patterns (Figure S1 in Supporting Information). In all the cases, the growth of GST leads to the formation of a clearly 2D film. In Figure 1a,b, we show the exemplary case of samples A1 and B1 with the well-defined streaky RHEED patterns. We note that the RHEED pattern of GST grown on the InAs(111)B-2 × 2 surface (sample B1) displays some spots superimposed to the streaks, probably due to an excess of Te segregated at the surface. Excess Te favors vacancy ordering in GST since it leads to the formation of Sb2Te3-rich compositions, which intrinsically contain vdW gaps, therefore leading to the formation of ordered GST.[43] A fifth GST sample (A3) was grown on InAs(111)A surface after annealing the substrate at temperatures as high as 500 °C. At these high temperatures, the surface undergoes a partial melting and recrystallization, which gives rise to the formation of nuclei with orientations other than (111) (see Figure S2, Supporting Information). The presence of grain boundaries and twin defects can influence the epitaxy of GST on InAs, which makes this defective surface interesting in our context.

According to Koma’s definition of vdW epitaxy, ultrathin heterostructures with an abrupt in terms of lattice matching and thus defect-free interface can be realized.[44] Therefore, vdW epitaxy can be ruled out for all those cases where pseudomorphic growth or only partially relaxed films are obtained. Such information, in our study, is gathered from the analysis of the reciprocal space maps (RSMs). Figure 1c–f reports the RSMs around the asymmetric InAs(224) Bragg reflection of the four samples A1, A2, B1 and B2. Two distinct spots can be observed, one, most intense, is the (224) reflection of the InAs substrate while the second weaker one corresponds to the GST film [(01.13) in the case of Ge2Sb2Te5 (m = 2, n = 1)]. The analysis of the maps for samples A1 and B1 (Figure 1c,d) suggests that GST films are fully relaxed. We can determine the in-plane lattice parameter, which is 4.233 and 4.238 Å, for samples A1 and B1, respectively. To compare with an expected in-plane lattice parameter of 4.22 Å for (GeTe)m(Sb2Te3)n alloys with m = 1.2.3 and n = 1 (GST124, GST225 and GST326).[32] For sample A2 (Figure 1e), GST is partially relaxed and its final in-plane lattice parameter is 4.274 Å. For sample B2 (Figure 1f) GST and InAs peaks are aligned at the same in-plane transferred momentum Qy almost superimposed (same in-plane lattice parameter), indicating that GST is growing pseudomorphically on InAs. In the case of sample A3 (not shown, see Supporting Information), GST and InAs peaks are almost superimposed (same lattice parameter) again indicating pseudomorphic growth.

Table 1. GST/InAs(111)A and B samples are listed by surface reconstruction and surface morphology (see also Experimental Section, SI, and Figure S1). Observed GST epitaxy is also reported. Another GST sample (A3) was grown on InAs(111)A surface after a partial melting and recrystallization of the substrate (see Supporting Information).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Substrate</th>
<th>Substrate surface reconstruction</th>
<th>Substrate</th>
<th>GST epitaxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>InAs(111)A</td>
<td>2 × 2 passivated</td>
<td>2D/3D streaky/spotty</td>
<td>vdW</td>
</tr>
<tr>
<td>A2</td>
<td>InAs(111)A</td>
<td>2 × 2 passivated</td>
<td>3D spotty</td>
<td>Classical/partially relaxed</td>
</tr>
<tr>
<td>B1</td>
<td>InAs(111)B</td>
<td>2 × 2 passivated</td>
<td>2D streaky</td>
<td>vdW</td>
</tr>
<tr>
<td>B2</td>
<td>InAs(111)B</td>
<td>1 × 1 un-passivated</td>
<td>2D streaky</td>
<td>Classical/partially relaxed</td>
</tr>
</tbody>
</table>
InAs(111)B-2×2 and InAs(111)A-2×2 surfaces are self-passivated and, given the high quality of the RHEED pattern of sample B1, we expect it to be the best candidate to observe vdW epitaxy of GST. Indeed, the analysis of the in situ RHEED monitoring performed during the film growth provides a confirmation. The evolution of the in-plane lattice spacing along the [1\overline{1}0] direction is reported in Figure 2 as a function of the thickness (growth rate $r_{\text{GST}} = 0.233$ nm min$^{-1}$) for the first 20 nm of film growth. It is possible to observe that the GST in-plane lattice parameter undergoes a fast decrease at the beginning of film growth and then a slower reduction toward the final relaxed lattice parameter (red horizontal line in Figure 2) when the GST thickness is about 5 nm, a value larger than a GST block thickness (that is in the range 1.4–2.1 nm for GST compositions from 124 to 326). In an ideal vdW epitaxy, we would expect a sharp change of the in-plane lattice parameter to the relaxed one, as indeed observed after the growth of Sb$_2$Te$_3$ on passivated Si(111) substrates.[33] Seemingly, we are observing a vdW epitaxy where the relaxation of the in-plane lattice parameter is slowing down during the growth, while it is expected that the formation of vdW gaps should speed up the relaxation. This point will be discussed below.

