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Abstract

Permutative automorphisms of the Cuntz algebra On are in bijection
with a class of permutations of nk elements, that are called stable, and are
further partitioned by rank. In this work we mainly focus on stable cycles
in the quadratic case (i.e., k = 2). More precisely, in such a quadratic case
we provide a characterization of the stable cycles of rank one (so proving
Conjecture 12.1 in [3]), exhibit a closed formula for the number of stable
r-cycles of rank one (valid for all n and r), and characterize and enumerate
the stable 3-cycles of any given rank. We also show that the set of stable
permutations is equipped with a natural involution that preserves the cycle-
type and the rank, and that there is a map that associates to two stable
permutations of nk and mk elements, respectively, a stable permutation of
(nm)k elements.
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1 Introduction

Cuntz algebras (first defined in [8]) are a much studied class of C∗-algebras, with
lots of connections to several areas of research (see e.g. [2, 10, 11, 12, 13, 14]).
Notably, the study of their automorphisms, started by Cuntz himself, is ex-
tremely difficult and challenging (see e.g. [15]). The existence of an intriguing
connection between the automorphisms of the Cuntz algebras and combinatorics
was foreseen by Cuntz in the late seventies [9, p.195]. However, there has been
little progress in that direction until, about thirty years later, Conti and Szy-
manski ([7], [4], [5]) not only exhibited a huge number of new examples, but
were actually able to set up a convoluted procedure to spot, in principle, all the
so-called permutative automorphisms of the Cuntz algebra On at level k, and
then determine their number, for small values of n and k, by further theoretical
considerations and subsequent massive computer calculations ([7], [6], [1]). The
combinatorial investigation of this convoluted procedure was started by Brenti
and Conti in [3], to which we refer for further information.

In order to explain the connection with the main topic of the present paper,
we need to introduce some more terminology. Given an integer n ≥ 2, let On be
the Cuntz algebra, Fn ⊂ On the so-called UHF core C∗-subalgebra generated
by a nested family of subalgebras Fk

n (each one isomorphic to the algebra of
complex matrices Mnk) and Dn be the C∗-subalgebra generated by the family
of subalgebras Dk

n of Fk
n (each one isomorphic to the algebra of diagonal matrices
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in Mnk). Then, following the insight by Cuntz, the reduced Weyl group of On is
defined as

Aut(On,Fn) ∩Aut(On,Dn)/AutDn(On)

where Aut(On, X) is the subgroup of Aut(On) consisting of the automorphisms
which leave X invariant, while AutX(On) is the one of those which fix X point-
wise. This notion, somewhat inspired by the theory of semisimple Lie groups,
turns out to be very useful to make advances in the understanding of the general
structure of the group of automorphisms of the Cuntz algebras.

It is well-known that unital ∗-endomorphisms of On are in bijective corre-
spondence with unitaries in On, call this bijection u 7→ λu. With some more
work the reduced Weyl group can be further identified with the set of automor-
phisms λu of On induced by the so-called permutative unitaries u ∈ ∪k≥1Fk

n .
Moreover, for general unitaries u ∈ Fk

n , for any k, it was shown in [7], that λu
is an automorphism precisely when the sequence of unitaries(

ϕr(u∗) · · ·ϕ(u∗)u∗ϕ(u) · · ·ϕr(u)
)
r≥0 (1)

in Fn eventually stabilizes, where the endomorphism ϕ of Fn corresponds, in
the isomorphism between Mnk and Mn⊗· · ·⊗Mn (k factors), to the tensor shift
map x 7→ 1Mn ⊗ x. By coherently identifying permutative unitaries in Fk

n with
permutation matrices in Mnk and thus with permutations of the set {1, . . . , nk}
and finally (by lexicographic ordering) with permutations of the set [n]k, one is
lead to the class of stable permutations, as defined in the main text (see Sec. 2)
and investigated in this paper. These permutations precisely label the elements
of the restricted Weyl group, see [3, Theorem 4.2].

The general problem we face is to find explicit combinatorial conditions
characterizing many, if not all, stable permutations in S([n]k). This has a twofold
advantage. On the one hand, identifying more and more such permutations, one
would gain the possibility of making concrete computations of products in the
reduced Weyl groups of the Cuntz algebras On, which might unveil more specific
algebraic properties of these groups. On the other hand, the problem of finding
closed formulas for enumerating the stable permutations, even at a fixed level
k, requires the development of combinatorial tools that, in the long run, will
certainly make Aut(On) more accessible to theoretical investigation.

The study of the stable permutations from a combinatorial point of view was
started by Brenti and Conti in [3]. There they characterize the stable transposi-
tions in S([n]2), provide various ways to produce new stable permutations from
old ones, and study the enumeration of stable permutations, thanks to an in-
depth analysis of the combinatorics of the sequence (1). The purpose of this
paper is to continue the combinatorial investigation of stable permutations.
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Our main results are a characterisation of the stable cycles of rank one in
S([n]2) (Theorem 3.1), thereby proving Conjecture 12.1 in [3], a characterisation
of the stable 3-cycles of any rank in S([n]2) (Theorem 5.12), the existence of
a rank-preserving involution on stable permutations (Theorem 7.3) and a new
construction (“box-product”) producing a stable permutation in S([nm]k) from
two stable permutations in S([n]k) and S([m]k) respectively (Theorem 8.2).

The organisation of the paper is as follows. In Section 2 we recall definitions
and results used in the sequel. In Section 3 we characterise the stable cycles of
rank one in S([n]2). In Section 4, using the main result in the previous section,
we enumerate the stable cycles of rank one in S([n]2) (Proposition 4.5, Corollary
4.6 and Theorem 4.7). In Section 5 we characterise the stable 3-cycles in S([n]2).
In Section 6 we venture into the study of stable 4-cycles in S([n]2), characterising
an important subclass of them (Theorems 6.2 and 6.8). In Section 7 we prove
the existence of a rank-preserving involution on the set of stable permutations.
In Section 8 we introduce the box-product and examine its properties.

2 Preliminaries

In this section we provide the necessary definitions and results to make the paper
self-contained. This background material is explained in detail in [3], to which
we refer for further insight. For n ∈ N we set [n] = {1, . . . , n} and, for h ∈ N,
[n]h = [n]× . . .× [n] (the cartesian product of h copies of [n]). In the sequel, we
will mostly focus on permutations u of the finite set [n]2, u ∈ S([n]2), but we
need more structure. If u ∈ S([n]h) and v ∈ S([n]k) we define, following [3], the
tensor product of u and v to be the permutation u⊗ v in S([n]h+k) defined by

(u⊗ v)(x1, . . . , xh+k) = (u(x1, . . . , xh), v(xh+1, . . . , xh+k))

where xi ∈ [n] for all i = 1, . . . , h + k. These operations can be iterated and
composed at will. Moreover, in S([n]h+k) one has (u⊗w)(v⊗ z) = (uv)⊗ (wz),
for all u, v ∈ S([n]h), and w, z ∈ S([n]k) (where the products are taken in the
respective permutation groups). We think of the maps u 7→ u⊗1 and u 7→ 1⊗u
as an embedding of S([n]h) into S([n]h+1) and as the shift, respectively. Note
that the above operations of tensoring on the right and on the left by the identity
1 ∈ S([n]) commute, so that, for instance, 1⊗ (u⊗ 1) = (1⊗ u)⊗ 1 will simply
be denoted 1⊗ u⊗ 1.
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Now, for u ∈ S([n]h) and k ∈ N, we define ψk(u) ∈ S([n]h+k) as

ψk(u) := (1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u−1)(1⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗ u−1 ⊗ 1) · · ·

· · · (1⊗ u−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

)(u−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)(1⊗ u⊗ 1⊗ · · · ⊗ 1)︸ ︷︷ ︸
k−1

(1⊗ 1⊗ u⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−2

) · · · (1⊗ . . .⊗ 1︸ ︷︷ ︸
k−1

⊗ u⊗ 1)(1⊗ . . .⊗ 1︸ ︷︷ ︸
k

⊗ u)

or, in a shorthand notation,

ψk(u) =

k∏
i=0

(1⊗ . . .⊗ 1︸ ︷︷ ︸
k−i

⊗ u−1⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
i

)

k∏
i=1

(1⊗ 1 . . .⊗ 1︸ ︷︷ ︸
i

⊗ u⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k−i

) .

We also set ψ0(u) := u−1. Note that the following recursive relation holds,

ψk(u) = (1⊗ . . .⊗ 1︸ ︷︷ ︸
k

⊗ u−1)(ψk−1(u)⊗ 1)(1⊗ . . .⊗ 1︸ ︷︷ ︸
k

⊗ u) (2)

for all k ≥ 1.
Recall (see [3]) that , by definition, u ∈ S([n]h) is stable of rank k0 + 1 ∈ N

if the sequence {ψk(u)}k≥0 satisfies

ψk(u) = ψk0(u)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−k0

for all k ≥ k0 and k0 ∈ N0 := {0, 1, 2, 3, . . .} is the least number for which this
holds.

The origin of this notion comes from C∗-algebras, namely the search of
(permutative) automorphisms of the Cuntz algebras On. Indeed, there is a
bijection between the stable permutations (where u and u ⊗ 1 are identified)
and the reduced Weyl group of On (see [7]). (Note that, however, the product
in this group is not given by the product of the corresponding permutations.)

The following result gives an alternative definition of stability, and is proved
in [3, Proposition 4.4].

Proposition 2.1. Let u ∈ S([n]h), and k ∈ N. Then

i) if ψk(u) ∈ S([n]k+1)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
h−1

then u is stable of rank ≤ k + 1;

ii) if u is stable of rank ≤ k + 1 then ψk+1(u) ∈ S([n]k+h)⊗ 1.
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In particular, u is stable if and only if there exists a positive integer k such that
ψk(u) ∈ S([n]k+1)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

h−1

.