RSM and RHEED results suggest that vdW epitaxy may have occurred on sample B1, as expected, since the starting surface

Figure 1. a,b) RHEED patterns of samples A1 and B1 acquired along (1\overline{1}0) azimuth; c–f) RSM around the asymmetric InAs(224) Bragg peak in coplanar configuration of samples A1, A2, B1 and B2.

Figure 2. In-plane lattice parameter of sample B1 calculated from RHEED streak spacing along (1\overline{1}0) azimuth showing the strain relaxation during growth. Black and red dotted lines represent the in-plane lattice parameters of InAs(111) and GST, respectively.
is perfectly flat with a self-passivated surface reconstruction. Sample A1, which shows a self-passivated surface reconstruction, is also fully relaxed, while sample A2 exhibiting lower surface quality is only partially relaxed. A pseudomorphic growth is observed for un-passivated surfaces (B2) or rough surfaces (A3, see Supporting Information).

More information on the crystal quality and symmetry of the deposited layers can be obtained by X-ray diffraction (XRD) and Raman spectroscopy. In particular, we can infer the crystal structure (trigonal or cubic) of our GST and the presence of vDW gaps, which can help us to discriminate the kind of epitaxy that occurred. In Figure 3a, we present the XRD spectra (symmetric α-2θ scans along the [111] direction of the substrate) obtained on the different samples (see Table 1). The sharp intense peak at 3.58 Å⁻¹ is assigned to the (222) reflection of the InAs substrate. XRD profiles clearly show that all the GST films have a high crystalline order with the out-of-plane orientation along the [111] direction: the peak around 3.62 Å⁻¹ represents the second-order GST peak originated from the main Te–Te periodicity, the exact position varying among the samples. Notably, being this interface almost lattice matched, the GST(222) reflection is very close to the InAs(222) reflection. Three out of four samples exhibit a broad peak around 3.3 Å⁻¹ that we assign to the first-order satellite peak due to the superstructure originated from the formation of ordered VLs or vDW gaps[31] between GST blocks; the distance between the (222) reflection and the VLs/vDW peaks allows us to determine the block size in the GST sample and the corresponding composition reported in Figure 3. The large width of these peaks is due to the presence of compositional disorder (i.e., the coexistence of GST blocks with different number of layers), quite typical in this kind of alloys.[32,33] In Figure 3a, we report the composition as determined from the block with the shortest size; in particular samples A1 and B1 show a shoulder at the high Qz side, which means the presence of a certain percentage of blocks of larger size. The presence of the VL/vDW peak means that the crystalline structure of such GST films is ordered cubic or trigonal, while sample A2 has a cubic rocksalt structure with no order in the vacancies distribution. From symmetric XRD profiles, we cannot discriminate the crystal symmetry (ordered cubic or trigonal) of GST films; although the out-of-plane lattice parameter of the trigonal phase is expected to be smaller than the cubic one, it varies for different compositions.[31]

To disentangle this point, Raman spectroscopy represents a valuable tool. A superposition of Raman spectra collected on the two sets of samples is shown in Figure 3b. Several modes can be identified, typically assigned to E-like and A-like Raman active modes. E-like modes are related to in-plane displacement patterns of Sb,Te atoms at the vDW gaps, while A-like modes are related to out-of-plane displacement patterns of Sb, Te and Ge atoms at the vDW gaps and inside the blocks.[22,44] In particular, A-like low-frequency and high-frequency modes are extremely sensitive to film ordering and thickness.[22,43] In ref.[43] it has been shown that cubic ordered GST films, where there are not real vDW gaps but not completely depleted VLs, the high energy mode at ≈175 cm⁻¹ (related to Te and Sb vibrations at the vDW gaps[22,44]) is strongly reduced with respect to the mode at about 165 cm⁻¹ (related to vibrations of Te, Sb and Ge atoms in the blocks[22,44]). By comparing the spectra in Figure 3b, it results that sample B1 is the only one that shows a clear peak at about 175 cm⁻¹, as expected for samples exhibiting completely depleted vDW gaps, sample A1 shows both the features, while in sample B2 the high energy mode is reduced to a faint shoulder. The spectra of sample A2 show almost no first-order Raman modes with very broad features at ≈80 and ≈150 cm⁻¹, as the result of the partial breaking of symmetry in cubic rocksalt due to disorder and defects present in the crystal.[45]

The analysis of the results presented in Figure 3 suggests that flat, 2D substrate surfaces favor the growth of more ordered GST with completely depleted vDW gaps. GST from cubic rocksalt to ordered-cubic to trigonal symmetry is obtained from sample A2 [InAs(111)A surface exhibiting a spotty RHEED
pattern] to sample B1 [best 2D, self-passivated InAs(111)B-2 × 2 surface]. The coexistence of both cubic and trigonal stacking is also possible.[15] These results are in perfect agreement with RSMs: samples A3 (see Supporting Information) and A2 are cubic rocksalt (no VLs/vdW gaps) and they exhibit pseudomorphic growth or only a partial relaxation. Sample A1 is mixed ordered cubic/trigonal structure and it is completely relaxed, probably exhibiting vdW epitaxy, as sample B1, which is highly ordered (mostly trigonal) and completely relaxed. Sample B2 is practically pseudomorphic, even though we can detect a faint A1g-mode in the Raman spectra that we can ascribe to vibrations at the VLs, therefore with a symmetry at least ordered cubic. This is not surprising as it was deposited on an un-passivated surface and the presence of VLs (which are only partially depleted) cannot be sufficient to relax the lattice parameter. As already noted above, even in the case of sample B1, for which we are observing vdW epitaxy, the relaxation of the lattice parameter is slowing down during the very first stage of the film growth. This behavior can be understood if we consider the fact that a certain degree of compositional disorder is intrinsically present in GST films[31] that can only be partially controlled after a fine-tuning of the growth parameters.[45] As a matter of fact, sample B1 is mainly a mixture of 225 and 326 compositions where each GST block is composed of 9 and 11 layers, respectively (7 layers for GST124).[32] This compositional disorder along the growth direction gives rise, during the coalescence of GST islands, to a possible misalignment of the vdW gaps/VLs as observed in ref. [46]. The formation of lateral bonds, which are stronger than vdW bonds, leads to the formation of stacking faults, which slow down the relaxation process. This result perfectly agrees with the growth of GST on miscut Si substrates where the strain is induced by lateral bonding at step edges, where the lateral bonding at steps allows the modulation between vdW and classical epitaxy.[16]

In addition, it has been shown that the use of rough InP(111) B substrates reduces or completely suppresses the formation of twins during the epitaxial growth of the topological insulator Bi2Se3[23] or that the growth of aligned WSe2 on sapphire can be guided by step edges.[47] Similarly, this explains the partially relaxed behavior of sample B2, despite the presence of VLs. Our results show that vdW epitaxy of GST can be obtained on InAs(111) substrates provided that the starting surfaces are passivated. Moreover, GST evolves toward a stable structure (trigonal) when the substrate surface is perfectly flat. This interpretation explains the different relaxation behavior observed between the different InAs(111)A, B surfaces studied in this work. In addition, if GST is grown on InAs(001) surface (see Supporting Information of ref. [13]) the film is not textured and crystallographic orientations other than the [001] can be found, which means that we can relax completely the need for matching lattice parameter, but not for crystal symmetry.