Simple examples show that the product of two stable permutations is not
stable, in general. The next result shows that this is the case, however, if the
two permutations satisfy an additional condition.

Theorem 2.2. Let w, z ∈ S([n]2) be such that (z ⊗ 1)(1⊗w) = (1⊗w)(z ⊗ 1).
Assume also that w is stable of rank ≤ s and z is stable of rank ≤ t. Then wz
is stable of rank ≤ s+ t.

If two permutations w, z ∈ S([n]2) are such that (z⊗1)(1⊗w) = (1⊗w)(z⊗1)
then we say that w is compatible with z (in this order). The previous result is
proved in [3, Theorem 5.2].

Given the importance of compatibility, it is natural to try to understand
when two permutations are compatible. The following two results ([3, Proposi-
tions 5.6 and 5.7]) answer this question when the first permutation is a trans-
position.

Proposition 2.3. Let u = ((a, b), (i, j)), where a, b, i, j ∈ [n], b 6= j, and v ∈
S([n]2). Then (v⊗ 1)(1⊗ u) = (1⊗ u)(v⊗ 1) if and only if there is σ ∈ Sn such
that v(x, k) = (σ(x), k) for all x ∈ [n] and all k ∈ {a, i}.

Proposition 2.4. Let u = ((a, b), (i, b)), where a, b, i ∈ [n], a 6= i, and v ∈
S([n]2). Then (v ⊗ 1)(1 ⊗ u) = (1 ⊗ u)(v ⊗ 1) if and only if there are σ ∈ Sn
and (τ1, . . . , τn) ∈ S({a, i})n such that

v(x, a) = (σ(x), τx(a)), v(x, i) = (σ(x), τx(i)),

for all x ∈ [n].

It is hard, and a major goal of this line of research, to characterize the
stable permutations. The following result ([3, Theorem 8.1]) achieves this for
the transpositions.

Theorem 2.5. Let (i, j), (a, b) ∈ [n]2, (i, j) 6= (a, b), and u := ((i, j), (a, b)).
Then the following conditions are equivalent:

i) u is stable;

ii) u is stable of rank 1 (i.e., (u⊗ 1) (1⊗ u) = (1⊗ u) (u⊗ 1) in S([n]3));

iii) {a, i} ∩ {b, j} = ∅.

One of the goals of this work is to find the analogue of this result for the
3-cycles.
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3 Stable cycles of rank 1

In this section we characterize the stable cycles of rank one in S([n]2), solving
in the affirmative Conjecture 12.1 of [3].

For u ∈ S([n]2) we set, following [3],

R(u) := {i ∈ [n] | ∃j ∈ [n] : (i, j) /∈ F (u)},

and
C(u) := {j ∈ [n] | ∃i ∈ [n] : (i, j) /∈ F (u)} ,

where F (u) is the set of fixed points of u. So R(u), resp. C(u), is the set of
rows, resp. columns, containing at least one element that is not in F (u).

Theorem 3.1. Let (ai, bi) ∈ [n]2, i ∈ [r] (r > 1) be distinct pairs. Then the
permutation u := ((a1, b1), . . . , (ar, br)) ∈ S([n]2) is stable of rank 1 if and only
if ai 6= bj , for any i, j ∈ [r] (i.e., in short, R(u) ∩ C(u) = ∅).

Proof. If R(u) ∩ C(u) = ∅ then, by Corollary 5.16 of [3], u is stable of rank 1.
Conversely, assume by contradiction that u is stable of rank 1 and R(u)∩C(u) 6=
∅. We will consider indexes mod r, i.e., (ai, bi) = (ai+r, bi+r) for any i ∈ Z.

We construct two directed graphs G1 = (V1, E1) and G2 = (V2, E2), where

• V1 = V2 = [n]3;

• E1 = {(ai, bi, z)→ (ai+1, bi+1, z) | i ∈ [r], z ∈ [n]},
E2 = {(x, ai, bi)→ (x, ai+1, bi+1) | i ∈ [r], x ∈ [n]}.

In other words, G1 and G2 are the functional digraphs of u ⊗ 1 ∈ S([n]3) and
1⊗u ∈ S([n]3), respectively. Note that each vertex of Gi has degree either 1 or 0
(by degree we mean outdegree, which is also equal to indegree). Let, for brevity,
ω1 := (u⊗ 1) and ω2 := (1⊗u). Since u is stable of rank 1, then by Proposition
4.5 of [3] we have

ω1ω2 = ω2ω1. (3)

Lemma 3.2. There are no common directed edges in G1 and G2, i.e., E1∩E2 =
∅.

Proof. Assume, to the contrary, that there is v0 → v1 ∈ E1 ∩ E2. Since G1

and G2 are disjoint unions of r-cycles, there are edges v1 → v2 ∈ E1 and
v1 → v′2 ∈ E2. So

(ω1ω2)(v0) = ω1(v1) = v2
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and
(ω2ω1)(v0) = ω2(v1) = v′2,

hence, by (3), v2 = v′2. Continuing inductively we get that there is a directed
cycle v0 → v1 → · · · → vr → v0, which belongs to both G1 and G2. However, in
any cycle of G1 the third coordinate doesn’t change and the first coordinate takes
all the values from R(u), and similarly in any cycle of G2 the first coordinate
doesn’t change and the third one takes all the values from C(u). Hence |R(u)| =
|C(u)| = 1, which is a contradiction. �

By our assumption R(u)∩C(u) 6= ∅, so there are i, j ∈ [r] such that ai = bj ,
hence there is a vertex v0 ∈ [n]3 such that degG1(v0) = degG2(v0) = 1 (namely
(aj , ai, bi)). Let V ′ be the vertex set of the connected component of v0 in G1∪G2.

Lemma 3.3. All the vertices in V ′ have degree 1 in both G1 and G2, i.e.,

degG1(v) = degG2(v) = 1 for any v ∈ V ′.

Proof. Assume, on the contrary, that there is a vertex w ∈ V ′ such that

degG1(w) + degG2(w) = 1.

Consider a directed path from v0 to w, and let w1 → w2 be the first edge in this
path such that

degG1(w2) + degG2(w2) = 1,

(so degG1(w1) + degG2(w1) = 2). Without loss of generality we can assume that
w1 → w2 ∈ G1, so degG1(w2) = 1. Furthermore there is w′2 ∈ V ′ such that
w1 → w′2 ∈ G2. Note that

ω2ω1(w1) = ω2(w2) = w2 = ω1(w1),

on the other hand we have

ω1ω2(w1) = ω1(w
′
2),

we obtain ω1(w1) = ω1(w
′
2). However, ω1 is a permutation and w1 6= w′2, con-

tradiction. Then there is no such vertex w. �

Lemma 3.4. We have R(u) = C(u).
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Proof. Let S be the set of all possible middle coordinates of V ′, i.e.,

S := {vy | (vx, vy, vz) ∈ V ′}.

Since degG1(v) = 1 for any v ∈ V ′, we have S ⊂ C(u). On the other hand, when
we act on v repeatedly with ω1 we obtain all the elements of C(u) in the middle
coordinate, so that C(u) = S. Similarly S = R(u). �

Consider any vertex (x0, y0, z0) ∈ V ′. By Lemma 3.3 above, we have that
degG2((x0, y0, z0)) = 1, hence (y0, z0) = (ai0 , bi0) for some i0 ∈ [r]. Acting
repeatedly with ω2, we get that (x0, ai, bi) ∈ V ′ for any i ∈ [r]. Then, by (3)

ω2(ω1((x0, ai, bi))) = ω1(ω2((x0, ai, bi))) = ω1((x0, ai+1, bi+1)).

Since ω2 doesn’t change the first coordinate, we get that the first coordinate of
ω1((x0, ai, bi)) is the same for all i ∈ [r]. Hence, the first element of u(x0, ai)
depends only on x0. Hence, there is a function f : R(u) → R(u) such that the
first element of u(x, a) is f(x), for any a ∈ R(u). Similarly, there is a function
g : C(u)→ C(u) such that the second element of u(b, z) is g(z), for any b ∈ C(u).

Since R(u) = C(u), we get that there are functions f, g such that for any
a, b ∈ R(u) we have u(a, b) = (f(a), g(b)). In particular, f and g are permuta-
tions and

f(ai) = ai+1 and g(bi) = bi+1

for all i ∈ [r]. Hence, f and g are cycles of length |R(u)|. We get that for any
(a, b) ∈ R(u)× C(u),

u|R(u)|(a, b) = (a, b),

furthermore |R(u)| is the minimal such number for any (a, b). Hence u is the
disjoint union of |R(u)| cycles, each of length |R(u)|, which is a contradiction.

�

4 Enumeration of stable cycles of rank 1

In this section we enumerate stable cycles of rank 1 in S([n]2). By Theorem 3.1
this is equivalent to enumerating cycles u ∈ S([n]2) such that R(u) ∩C(u) = ∅.
We begin by considering for which cycle-lengths these cycles exist.

Proposition 4.1. Let r, n ∈ N and u be an r-cycle of S([n]2) such that R(u) ∩
C(u) = ∅. Then r ≤ bn2 cd

n
2 e.
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Proof. Since R(u) ∩ C(u) = ∅ we have that C(u) ⊆ [n] \ R(u) so |C(u)| ≤
n−|R(u)|. On the other hand, by definition of R(u) and C(u) one also has that
r ≤ |C(u)||R(u)|. So r ≤ |R(u)|(n−|R(u)|). Since the sequence {i(n− i)}i=0,..,n

is clearly symmetric and unimodal the claim follows. �

Note that the bound given in the previous proposition is best possible. In-
deed, if r ≤ bn2 cd

n
2 e then any r-cycle of [bn2 c] × {b

n
2 c + 1, . . . , n} satisfies the

hypotheses of Proposition 4.1. In particular, this gives the following lower bound
for the number of r-cycles in S([n]2) that are stable of rank 1. Recall that there
are (n− 1)! n-cycles in Sn.