Table 2 summarizes our former and present results. From the comparison emerges that even under the hypothesis of a pure vdW interaction, as is the case for many of the systems reported, the surface symmetry of the substrate plays an important role in order that vdW epitaxy takes place. For example, it has been demonstrated that graphene, and 2D materials in general, can work as seed layers for vdW epitaxy.[8–10] The so-called wetting transparency of graphene allows also for the remote epitaxy of GaAs on GaAs enabling the possibility to grow removable semiconductor layers.[11] This means that the vdW potentials of graphene can be so weak to be unable to screen the surface potential of a substrate below the graphene. We can infer that the same may hold for the very surface layer of many passivated surface reconstructions. This means that, even in presence of a pure vdW epitaxy, the substrate surface orientation always influences the symmetry of the growing film. This picture is consistent with a model proposed in ref. [12], where the authors state that the vdW epitaxy can be obtained when the symmetry group of the substrate is a subgroup of that of the 2D material. Actually, for all the cases reported in Table 2, the substrate orientation is always cubic (111) or has an in-plane hexagonal symmetry, but the vdW epitaxy is observed only on passivated covalent surfaces (or in the presence of a graphene buffer layer). Epitaxy on un-passivated covalent surfaces increases drastically the interaction with the substrate leading to the formation of coincidence lattices or to a partially relaxed growth. Coincidence lattice is incompatible with pure vdW epitaxy,[6] as its observation indicates the presence of bonds between the substrate and the epilayer. However, even for the passivated surfaces (SiC-6×√3R30° buffer layer, last row in Table 2), lattice matching can still play a role in the formation of coincidence lattices. This means that the local distribution of surface potential can lead to the natural formation of coincidence lattices and must be considered in the search for suitable systems for vdW epitaxy. Thus, the presence of a coincidence lattice can occur for both vdW and classical epitaxy. Finally, epitaxial growth on substrates with a rough surface or significant miscut increases the substrate–film interaction even further. This can be used to stabilize the cubic phase of GST or prevent twinning.

To fully understand the difference between epitaxy performed on passivated covalent and weakly interacting 2D surfaces, such as graphene, we focus our attention on the formation of twist and twin domains (last two columns of Table 2). Both are typical for the epitaxial growth of 2D materials and can be attributed to the weak interaction across the interface with the substrate or between vdW blocks. In the case of vdW epitaxy on pure 2D material substrates, both twins and twists are observed as expected, whereas if vdW epitaxy is performed on passivated covalent surfaces twists are suppressed.[13] This is an indication of a stronger interaction with the underlying substrate. This form of vdW epitaxy provides the striking advantage of offering an epitaxial registry that facilitates the growth of single crystals with the full freedom of epilayer relaxation. Furthermore, by adopting a passivated substrate with miscut, also twins are nearly suppressed, and a certain degree of strain engineering is allowed.[16] Table 2 provides a valuable toolbox to help anticipate vdW epitaxy of such unconventional heterostructures, allowing practical exploitation in large-scale monolithical material synthesis with high crystalline quality.

3. Conclusions

In conclusion, we have presented evidence of the key role played by the substrate surface in vdW epitaxy. Substrate symmetry influences the symmetry of the growing film and, for
extremely well passivated covalent or pure 2D surfaces, vdW epitaxy can be fully achieved. When this requirement is relaxed, an interaction with the substrate surface arises, which can lead to the formation of coincidence lattices or induce a partially relaxed growth. The latter type of epitaxy provides the advantage of offering an epitaxial registry similar to the well-known epitaxial classical cases. Indeed, it might facilitate the growth of single crystals with the full freedom of epilayer relaxation. Furthermore, adopting a passivated substrate with miscut, strain engineering is allowed. All this information provides a toolbox to predict epitaxial growth rules and to allow large-scale monolithic material synthesis for the exploitation of unconventional device designs.

4. Experimental Section

Sample Preparation: InAs(111)A-2 × 2 surfaces were prepared by annealing at 400 °C epiready wafers in ultra-high vacuum (UHV) in the MBE system dedicated to GST growth. Depending on the time of annealing the RHEED pattern quickly deteriorates from quite streaky (sample A1) to spotty (sample A2), see Table 1 and Figure S1 in Supporting Information. InAs(111)B-2 × 2 and InAs(111)B-1 × 1 surfaces were obtained by annealing at 260 °C, in the MBE system dedicated to GST growth, As-capped epitaxial InAs(111)B films grown in a separate MBE system (Table 1 and Figure S1 in Supporting Information).

**MBE growth of epitaxial GST (with thicknesses ranging from 24 to 28 nm) was performed on InAs(111)A-2 × 2, InAs(111)B-2 × 2 and InAs(111)B-1 × 1 surfaces. The deposition of the (GeTe)ₘ(Sb₂Te₃)ₙ alloys was performed for substrate temperatures in the range 200–250 °C. Flux ratios between the elemental sources of the GST were properly chosen in order to obtain GST layers with the main composition Ge₂Sb₂Te₅.[43]

XRD Characterization: Samples were characterized by means of ex-situ XRD, utilizing a PANalytical X’Pert Pro Materials Research diffractometer equipped with a Ge (220) hybrid monochromator and Cu Kα₁ (λ = 1.540598 Å) X-ray radiation. Specular ω-2θ scans were performed in double axes mode in order to access the growth direction of the films, in a range of 10°–110°, with a step 0.02° and integration time of 2.5 s. RSMs were performed around the asymmetric InAs(224) Bragg reflection in coplanar configuration.

Raman Characterization: Spectra were acquired exciting samples with the 632.8 nm line of a He–Ne laser and the scattered light was analyzed using a spectrometer equipped with an LN₂-cooled charge-coupled device detector. The spectra were recorded in backscattering geometry in crossed and parallel polarization configurations. The emission was focused by a microscope objective with 0.9 numerical aperture and the same objective was used for the collection of the signal. The spectral resolution achieved is 0.7 cm⁻¹ and a notch filter suppressed the stray light.
Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors thank J. Herfort and C. Hermann (PDI – Berlin) for providing As-capped epitaxial InAs(111)B substrates, C. Stemmler and S. Behnke for technical support, and Lutz Geelhoar for careful reading of the manuscript. This work was partially supported by the European Union within the FP7 project PASTRY (GA 317746) and Horizon 2020 research and innovation programme under grant agreement No 824957 within the project BeforeHand.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Samples were grown by F.A., V.B. and J.E.B. F.A., J.E.B. and S.C. performed XRD, and E.Z. Raman characterization. F.A. performed data analysis. R.C., E.Z. and S.C. contributed to the interpretation of the results. The paper was written by F.A. and R.C. with the help and through contributions from all co-authors. All authors have given approval to the final version of the manuscript. The project was initiated and conceptualized by F.A. and R.C.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon request.

Keywords

molecular beam epitaxy, phase change materials, van der Waals

Received: August 19, 2021
Revised: December 17, 2021
Published online:

Hints for a General Understanding of the Epitaxial Rules for van der Waals Epitaxy from Ge-Sb-Te Alloys

Fabrizio Arciprete,* Jos Emiel Boschker, Stefano Cecchi,* Eugenio Zallo, Valeria Bragaglia, and Raffaella Calarco
SUPPORTING INFORMATION

Hints for a general understanding of the epitaxial rules for van der Waals epitaxy from Ge-Sb-Te alloys

F. Arciprete1,2, J.E. Boschker2,3, S. Cecchi2,4,*, E. Zallo2,5, V. Bragaglia2,6, and R. Calarco2,7

1Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I0133 Rome, Italy

2Paul-Drude-Institut für Festkörperlektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany

3Present address: Ferdinand-Braun-Institut gGmbH Leibniz-Institut fuer Hoechstfrequenztechnik Gustav-Kirchhoff-Str. 4 12489 Berlin, Germany

4Present address: Department of Materials Science University of Milano-Bicocca via R. Cozzi 55, 20125 Milano, Italy

5Present address: Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany

6Present address: IBM Research – Zürich, Säumerstrasse 4, CH–8803 Rüschlikon, Switzerland

7Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, 00133, Rome, Italy

*stefano.cecchi@unimib.it

InAs(111) surfaces

Zincblende \{111\} surfaces are intrinsically polar and can be cation (A) and anion (B) terminated; in
this paper three different substrate surface reconstructions were considered: InAs(111)A-2×2 and
InAs(111)B-2×2 and -1×1. The surface unit cell of the InAs(111)A-2×2 reconstruction contains one
In vacancy and three surface In atoms, this surface is self-passivated having no half-filled dangling
bonds.$^{[1,2]}$ The InAs(111)B surface exhibits a 2×2 reconstruction at As-rich conditions and a 1×1
unreconstructed surface at As-poor conditions. [3,4] The surface unit cell of the 2×2 As-rich reconstruction has one As-trimer in the adlayer; even in this case no unsaturated dangling bonds are present on the surface reconstruction, which can be considered self-passivated. [3,4] Conversely, the 1×1 surface structure does not satisfy the electron counting rule, [5,6] it would be meta-stable or stabilized by surface defects, as actually observed by STM experiments; [3] this surface is expected to be un-passivated. In the case of InAs(111)A substrates, a 2×2 reflection high energy electron diffraction (RHEED) pattern can be obtained after annealing the samples at 400 °C. Depending on the time of annealing the RHEED pattern quickly deteriorates from quite streaky (sample A1, see Fig. S1 and Tab. 1 in the main text), where an intensity modulation is visible, to an almost spotty pattern for longer annealing (sample A2).