Proposition 4.2. Let r, n ∈ N. Then the number of r-cycles in S([n]2) that
are stable of rank 1 is at least

(bn
2
cdn

2
e

r

)
(r − 1)!.

On the other hand, for the maximum possible value of r (namely bn2 cd
n
2 e)

one can obtain an exact formula for the number of such cycles.

Proposition 4.3. Let n ∈ N. Then the number of bn2 cd
n
2 e-cycles in S([n]2)

that are stable of rank 1 is
(

n
bn
2
c
)
(bn2 cd

n
2 e − 1)! if n is even

2
(

n
bn
2
c
)
(bn2 cd

n
2 e − 1)! if n is odd.

Proof. Let u be a stable bn2 cd
n
2 e-cycle in S([n]2). Then, by Theorem 3.1, R(u)∩

C(u) = ∅. Also, since i(n− i) < bn2 cd
n
2 e if i < n−1

2 , we must have |R(u)| = bn2 c
and |C(u)| = dn2 e, or conversely. So such a u is uniquely determined by R(u)
and by a cyclic ordering of R(u)×C(u) = R(u)×([n]\R(u)). The result follows.
�

The preceding proposition shows, in conjunction with Stirling’s formula,
that the probability of obtaining a stable bn2 cd

n
2 e-cycle in S([n]2) by choosing

uniformly at random among all bn2 cd
n
2 e-cycles in S([n]2) goes to 0 as n→ +∞.

We conclude this section by observing that by following the strategy used to
enumerate the number of permutations u ∈ S([n]2) such that R(u) ∩ C(u) = ∅
in [3, Sec. 11.2], one can obtain an exact formula for the number of cycles in
S([n]2) that are stable of rank 1, as well as the following lower bound.

Proposition 4.4. Let n ∈ N, then the number of cycles in S([n]2) that are
stable of rank 1 is at least

n∑
i=0

n−i∑
j=0

(
n

i

)(
n− i
j

)
(ij − 1)! .

10



In particular, this number is larger or equal to
(

n
bn
2
c
)
(bn2 c d

n
2 e − 1)!.

We denote by Ci(r) the set of all compositions of r into i parts (see, e.g., [16,
Sec. 1.2]).

Proposition 4.5. Let r, n ∈ N. Then the number of r-cycles in S([n]2) that
are stable of rank 1 is

(r − 1)!
r∑

i=1

(
n

i

) ∑
(a1,...,ai)∈Ci(r)

i∏
j=1

(
n− i
aj

)
. (4)

Proof. We count the number of subsets S ⊆ [n]2 such that |S| = r and R(S) ∩
C(S) = ∅, where R(S) := {i ∈ [n] : (i, j) ∈ S for some j ∈ [n]} and C(S) is
defined similarly. Let i := |R(S)|. Then 1 ≤ i ≤ n and R(S) can be chosen in(
n
i

)
ways. For a given choice of R(S) let aj be the number of elements of S in

the j-th (from the top, say) row of R(S), for j = 1, . . . , i. Then aj ≥ 1 for all
j ∈ [i], and a1 + · · ·+ ai = r. Also, for each such choice of (a1, . . . , ai) there are,
for each j ∈ [i],

(
n−i
aj

)
possibilities for the intersection of S with the j-th row of

R(S), so there are
∏i

j=1

(
n−i
aj

)
subsets S with these values of (a1, . . . , ai) and of

R(S). There are (r−1)! ways to order the elements of S in a cycle, so the result
follows. �

It is not hard to check that for r = 2 and r = 3 one recovers Corollaries
8.3 and 8.8 in [3], while for r = bn2 cd

n
2 e one obtains Proposition 4.3, and for

r > bn2 cd
n
2 e Proposition 4.1. Also, note that the previous result implies that,

for a given r ∈ N, the number of stable r-cycles in S([n]2) is a polynomial in n
of degree 2r and leading coefficient 1/r, if n ≥ r. In particular, this shows that,
if one chooses an r-cycle uniformly at random in S([n]2), then the probability
that this is stable goes to 1 as n→∞.

Corollary 4.6. Let n ∈ N. Then the number of cycles in S([n]2), different from
the identity, that are stable of rank 1 is

bn
2
cdn

2
e∑

r=2

(r − 1)!

r∑
i=1

(
n

i

) ∑
(a1,...,ai)∈Ci(r)

i∏
j=1

(
n− i
aj

)
. (5)

So, for example, the number of cycles that are stable of rank 1 in S([n]2)
is 0, 6, 136, 7640, 2948208, and 8389599806, for n = 2, . . . , 7, respectively.
More precisely, for 4 ≤ n ≤ 6, these numbers arise as 136 = 36 + 64 + 36,
7640 = 120 + 560 + 1680 + 2880 + 2400, and 2948208 = 300 + 2640 + 17460 +
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83808 + 288000 + 691200 + 1058400 + 806400, where the i-th summand from the
left is the number of stable (i+ 1)-cycles of rank 1 in the relevant S([n]2).

One can compute the number in Corollary 4.6 also by suitably adapting
the argument used in Section 11.2 of [3]. Indeed, the argument in Sec. 11.2
of [3] can be repeated exactly but now using the number of k-cycles in Sk
rather that the number of derangements in Sk, so using (k − 1)! rather than
dk for k ≥ 2 (notation as in Sec. 11.2 of [3]). The only difference is that the
identity permutation can also be obtained as a permutation that has n2 − 1
fixed points and the remaining point as a 1-cycle (while this cannot happen
with derangements). In this way, after simplifications, one obtains the following
formula for the number of such cycles, which can also be verified directly.

Theorem 4.7. Let n ∈ N, then there are

n−1∑
a=1

n−a∑
b=1

ab∑
r=2

(−1)n−a−b
(

n
a, b, n− a− b

)
(ab)!

(ab− r)! r
(6)

stable cycles of rank 1 in S([n]2) that are different from the identity.

Proof. Note that if X ∩ Y = ∅, then there are exactly (|X||Y |)!
(|X||Y |−r)!r stable r-

cycles u of rank 1 such that R(u) ⊆ X and C(u) ⊆ Y . Variables a and b in
the summation (6) correspond to the sizes of X and Y respectively. Now we
compute coefficients of stable r-cycles of rank 1 in (6). Let u be a stable r-cycle
of rank 1. Then its coefficient is equal to∑

R(u)⊆X

∑
C(u)⊆Y,X∩Y=∅

(−1)n−|X|−|Y | =
∑

R(u)⊆X

δC(u),[n]\X(−1)n−|X|−|C(u)| = 1

where we have used the well known fact that
∑

A⊆X⊆B(−1)|X|−|A| = δA,B. �

We point out a simple consequence of [3, Corollary 5.5]. Recall (see, e.g.,
[7]) that for each stable permutation u ∈ S([n]k) there is associated an auto-
morphism λu of the Cuntz algebra On.

Proposition 4.8. Let u ∈ S([n]2) be a stable cycle of rank one, then the order
of λu ∈ Aut(On) coincides with the order of u.

In particular, for each 2 ≤ r ≤ bn2 cd
n
2 e, the number An(r) of permutative

automorphisms in Aut(On) at level two of order r is bounded from below by
(r − 1)!

∑r
i=1

(
n
i

)∑
(a1,...,ai)∈Ci(r)

∏i
j=1

(
n−i
aj

)
.
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5 Stable 3-cycles

In this section we characterize the stable 3-cycles of any given rank, and enu-
merate them. In particular, we show that any stable 3-cycle is a compatible
product of two stable transpositions.

We need the following result, which is a consequence of Proposition 2.3 in
the case of two transpositions.

Proposition 5.1. Let u = ((a, b), (i, j)), b 6= j and v = ((c, d), (k, l)) (a, b, c, d, i,
j, k, l ∈ [n]), (a, b) 6= (i, j), (c, d) 6= (k, l). Then u is compatible with v, that is
(v ⊗ 1)(1⊗ u) = (1⊗ u)(v ⊗ 1), if and only if either

{a, i} ∩ {d, l} = ∅ (7)

or
a = i = l = d . (8)

Proof. Assume first that u is compatible with v. Then, by Proposition 2.3, there
is σ ∈ Sn such that v(x, k) = (σ(x), k) for all x ∈ [n] and all k ∈ {a, i}. Suppose
that {a, i} ∩ {d, l} 6= ∅. We may assume that a = d. Then we have that

(k, l) = v(c, d) = v(c, a) = (σ(c), a)

so that σ(c) = k, a = l and hence l = d. Therefore c 6= k. Similarly, v(c, i) =
(σ(c), i) = (k, i) so v(c, i) 6= (c, i) and thus (c, i) = (c, d) so i = d.
The converse follows immediately from Proposition 2.3. �

The next result is the “first half” of our characterization.

Theorem 5.2. Let (a1, b1), (a2, b2), (a3, b3) ∈ [n]2 be distinct, and w := ((a1, b1),
(a2, b2), (a3, b3)) be such that R(w)∩C(w) 6= ∅. Then w is a compatible product
of two stable transpositions if and only if

bi+1 = ai, {bi, bi−1} ∩ {a1, a2, a3} = ∅, bi+1 /∈ {ai+1, ai−1} (9)

for some i ∈ [3] (where indices are taken modulo 3). In this case |R(w)∩C(w)| =
1 and w is stable of rank 2.

Proof. Suppose first that the conditions in (9) are satisfied. We may assume
that i = 1. Then we have that w = u v where u := ((a2, b2), (a3, b3)), and
v := ((a3, b3), (a1, b1)). But, by (9) and Theorem 2.5, u and v are stable, and
by Proposition 2.3 u is compatible with v.
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Conversely. Since R(w) ∩ C(w) 6= ∅ there is i ∈ [3] such that ai ∈ C(w).
We may assume that i = 1. Let u, v be two stable transpositions, u compatible
with v, such that w = u v. Then we have three possible cases, namely

u = ((a1, b1), (a2, b2)), v = ((a2, b2), (a3, b3)) (10)

or
u = ((a2, b2), (a3, b3)), v = ((a3, b3), (a1, b1)) (11)

or
u = ((a3, b3), (a1, b1)), v = ((a1, b1), (a2, b2)). (12)

If a1 = b1 then, by Theorem 2.5, either u or v are not stable, which is a
contradiction. So a1 6= b1.

If a1 = b3 then v is not stable in the second case, and u is not stable
in the third one. So (10) holds. Since u and v are stable we conclude from
Theorem 2.5 that {a1, a2} ∩ {b1, b2} = ∅ and {a2, a3} ∩ {b2, b3} = ∅. If b1 6= b2
then, since u is compatible with v, we have by Proposition 5.1 that a1 = a2 =
b2 = b3, a contradiction. So b1 = b2. Then, by Proposition 2.4, since u is
compatible with v, there exists σ ∈ Sn and (τ1, . . . , τn) ∈ S({a1, a2})n such that
v(x, a1) = (σ(x), τx(a1)) and v(x, a2) = (σ(x), τx(a2)) for all x ∈ [n]. Hence
(a2, b2) = v(a3, b3) = v(a3, a1) = (σ(a3), τa3(a1)) so b2 = τa3(a1) and therefore
b2 ∈ {a1, a2}, which is a contradiction.

So a1 = b2. Then, by Theorem 2.5, u is not stable in the first case, and
v is not stable in the third one, so (11) holds. Then, again by Theorem 2.5,
b1 /∈ {a1, a3}, b3 /∈ R(w), and b2 /∈ {a2, a3}. In particular, b2 6= b3. But u
is compatible with v so, by Proposition 5.1, either {a2, a3} ∩ {b1, b3} = ∅ or
a2 = a3 = b1 = b3. But b1 6= a3, so {a2, a3} ∩ {b1, b3} = ∅, and hence b1 6= a2.
This proves (9). The second statement follows immediately from Theorems 2.2
and 3.1. �

Note that the 3-cycles that move a point on the diagonal do not comply
with the necessary and sufficient conditions of the last theorem (of course, they
cannot have rank one as well).

We now analyze the rank of the stable 3-cycles. Let u = ((i, a), (j, b), (k, c))
∈ S([n]2) be a 3-cycle. We already know that there are 3-cycles of ranks 1 and
2 (see Theorems 3.1 and 5.2). We wish to know if other values of the rank are
possible, and if there are 3-cycles of rank 2 which do not arise from Theorem
5.2. Since u is a 3-cycle, |R(u)|, |C(u)| ≤ 3, and we know that u is stable of
rank 1 if and only if R(u)∩C(u) = ∅. Therefore u is not stable of rank 1 if and
only if |R(u) ∩ C(u)| ≥ 1. We analyze the 3-cycles according to the values of
(|R(u)|, |C(u)|, |R(u) ∩ C(u)|).
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We begin with some preliminary results. The first one concerns the case in
which one of the elements moved by u is on the diagonal (i.e., if either i = a or
j = b or k = c, so we may assume that i = a).

Lemma 5.3. Let (i, i), (j, b), (k, c) ∈ [n]2, distinct, and u := ((i, i), (j, b), (k, c)) ∈
S([n]2) be such that c /∈ R(u) and b 6= i. Then u is not stable.

Proof. Let h ∈ N. Then, using our hypotheses, one computes that

ψ2h(u)(j, b, k, c, . . . , k, c︸ ︷︷ ︸
2h

) = (i, k, c, . . . , k, c︸ ︷︷ ︸
2h

, i)

so u is not stable since c 6= i. �

The next result does not assume that u is a cycle.

Lemma 5.4. Let i, j, b ∈ [n], j 6= b, and u ∈ S([n]2) be such that u(b, b) = (b, b)
and u(i, j) = (j, b). Then u is not stable.

Proof. Let h ∈ N. Then, using our hypotheses, one computes that

ψh(u)(j, b, . . . , b︸ ︷︷ ︸
h+1

) = (i, . . . , i︸ ︷︷ ︸
h+1

, j)

so u is not stable. �

We need a further preliminary result.

Lemma 5.5. Let u ∈ S([n]2) and i ∈ [n] be such that u(i, i) 6= (i, i), u(i, a) =
(i, a), and u(d, a) = (d, a), where (a, b) := u(i, i) and (c, d) := u−1(i, i). Then u
is not stable.

Proof. One can show that

ψ2p−2(u)(i, i, . . . , i︸ ︷︷ ︸
2p

) = (c, d, i, i, . . . , i︸ ︷︷ ︸
2p−2

)

while
ψ2p−1(u)(i, i, . . . , i︸ ︷︷ ︸

2p+1

) = (i, i, . . . , i︸ ︷︷ ︸
2p+1

)

for all p ∈ N. This shows that ψ2p−1(u) 6= ψ2p−2(u)⊗ 1 for all p ∈ N so u is not
stable. �

We can now easily analyze the 3-cycles such that |R(u)| = 1.
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Corollary 5.6. Let u ∈ S([n]2) be a 3-cycle such that |R(u)| = 1. Then either
u is not stable or u is stable of rank 1.

Proof. Let u = ((i, a), (i, b), (i, c)) ((i, a), (i, b), (i, c) ∈ [n]2, distinct). If R(u) ∩
C(u) = ∅ (i.e., if i /∈ {a, b, c}) then, by Theorem 3.1 u is stable of rank 1. Else
i ∈ {a, b, c} and we may assume that i = a. Therefore u(i, i) = (i, b), and since
i 6= b, this implies that u(b, b) = (b, b) so the result follows from Lemma 5.4. �

The previous result shows that we may assume that (|R(u)|, |C(u)|) ∈ {(2, 2),
(2, 3), (3, 1), (3, 2), (3, 3)}. We begin with the case (|R(u)|, |C(u)|) = (2, 2).

Proposition 5.7. Let u ∈ S([n]2) be a 3-cycle such that |R(u)| = |C(u)| = 2.
Then either u is stable of rank ≤ 2 or u is not stable.

Proof. Let u = ((i, a), (j, b), (k, c)). Since |R(u)| = 2 we may assume that u =
((i, a), (j, b), (j, c)). Since |C(u)| = 2 we have that either u = ((i, a), (j, b), (j, a)),
or u = ((i, a), (j, a), (j, b)). By Theorem 3.1 we may assume that |R(u)∩C(u)| ≥
1.

Assume first that u = ((i, a), (j, b), (j, a)). If |R(u) ∩ C(u)| = 1 then either
a = i, or a = j, or b = i, or b = j. If a = i then u = ((i, i), (j, b), (j, i)) so u is
not stable by Lemma 5.5. If a = j then u = ((i, j), (j, b), (j, j)) so u is not stable
by Lemma 5.4. If b = i then u = ((i, a), (j, i), (j, a)) so u satisfies the equivalent
conditions of Theorem 5.2. Finally, if b = j then u = ((i, a), (j, j), (j, a)) so
u is not stable by Lemma 5.4. If |R(u) ∩ C(u)| = 2 then either (a, b) = (i, j)
or (a, b) = (j, i). In the first case u = ((i, i), (j, j), (j, i)) so u is not stable by
Lemma 5.5. In the second one u = ((i, j), (j, i), (j, j)) so u is not stable by
Lemma 5.4.

Assume now that u = ((i, a), (j, a), (j, b)). If |R(u) ∩ C(u)| = 1 then either
a = i, or a = j, or b = i, or b = j. If a = i then u = ((i, i), (j, i), (j, b)) so u
is not stable by Lemma 5.5. If a = j then u = ((i, j), (j, j), (j, b)) so u is not
stable by Lemma 5.4. If b = i then u = ((i, a), (j, a), (j, i)) so u is not stable by
Lemma 5.4. Finally, if b = j then u = ((i, a), (j, a), (j, j)) so u is not stable by
Lemma 5.3. If |R(u) ∩ C(u)| = 2 then either (a, b) = (i, j) or (a, b) = (j, i). In
the first case u = ((i, i), (j, i), (j, j)) so

ψ2p−2(u)(i, i, . . . , i︸ ︷︷ ︸
2p

) = (j, j, . . . , j︸ ︷︷ ︸
2p

)

for all p ∈ N, so u is not stable. In the second one u = ((i, j), (j, j), (j, i)) so u
is not stable by Lemma 5.4. �

We next analyze the case (|R(u)|, |C(u)|) = (2, 3). This means that |{i, j, k}| =
2, and that a, b, c are distinct, and we may assume that i = j.
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Proposition 5.8. Let u ∈ S([n]2) be a 3-cycle such that |R(u)| = 2 and |C(u)| =
3. Then either u is not stable or u is stable of rank ≤ 2.

Proof. As remarked, we may assume that u = ((i, a), (i, b), (k, c)) where a, b, c
are distinct, and i 6= k. If R(u) ∩ C(u) = ∅ then by Theorem 3.1 u is stable of
rank 1, so we may assume that |R(u) ∩ C(u)| ≥ 1. If c = i then u(k, i) = (i, a)
and u(a, a) = (a, a) so by Lemma 5.4 u is not stable. Similarly, if b = k then
u(i, k) = (k, c) and u(c, c) = (c, c) so again by Lemma 5.4 u is not stable. We
may henceforth assume that c 6= i and b 6= k.