The desorption temperature for the native oxide on InAs(111)B is higher than the maximum temperature of congruent evaporation at which the surface starts decomposing. As a result, the surface cannot be cleaned by a simple annealing in UHV, while sputtering will usually degrade and alter the surface. To overcome this problem, thick layers (~250 nm) of InAs were grown on InAs(111)B substrates in a separate MBE dedicated to III-Vs. After the growth, the samples were capped at room temperature with an amorphous layer of As and transferred, under ambient conditions, to the MBE system dedicated to GST epitaxy. Then, by means of a short annealing at about 260 °C the As-cap was removed and a very sharp 2×2 streaky pattern appeared (Fig. S1, sample B1). A longer annealing at the same temperature leads to a further As desorption and the surface reconstruction changes from 2×2 to the less As-rich 1×1. A very long annealing of the sample at 300 °C no longer changes the surface reconstruction, but the surface quality deteriorates as can be observed by the blurring of the streaks and the increase of the background in the RHEED pattern (Fig. S1 sample B2).
Figure S1. RHEED patterns along the $\langle \overline{11}0 \rangle$ direction of InAs(111)A and InAs(111)B substrate surfaces for samples A1 (top left panel), B1 (top right panel), A2 (bottom left panel) and B2 (bottom right panel). Patterns are typical of flat surfaces (B1 and B2) as well as mixed flat/rough surfaces (A1 and A2).

For annealing temperatures as high as 500 °C of InAs(111)A substrates a 2×2 streaky pattern was again obtained but, at these high temperatures, the surface undergoes a partial melting and recrystallization, which gives rise to the formation of nuclei with orientations other than (111) (see XRD characterization in Fig. S2). Besides, for such a treatment the formation of 60° rotated domains of 2D InAs islands (crystal structure from ZB to WZ) has been observed. [3] The presence of grain boundaries between the twin defects can influence the epitaxy of GST on InAs, which makes this surface interesting in our context (sample A3).

![Image of RHEED patterns](image)

Figure S2. (a) Reciprocal space map around the asymmetric InAs(224) Bragg reflection in coplanar configuration of sample A3. InAs and GST reflection are almost completely superimposed (same lattice parameter) indicating that GST is growing pseudomorphically on InAs. (b) Symmetric XRD ω-2θ scan around the second order InAs and GST reflection of sample A3. The small sharp peaks (black arrows) arise from the presence of grains with orientations other than (111). (c) Raman spectrum of sample A3. As for sample A2, the spectrum shows almost no first order Raman modes with very broad features at ~80 and ~150 cm$^{-1}$, as the result of the partial breaking of symmetry in cubic rocksalt due to disorder and defects present in the crystal, suggesting that sample A3 is of cubic rocksalt structure. [7]

RHEED after GST growth

Here below we present the RHEED data along the $\langle 11\overline{2} \rangle$ azimuth for sample A2 and B2 after GST epitaxy. A2 RHEED pattern presents 2D streaks and a large diffused scattering background,
indicative of a lower surface quality. B2 RHEED pattern is 2D and streaky with a low background witnessing a good morphology after epitaxial growth.

Figure S3. RHEED patterns along the $\langle 11\bar{2} \rangle$ direction after GST deposition InAs(111)A and InAs(111)B substrate surfaces for samples A2 (right panel), B2 (left panel).

Interplay between composition and strain in GST alloys

The GST 326 and 225 compositions differ from the structural point of view essentially only in terms of the out-of-plane lattice parameter, while both the in-plane lattice parameter and the out-of-plane Te-Te distance within the cell do not vary [8].

The different GST compositions (326 or 225) can be evaluated best when analyzing the distance between vdW/VL and the GST peak [9]. In fact, the distance between the vdW/VL and the GST peak relates to the out-of-plane lattice parameter, that for 326 and 225 varies of about 15%. The GST peak instead refers to the Te-Te distance that is not changing for both compositions, although could change in presence of strain. The same argument holds for the in-plane lattice parameters, that are the ones we evaluate from the RSMs, that are negligibly different for GST225 and GST326 (as also explained in the manuscript), thus the RSM peak positions of both compositions will be very close to each other, not allowing for composition evaluation. However, the presence of strain can be evaluated from the position of the GST peak in respect to the position of the substrate. This is indeed different from purely covalently bonded materials in which composition and strain are strongly related.

References