Suppose first that |R(u) ∩C(u)| = 1. If u moves at least one element of the
diagonal of [n]2 then either i = a, or i = b, or k = c, and one can verify that
the hypotheses of Lemma 5.3 are satisfied, so u is not stable. If i 6= a, i 6= b,
and k 6= c, then u leaves the diagonal fixed and thus k = a. Then u satisfies the
equivalent conditions of Theorem 5.2.

Suppose now that |R(u) ∩ C(u)| = 2. Then, recalling that c 6= i and b 6= k,
we have that either (i, k) = (a, c), or (i, k) = (b, c), or (i, k) = (b, a). In the first
two cases one can verify that the hypotheses of Lemma 5.3 are satisfied and the
result follows. Otherwise u = ((i, k), (i, i), (k, c)) so

ψ2h−1(u)(i, i, k, . . . , i, k︸ ︷︷ ︸
2h

) = (i, k, . . . , i, k︸ ︷︷ ︸
2h

, i)

for all h ∈ N and u is not stable. �

We now turn our attention to the 3-cycles such that |R(u)| = 3.

Proposition 5.9. Let u ∈ S([n]2) be a 3-cycle such that |R(u)| = 3, |C(u)| = 1.
Then either u is stable of rank 1 or u is not stable.

Proof. If R(u)∩C(u) = ∅ then u is stable of rank 1 by Theorem 3.1. If |R(u)∩
C(u)| = 1 then we may assume that i = a = b = c, so u = ((i, i), (j, i), (k, i))
and u is not stable by Lemma 5.5. �

We next analyze the case (|R(u)|, |C(u)|) = (3, 2).

Proposition 5.10. Let u ∈ S([n]2) be a 3-cycle such that |R(u)| = 3, |C(u)| =
2. Then either u is not stable or u is stable of rank ≤ 2.

Proof. Let u = ((i, a), (j, b), (k, c)). Since |C(u)| = 2 we may assume that b = c
so u = ((i, a), (j, b), (k, b)). By Theorem 3.1 we may assume that |R(u)∩C(u)| ≥
1.

If |R(u) ∩ C(u)| = 1 then either a ∈ R(u) or b ∈ R(u). If a = i then
u = ((i, i), (j, b), (k, b)) so u is not stable by Lemma 5.3. If a = j then
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u = ((i, j), (j, b), (k, b)) so u is not stable by Lemma 5.4. If a = k then
u = ((i, k), (j, b), (k, b)) so u satisfies the equivalent conditions of Theorem 5.2.
If b = i then u = ((i, a), (j, i), (k, i)) so u is not stable by Lemma 5.4. If b = j
then u = ((i, a), (j, j), (k, j)) so u is not stable by Lemma 5.5. If b = k then
u = ((i, a), (j, k), (k, k)) so u is not stable by Lemma 5.5.

If |R(u) ∩ C(u)| = 2 then {a, b} ⊆ R(u). If (a, b) = (i, j) then u =
((i, i), (j, j), (k, j)) so u is not stable by Lemma 5.5. If (b, a) = (i, j) then
u = ((i, j), (j, i), (k, i)) and u is not stable by Lemma 5.4. If (a, b) = (i, k)
then u = ((i, i), (j, k), (k, k)) so u is not stable by Lemma 5.5. If (b, a) = (i, k)
then u = ((i, k), (j, i), (k, i)) so u is not stable by Lemma 5.4. If (a, b) = (j, k)
then u = ((i, j), (j, k), (k, k)) and u is not stable by Lemma 5.5. Finally, if
(b, a) = (j, k) then u = ((i, k), (j, j), (k, j)) so u is not stable by Lemma 5.5. �

Finally, we analyze the case (|R(u)|, |C(u)|) = (3, 3). For u ∈ S([n]2) and
i ∈ [n+1] recall (see [3, Sec. 7]) that the i-th immersion of u is the permutation
u(i) ∈ S([n+ 1]2) defined by

u(i)(x1, x2) :=

{
(x1, x2), if xj = i for some j ∈ [2],

u((x1, x2)
(i))<i>, otherwise,

for all x1, x2 ∈ [n + 1], where a(i) = a − χ(a ≥ i) and a<i> = a + χ(a ≥ i)
for a ∈ N, and (x1, . . . , xr)

<i> := (x<i>
1 , . . . , x<i>

r ) for (x1, . . . , xr) ∈ Nr and
similarly for (x1, . . . , xr)

(i).

Proposition 5.11. Let u ∈ S([n]2) be a 3-cycle such that |R(u)| = |C(u)| = 3.
Then either u is not stable or u is stable of rank ≤ 2.

Proof. We may assume that u = ((i, a), (j, b), (k, c)) where a, b, c are distinct,
and so are i, j, k. If R(u)∩C(u) = ∅ then by Theorem 3.1 u is stable of rank 1,
so we may assume that |R(u) ∩ C(u)| ≥ 1.

Suppose first that |R(u) ∩C(u)| = 3. Then R(u) = C(u) so u is the immer-
sion of a 3-cycle v in S([3]2) such that R(v) = C(v) = [3]. But one can check
that there are only 6 stable 3-cycles in S([3]2) (namely the ones listed in of [3,
Theorem 10.2]) and none of these has R(v) = C(v) = [3]. So v is not stable,
and hence, by [3, Theorem 7.8], u is not stable.

Suppose now that |R(u) ∩ C(u)| = 2. We claim that in this case u is not
stable. To see this one may assume that i, j ∈ {a, b, c}. If c = i then u(k, i) =
(i, a) and u(a, a) = (a, a) so by Lemma 5.4 u is not stable. Similarly, if a = j
then again by Lemma 5.4 u is not stable. We may henceforth assume that
a 6= j, and c 6= i. We therefore have three cases to consider, namely (i, j) =
(a, b), (i, j) = (a, c), and (i, j) = (b, c). If (i, j) = (a, b) then u(i, i) = (j, j),
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j 6= i, and c /∈ R(u), so by Lemma 5.3 u is not stable. If (i, j) = (a, c) then
u = ((i, i), (j, b), (k, j)) and one can compute that

ψ2p−1(u)(i, i, b, k, j, . . . , k, j︸ ︷︷ ︸
2p−2

) = (k, i, k, j, . . . , k, j︸ ︷︷ ︸
2p−2

, i)

for all p ∈ N, so u is not stable. Finally, if (i, j) = (b, c), then u = ((i, a), (j, i), (k, j)),
and one can compute that

ψ4p−2(u)(k, i, a, a, . . . , k, i, a, a︸ ︷︷ ︸
4p

) = (j, i, k, i, a, a, . . . , k, i, a, a︸ ︷︷ ︸
4p−4

, k, j)

for all p ∈ N, so u again is not stable.
Finally, suppose that |R(u) ∩ C(u)| = 1. We may assume that i ∈ {a, b, c}.

If i = a then u is not stable by Lemma 5.3. If i = b then u is stable of rank 2
by Theorem 5.2. If i = c then u is not stable by Lemma 5.4. �

The analysis carried out so far enables us to conclude that the following
holds.

Theorem 5.12. Let u ∈ S([n]2) be a 3-cycle. Then the following conditions are
equivalent:

i) u is stable;

ii) u is stable of rank ≤ 2;

iii) u is a compatible product of two stable transpositions.

Moreover, u is stable of rank 1 if and only if R(u) ∩ C(u) = ∅, and u is stable
of rank 2 if and only if the conditions in (9) of Theorem 5.2 hold. In particular,
if u is stable of rank 2 then |R(u) ∩ C(u)| = 1.

Proof. It is clear that ii) implies i), and it follows from Theorems 2.2 and 2.5
that iii) implies ii). So assume that i) holds. Let u := ((a1, b1), (a2, b2), (a3, b3))
((a1, b1), (a2, b2), (a3, b3) ∈ [n]2, distinct). If R(u) ∩C(u) = ∅ then u is stable of
rank 1 by Theorem 3.1. Furthermore, we have that

u = ((a1, b1), (a2, b2)) ((a2, b2), (a3, b3))

and these two transpositions are stable of rank 1 by our hypotheses and Theorem
2.5, and are compatible by [3, Proposition 5.15]. If |R(u) ∩ C(u)| ≥ 1 then the
analysis carried out in this section shows that u always satisfies the conditions
of Theorem 5.2 so iii) holds. �
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The preceding result enables us to enumerate the stable 3-cycles in S([n]2).

Corollary 5.13. In S([n]2) there are

n(n− 1)(n− 2)(n2 − 5n+ 7)

stable 3-cycles of rank 2. Thus, there are

n(n− 1)(n− 2)(n3 − 3n2 − 2n+ 9)/3

stable 3-cycles.

Proof. Note first that the conditions in (9) of Theorem 5.2, for any given i ∈ [3],
imply that (a1, b1), (a2, b2), (a3, b3) are all distinct. Furthermore these conditions
are mutually exclusive for i ∈ [3]. So assume that they hold for i = 1. We then
have n choices for a1 = b2. If a2 = a3 then, in order to satisfy the condition
that b2 /∈ {a2, a3} we have n − 1 choices for this common value, and, since
b1, b3 /∈ {a1, a2, a3}, (n − 2)2 choices for the pair (b1, b3). If a2 6= a3 then, in
order to satisfy the condition that b2 /∈ {a2, a3} we have (n− 1)(n− 2) choices
for the pair (a2, a3), and, since b1, b3 /∈ {a1, a2, a3}, (n− 3)2 choices for the pair
(b1, b3). Therefore there are in total n(n− 1)(n− 2)2 + n(n− 1)(n− 2)(n− 3)2

possibilities.
The second statement follows from the first one and [3, Corollary 8.8] (see

also Proposition 4.5). �

6 Beyond 3-cycles

In this section we begin the analysis of the stable 4-cycles of S([n]2), building
upon the results in the previous section. More precisely, we characterize the
4-cycles of S([n]2) that are a compatible product of a stable transposition and
a stable 3-cycle in the two possible orders.

Proposition 6.1. Let r ∈ N, r ≥ 3, (a1, b1), (a2, b2), . . . , (ar, br) ∈ [n]2 be
distinct, and w := ((a1, b1), (a2, b2), . . . , (ar, br)) be such that there is i ∈ [r] so
that ak = bj if and only if j = i+ 1, and k = i, for all k, j ∈ [r] (where indices
are taken modulo r). Then w is stable of rank ≤ r, and w is a compatible product
of r − 1 stable transpositions.

Proof. Let, for brevity Pj := (aj , bj) for j ∈ [r]. We may clearly assume that
a2 = b3. We proceed by induction on r. If r = 3 then we have that w = uv
where u = (P1, P3), and v = (P1, P2). Furthermore, by our hypotheses and [3,
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Theorem 8.1], u and v are stable and, by [3, Proposition 5.6], u is compatible
with v, so the claim follows from [3, Theorem 5.2].

Assume now that r ≥ 4. Then we have that w = uv where u = (P1, Pr), and
v = (P1, P2, . . . , Pr−1). Since r ≥ 4, we have by induction, our hypotheses, and
[3, Theorem 8.1] that u is stable, v is stable of rank ≤ r−1, and v is a compatible
product of r − 2 stable transpositions. Furthermore, again by our hypotheses,
v(x, a1) = (x, a1) and v(x, ar) = (x, ar) for all x ∈ [n], so by Propositions 5.6
and 5.7 of [3] u is compatible with v, and the result follows from [3, Theorem
5.2]. �

Theorem 6.2. Let (a1, b1), . . . , (a4, b4) ∈ [n]2 be distinct, and w := ((a1, b1), . . . ,
(a4, b4)) be a 4-cycle such that R(w) ∩ C(w) 6= ∅. Then w is a compatible
product of a stable transposition and a stable 3-cycle, in this order, if and only
if ai, ai+1 /∈ C(w), and either

{ai+2, ai+3} ∩ {bi+1, bi+2, bi+3} = ∅, (13)

or
bi+3 = ai+2, bi+3 6= ai+3, {bi+2, bi+1} ∩ {ai+2, ai+3} = ∅ (14)

or
bi+1 = ai+3, bi+1 6= ai+2, {bi+3, bi+2} ∩ {ai+2, ai+3} = ∅ (15)

for some i ∈ [4] (where indices are taken modulo 4). In particular, if these
conditions are satisfied, ai+2 /∈ {bi+1, bi+2}, and ai+3 /∈ {bi+2, bi+3}. Also, if
(13) holds, then bi ∈ {ai+2, ai+3}.

Proof. Let u, v ∈ S([n]2) be such that u is a stable transposition, v is a stable
3-cycle, u is compatible with v, and w = uv. Say v = (P2, P3, P4) (P2, P3, P4 ∈
[n]2, distinct), and u = (A,B) (A,B ∈ [n]2, distinct). Since uv is a 4-cycle
|{A,B}∩{P2, P3, P4}| = 1. We may assume thatB = P2, so w = (A,P2)(P2, P3, P4).
Let P1 := A, so w = (P1, P2, P3, P4) = (P1, P2)(P2, P3, P4). Without loss of gen-
erality it is enough to consider the case (ai, bi) := Pi for i ∈ [4].

By [3, Theorem 8.1] u is stable if and only if

{a1, a2} ∩ {b1, b2} = ∅. (16)

Similarly, by Theorem 5.12, v is stable if and only if either

{a2, a3, a4} ∩ {b2, b3, b4} = ∅, (17)

or
b3 = a2, {b2, b4} ∩ {a2, a3, a4} = ∅, b3 /∈ {a3, a4} (18)
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or
b4 = a3, {b3, b2} ∩ {a2, a3, a4} = ∅, b4 /∈ {a4, a2} (19)

or
b2 = a4, {b4, b3} ∩ {a2, a3, a4} = ∅, b2 /∈ {a2, a3}. (20)

Finally, since u is compatible with v, we have by Propositions 5.6 and 5.7 of [3]
that there are σ ∈ Sn, and (ε1, . . . , εn) ∈ S({a1, a2})n such that

v(x, a1) = (σ(x), εx(a1)), v(x, a2) = (σ(x), εx(a2)) (21)

for all x ∈ [n] (where ε1 = · · · = εn = Id if b1 6= b2). In particular, v must leave
the union of the columns indexed by a1 and a2 invariant. However, by (16), P2

is not in this union, so, since v is a 3-cycle, v leaves every element of this union
fixed. So we conclude that

v(x, a1) = (x, a1), v(x, a2) = (x, a2) (22)

for all x ∈ [n]. This, in turn, is equivalent to

b2, b3, b4 /∈ {a1, a2}. (23)

Conversely, if (22) holds then, by Propositions 5.6 and 5.7 of [3], u is compatible
with v. The result follows noting that (18) is impossible by (23).

Note that, if any one of (17), (19) or (20) is satisfied then a3 /∈ {b2, b3} and
a4 /∈ {b3, b4}. Finally, suppose that (17) holds. Then, since R(w) ∩ C(w) 6= ∅
we have that either a1 ∈ {b3, b4} or b1 ∈ {a3, a4}. So, by (23), we have that
b1 ∈ {a3, a4}. �

It is possible to enumerate the 4-cycles satisfying the conditions in Theorem
(6.2). To this end, it is convenient to introduce the following sets

Dn :=
{

(a1, a2, a3, a4, b1, b2, b3, b4) ∈ [n]8 | (a1, b1), . . . , (a4, b4) mutually distinct,

{a1, . . . , a4} ∩ {b1, . . . , b4} 6= ∅
}

Ui =
{

(a1, a2, a3, a4, b1, b2, b3, b4) ∈ Dn : ai, ai+1 /∈ {b1, b2, b3, b4},

{ai+1, ai+2, ai+3} ∩ {bi+1, bi+2, bi+3} = ∅
}

Vi =
{

(a1, a2, a3, a4, b1, b2, b3, b4) ∈ Dn : ai, ai+1 /∈ {b1, b2, b3, b4},

ai+2 = bi+3, {bi+2, bi+1} ∩ {ai+1, ai+2, ai+3} = ∅, bi+3 /∈ {ai+3, ai+1}
}

Wi =
{

(a1, a2, a3, a4, b1, b2, b3, b4) ∈ Dn : ai, ai+1 /∈ {b1, b2, b3, b4},

ai+3 = bi+1, {bi+3, bi+2} ∩ {ai+1, ai+2, ai+3} = ∅, bi+1 /∈ {ai+1, ai+2}
}
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for i ∈ [4] (of course, indices are taken modulo 4). For brevity, we let (n)k :=
n(n− 1) · · · (n− k + 1) for k ∈ N.

Proposition 6.3. The number of 4-cycles in S([n]2) satisfying the conditions
in Theorem 6.2 is equal to

2(n)4(n
3 − 7n2 + 17n− 13).

Proof. First observe that for a fixed i the three sets Ui, Vi and Wi are mutually
disjoint. We set Zi := Ui ∪ Vi ∪Wi. Hence, the cardinality of Zi is equal to the
sum of the cardinalities of Ui, Vi and Wi. Moreover, one has Zi ∩ Zi+2 = ∅. It
is clear that the cycles as in the statement arise from the elements in the union
of ∪4i=1Zi and, taking into account cyclic order, their number is given by the
cardinality of ∪4i=1Zi divided by 4.

For i, j, l,m ∈ [4], let

Lij =
{

(a1, . . . , b4) ∈ Dn : ai = bj and ah 6= bk for all (h, k) 6= (i, j)
}

Lij,lm =
{

(a1, . . . , b4) ∈ Dn : ai = bj , al = bm,

and ah 6= bk for all (h, k) /∈ {(i, j), (l,m)}
}
.

Note that Lij,lm = Llm,ij . Then U1 = L31∪L41∪L31,41, U2 = L12∪L42∪L12,42,
U3 = L13 ∪ L23 ∪ L13,23, U4 = L24 ∪ L34 ∪ L24,34, V1 = L34 ∪ L31,34 ∪ L41,34,
V2 = L41 ∪ L41,42 ∪ L41,12, V3 = L12 ∪ L12,13 ∪ L12,23, V4 = L23 ∪ L23,24 ∪ L23,34,
W1 = L42∪L42,41∪L42,31, W2 = L13∪L13,12∪L13,42, W3 = L24∪L24,23∪L24,13,
W4 = L31 ∪ L31,34 ∪ L31,24 (all disjoint unions).

We begin by computing the cardinality of L23. The computation of the
cardinality of Lij (i 6= j) is identical. Here, we have that b1, b2, b4, and a1, a3, a4
are all different from a2 = b3. There are five cases. If b1, b2, b4 are mutually
distinct, we have (n)4 (n − 4)3 different choices for a1, . . . , b4. Indeed there are
(n)4 possibilities for b1, . . . , b4 and, for each one of these, (n − 4)3 possibilities
for a1, a3, a4 since they must be different from the b’s; as the b’s are all distinct,
it is also clear that the four pairs (ai, bi) are mutually distinct. If b1 = b2, b4 are
distinct, we similarly have (n)3 (n − 3)3 choices; as a1 6= a2, again the (ai, bi)
are automatically mutually distinct. If b2 = b4, b1 are distinct, we conclude as
above that there are (n)3 (n − 3)3 choices. If b1 = b4, b2 are distinct, there are
(n)3(n− 3)2(n− 4) choices; the computation is similar except that now a1 must
be different from a4. If b1 = b2 = b4 there are (n)2 (n− 2)2(n− 3) choices since,
again, a1 and a4 must be different. All in all, the cardinality of L23 is

(n)4 (n− 4)3 + 2(n)3 (n− 3)3 + (n)3(n− 3)2(n− 4) + (n)2 (n− 2)2(n− 3) .
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Next, we compute the cardinality of L23,24 (and, more generally, of Lij,il). Here,
we have a2 = b3 = b4 and a1, a3, a4, b1, b2 are all different from this value. There
are two cases. If b1 6= b2, there are (n)3 (n− 3)2(n− 4) choices; indeed, we must
have a3 6= a4. If b1 = b2 there are similarly (n)2 (n− 2)2(n− 3) choices. All in
all, the cardinality of L23,24 is

(n)3 (n− 3)2(n− 4) + (n)2 (n− 2)2(n− 3) .

Note that a simple bijection shows that |Lij,il| = |Lji,li|.
Finally, we compute the cardinality of L41,34 (and, more generally, of Lij,lm

with i 6= l, j 6= m). Here, b4 = a3, b1 = a4, b1 6= b4, and a1, a2, b2, b3 are different
from b1, b4. There are two cases. If b2 = b3 there are (n)3 (n− 3)2 possibilities.
If b2 6= b3 there are (n)4 (n− 4)2 possibilities. Thus, the cardinality of L41,34 is

(n)3 (n− 3)2 + (n)4 (n− 4)2 .

It readily follows that the cardinality of Ui is

2
(

(n)4 (n− 4)3 + 2(n)3 (n− 3)3 + (n)3(n− 3)2(n− 4) + (n)2 (n− 2)2(n− 3)
)

+ (n)3 (n− 3)2(n− 4) + (n)2 (n− 2)2(n− 3)

while that of Vi and Wi is

(n)4 (n− 4)3 + 2(n)3 (n− 3)3 + (n)3(n− 3)2(n− 4) + (n)2 (n− 2)2(n− 3)

+ (n)3 (n− 3)2(n− 4) + (n)2 (n− 2)2(n− 3) + (n)3 (n− 3)2 + (n)4 (n− 4)2

for all i ∈ [4]. Therefore, for each i the cardinality of Zi is |Ui| + 2|Vi|. Note
that, since Z1 ∩Z3 = Z2 ∩Z4 = ∅, the intersection of any three or more distinct
Zi’s is empty. Hence, by the Principle of Inclusion-Exclusion, | ∪4i=1 Zi| =
4|Z1| − |Z1 ∩Z2| − |Z1 ∩Z4| − |Z2 ∩Z3| − |Z3 ∩Z4|. These four intersections all
have the same cardinality, so we compute |Z1∩Z2|. We have, from our definitions
of Zi that Z1∩Z2 = (U1∩U2)∪(U1∩V2)∪(U1∩W2)∪(V1∩U2)∪(V1∩V2)∪(V1∩
W2)∪ (W1∩U2)∪ (W1∩V2)∪ (W1∩W2). It is not hard to check that all of these
pairwise intersections are empty except that U1 ∩V2 = L41, W1 ∩U2 = L42, and
W1∩V2 = L41,42, and these three sets are mutually disjoint. Hence we conclude
that |∪4i=1Zi| = 4|Z1|−4|Z1∩Z2| = 8|L1,2|+8|L41,42|+8|L12,34|. The conclusion
follows at once. �

Theorem 3.1 shows that there are stable 4-cycles of rank 1. The preceding
result implies that other values of the rank are also possible.
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Corollary 6.4. Let (a1, b1), . . . , (a4, b4) ∈ [n]2 be distinct, and w := ((a1, b1), . . . ,
(a4, b4)) be a 4-cycle satisfying the hypotheses of Theorem 6.2. Then the rank
of w is 2 if and only if w ∈ Ui ∪ Li+2 i,i+2 i+3 for some i ∈ [4] (indices modulo
4), and is 3 otherwise.

Proof. Let u, v ∈ S([n]2) be such that u is a stable transposition, v is a stable
3-cycle, u is compatible with v, and w = uv. Then by [3, Theorem 8.1] u has
rank 1, and by Theorem 5.12 v has rank ≤ 2. So, by [3, Theorem 5.2] w has
rank ≤ 3.

If w ∈ Ui for some i ∈ [4] then by Theorem 3.1, v has rank 1, so by [3,
Theorem 5.2] w has rank ≤ 2. But, again by Theorem 3.1, w has rank > 1.

Suppose now that w ∈ Li+2 i,i+2 i+3 for some i ∈ [4]. We assume, for
simplicity, that i = 1. Then the statement would follow by a straightfor-
ward, albeit lengthy, computation by considering several cases. To avoid this
long checking we use a powerful result from the next section. Namely, w# =
((b1, a1)(b4, a4)(b3, a3)(b2, a2)) is stable of rank r if and only if w is stable of rank
r, see Theorem 7.3. Since w ∈ L3 1,3 4, we have w# ∈ L1 2,4 2 ⊂ U4. Hence, w#

and w both have rank 2 by the previous case.
Conversely, suppose that w /∈ U1∪U2∪U3∪U4∪L31,34∪L42,41∪L13,12∪L24,23.

Since w satisfies the conditions in Theorem 6.2 there is i ∈ [4] such that either
w ∈ Vi or w ∈Wi. But

Vi \ (U1 ∪ U2 ∪ U3 ∪ U4) = Vi \ Ui+3 = Li+2 i,i+2 i+3 ∪ Li+3 i,i+2 i+3

and similarly

Wi \ (U1 ∪ U2 ∪ U3 ∪ U4) = Wi \ Ui+3 = Li+3 i,i+3 i+1 ∪ Li+2 i,i+3 i+1.

Hence, in order to finish the proof, it is sufficient to show that if w ∈ Li+3 i,i+2 i+3∪
Li+2 i,i+3 i+1 for some i ∈ [4] then w has rank three. We may assume that i = 1.

In the first case, the 4-cycle takes the form

w =
(
(a1, a4), (a2, b2), (a3, b3), (a4, a3)

)
;

now, if we compute ψ2(w)(a1, a4, a2, b2) and (ψ1(w)⊗1)(a1, a4, a2, b2), we easily
get (a1, a4, a2, b2) and (a4, a3, a2, b2), respectively, thus showing that w has rank
larger than two as a1 6= a4.

In the second case, the 4-cycle takes the form

w =
(
(a1, a3), (a2, a4), (a3, b3), (a4, b4)

)
;

we check that ψ2(w)(a1, a2, a3, b3) = (a4, b4, b3, b4) while (ψ1(w)⊗1)(a1, a2, a3, b3)
is equal to (a1, a1, a3, b3) when a1 = a2 and to (a1, a2, a3, b3) when a1 6= a2; since
a1 6= a4, w has rank larger than two. �
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There is a version of the previous result also in the case that the 4-cycle w
is a compatible product of a stable 3-cycle and a stable transposition, in this
order. To see this note first the following “symmetric” versions of Propositions
5.6 and 5.7 of [3]. Their proofs are exactly analogous to those of Propositions
5.6 and 5.7 in [3] and are therefore omitted.

Proposition 6.5. Let u = ((a, b), (i, j)), where a, b, i, j ∈ [n], a 6= i, and v ∈
S([n]2). Then (u⊗ 1)(1⊗ v) = (1⊗ v)(u⊗ 1) if and only if there is σ ∈ Sn such
that v(k, x) = (k, σ(x)) for all x ∈ [n] and all k ∈ {b, j}.

Proposition 6.6. Let u = ((a, b), (a, j)), where a, b, j ∈ [n], b 6= j, and v ∈
S([n]2). Then (u ⊗ 1)(1 ⊗ v) = (1 ⊗ v)(u ⊗ 1) if and only if there are σ ∈ Sn
and ε ∈ S({b, j})n such that

v(b, x) = (εx(b), σ(x)), v(j, x) = (εx(j), σ(x))

for all x ∈ [n].

Corollary 6.7. Let u = ((a, b), (i, j)), where (a, b), (i, j) ∈ [n]2, distinct, and
v ∈ S([n]2) be a 3-cycle. Then (u⊗ 1)(1⊗ v) = (1⊗ v)(u⊗ 1) if and only if

v(k, x) = (k, x)

for all x ∈ [n] and all k ∈ {b, j}.

Theorem 6.8. Let (a1, b1), . . . , (a4, b4) ∈ [n]2 be distinct, and w := ((a1, b1), . . . ,
(a4, b4)) be a 4-cycle such that R(w) ∩ C(w) 6= ∅. Then w is a compatible
product of a stable 3-cycle, and a stable transposition in this order, if and only
if bi, bi+3 /∈ R(w), and either

{ai+1, ai+2, ai+3} ∩ {bi+1, bi+2, bi+3} = ∅, (24)

or
bi+2 = ai+1, bi+2 /∈ {ai+2, ai+3}, bi+1 /∈ {ai+1, ai+2, ai+3} (25)

or
bi+1 = ai+3, bi+2 /∈ {ai+1, ai+2, ai+3}, bi+1 /∈ {ai+1, ai+2}, (26)

for some i ∈ [4] (where indices are taken modulo 4). In particular, if these
conditions are satisfied, bi+1 /∈ {ai+1, ai+2}, and bi+2 /∈ {ai+2, ai+3}. Also, if
(24) holds, then ai ∈ {bi+1, bi+2}.
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Proof. Let w = vu with u a stable transposition, v a stable 3-cycle, and v
compatible with u. Then reasoning as in the proof of Theorem 6.2 we conclude
that v = ((a2, b2), (a3, b3), (a4, b4)), and u = ((a1, b1), (a4, b4)). Since u and v are
stable, and v is compatible with u we conclude from [3, Theorem 8.1], Theorem
6.2, and Corollary 6.7 that

{a1, a4} ∩ {b1, b4} = ∅,

b1, b4 /∈ {a2, a3, a4} (27)

and either
{a2, a3, a4} ∩ {b2, b3, b4} = ∅, (28)

or
b3 = a2, {b2, b4} ∩ {a2, a3, a4} = ∅, b3 /∈ {a3, a4} (29)

or
b4 = a3, {b3, b2} ∩ {a2, a3, a4} = ∅, b4 /∈ {a4, a2} (30)

or
b2 = a4, {b4, b3} ∩ {a2, a3, a4} = ∅, b2 /∈ {a2, a3}. (31)

Note that , by (27), equation (30) cannot hold. The conclusion follows easily
from these equations. �

Note that a 4-cycle ((a1, b1), . . . , (a4, b4)) ∈ S([n]2) satisfies the conditions
in Theorem 6.2 if and only if the 4-cycle ((b4, a4), . . . , (b1, a1)) satisfies those
in Theorem 6.8. Indeed, if the 4-cycle w ∈ S([n]2) is such that w = uv with
u a stable transposition, v a stable 3-cycle, and u compatible with v, then
t(w−1) =t (v−1)t(u−1) and (v ⊗ 1)(1 ⊗ u) = (1 ⊗ u)(v ⊗ 1). Therefore, by [3,
Proposition 5.13], (t(u−1)⊗ 1)(1⊗ t(v−1)) = (1⊗ t(v−1))(t(u−1)⊗ 1), so t(v−1)
is compatible with t(u−1). But, by [3, Theorem 8.1], t(u−1) =t u is a stable
transposition and, by Theorem 7.3, t(v−1) is a stable 3-cycle.

We are confident that a “symmetric” version of Corollary 6.4 holds also for
the 4-cycles satisfying the conditions in Theorem 6.8. We omit carrying this out
in order to keep the paper to a reasonable size.

To continue the investigation of stable 4-cycles one would now need to see
if a stable 4-cycle necessarily satisfies either the conditions of Theorem 6.2 or
those of Theorem 6.8.

By our results, the following conjecture has been verified for r = 2, 3, and
partially for r = 4.

Conjecture 6.9. Let u ∈ S([n]2) be a stable r-cycle, then the rank of u belongs
to the set {1, 2, . . . , r − 1}.
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7 An involution on stable permutations

In this section we show that the set of stable permutations possesses a natural
and non-trivial involution, which preserves the rank and the cycle-type (so the
conjugacy class). This involution extends the symmetries of the stable permu-
tations discussed in [3, Sec. 6] and moreover fits well with the content of the
previous section.

For u ∈ S([n]r) write

(u1(x1, . . . , xr), . . . , ur(x1, . . . , xr)) := u(x1, . . . , xr)

for all (x1, . . . , xr) ∈ [n]r. We let tu ∈ S([n]r) be the transposed permutation
defined by

tu(x1, . . . , xr) := (ur(xr, . . . , x1), . . . , u1(xr, . . . , x1)), (32)

for all (x1, . . . , xr) ∈ [n]r. Note that tu = u if r = 1. Equivalently, tu =

w
(r)
0 uw

(r)
0 , where w

(r)
0 ∈ S([n]r) is defined by w

(r)
0 (x1, . . . , xr) := (xr, . . . , x1) for

all (x1, . . . , xr) ∈ [n]r. Note that this concept coincides (for r = 2) with the one
by the same name defined in [3, Sec. 3] (for n = m).

We note the following simple properties of the transpose.

Proposition 7.1. Let u, v ∈ S([n]r). Then

i) t(uv) = tutv;

ii) t(u⊗ v) = tv ⊗ tu.

Proof. The first identitiy follows readily from the fact that w
(r)
0 is an involution.

The second one is a straightforward computation using the definition. �

Note that, if u ∈ S([n]r), then t(u−1) = (tu)−1. Indeed, by Proposition
7.1 uv = 1 if and only if tutv = 1. In particular, the map u 7→ t(u−1) is an
involution. For u ∈ S([n]r) let u# := t(u−1) ∈ S([n]r).

We then have the following consequence of the previous result.

Proposition 7.2. Let u, v ∈ S([n]2). Then

i) (uv)# = v#u#;

ii) u is compatible with v if and only if v# is compatible with u#.

Proof. The first point is clear from Proposition 7.1. If u is compatible with v
then (v ⊗ 1)(1 ⊗ u) = (1 ⊗ u)(v ⊗ 1). Therefore, by Proposition 7.1, (t(u−1) ⊗
1)(1⊗ t(v−1)) = (1⊗ t(v−1))(t(u−1)⊗ 1), so v# is compatible with u#. �
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We can now prove the main result of this section.

Theorem 7.3. Let u ∈ S([n]t). Then u is stable of rank r if and only if u# is
stable of rank r.

Proof. Let, for brevity, v = u#. We begin by noting that

(ψk(u))# = (v ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)(1⊗ v ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

) · · · (1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗ v ⊗ 1)

(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ v−1)(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗ v−1 ⊗ 1) · · · (v−1 ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
k

).

Recall that a permutation u ∈ S([n]t) is stable of rank r if and only if r is
the minimum positive integer k such that ψk(u) = ψk−1(u) ⊗ 1 for all k ≥ r.
Equivalently, by (2), r is the minimum positive integer k such that, for all k ≥ r,

(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u)(ψk−1(u)⊗ 1) = (ψk−1(u)⊗ 1)(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u). (33)

We will show that (33) holds for u if and only if it holds for v, and this will
prove the result. Let

Ak(u) := (1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗u−1⊗1)(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗u−1⊗1⊗1) · · · (1⊗u−1⊗1⊗ . . .⊗ 1︸ ︷︷ ︸
k

).

Note that ψk−1(u)⊗1 = Ak−1(u) (u−1⊗1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)Ak−1(u)−1, and thatAk(u)# =

Ak(v). Therefore we obtain that u satisfies (33) if and only if

(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u)Ak−1(u) (u−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)Ak−1(u)−1 =

Ak−1(u) (u−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)Ak−1(u)−1(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ u)

and similarly for v. Taking the transpose of this equation we obtain that it
holds if and only if

(v−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)Ak−1(v)−1(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ v)Ak−1(v) =

Ak−1(v)−1 (1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ v)Ak−1(v) (v−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)
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which in turn is equivalent to

Ak−1(v) (v−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)Ak−1(v)−1(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ v) =

(1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

⊗ v)Ak−1(v) (v−1 ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k

)Ak−1(v)−1

which concludes the proof. �

8 The box product

In this section we introduce a new binary operation on permutations that pre-
serves stability.

Let n,m, r ∈ N, u ∈ S([n]r), and v ∈ S([m]r). We let the box product of u
and v be the permutation u� v ∈ S([nm]r) defined by

(u� v)((a1, b1), . . . , (ar, br)) := ((c1, d1), . . . , (cr, dr))

for all (a1, b1), . . . , (ar, br) ∈ [n]×[m] (where we identify [n]×[m] and [nm] lexico-
graphically), where (c1, . . . , cr) := u(a1, . . . , ar), and (d1, . . . , dr) := v(b1, . . . , br).
Note that u� v = L(u⊗ v)L−1, where L : [n]r × [m]r → [nm]r is the bijection
defined by L(a1, . . . , ar, b1, . . . , br) := ((a1, b1), . . . , (ar, br)).

Our first result lists some useful properties of the box product.

Proposition 8.1. Let u ∈ S([n]r), v ∈ S([m]r), w ∈ S([n]t), and z ∈ S([m]t)
(n,m, r, t ∈ N). Then

i) (u� v)(w � z) = (uw) � (vz), if t = r;

ii) (u� v)−1 = (u−1 � v−1);

iii) (u⊗ w) � (v ⊗ z) = (u� v)⊗ (w � z) ∈ S([nm]r+t).

In particular, (u⊗ 1n)� (v⊗ 1m) = (u� v)⊗ 1nm ∈ S([nm]r+1), and (1n⊗u)�
(1m ⊗ v) = 1nm ⊗ (u� v) ∈ S([nm]r+1), where 1i denotes the identity of Si.

Proof. The first two identities are clear. To verify the third one let (a1, b1), . . . ,
(ar+t, br+t) ∈ [nm]r+t (recall that we identify [n] × [m] and [nm] lexicographi-
cally). Then we have that

(u⊗w)�(v⊗z)((a1, b1), . . . , (ar+t, br+t)) = ((c1, d1), . . . , (cr, dr), (f1, g1), . . . , (ft, gt))
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where (c1, . . . , cr) := u(a1, . . . , ar), (d1, . . . , dr) := v(b1, . . . , br), (f1, . . . , ft) :=
w(ar+1, . . . , ar+t), and (g1, . . . , gt) := z(br+1, . . . , br+t), and

(u�v)⊗(w�z)((a1, b1), . . . , (ar+t, br+t)) = ((c1, d1), . . . , (cr, dr), (f1, g1), . . . , (ft, gt)),

as claimed. �

We can now prove that the box product preserves stability.

Theorem 8.2. Let u ∈ S([n]r), v ∈ S([m]r) (n,m, r ∈ N) be stable of ranks s
and t, respectively. Then u� v ∈ S([nm]r) is stable of rank ≤ max{s, t}.

Proof. We claim that, for any k ∈ N0,

ψk(u� v) = ψk(u) � ψk(v). (34)

Indeed, this is clear for k = 0 by Proposition 8.1. If k ≥ 1 then by induction,
(2), and repeated use of Proposition 8.1 we have that

ψk(u� v) = (1nm ⊗ . . .⊗ 1nm︸ ︷︷ ︸
k

⊗ (u−1 � v−1))(ψk−1(u� v)⊗ 1nm)

× (1nm ⊗ . . .⊗ 1nm︸ ︷︷ ︸
k

⊗ (u� v))

=
(
(1n ⊗ . . .⊗ 1n︸ ︷︷ ︸

k

⊗ u−1) � (1m ⊗ . . .⊗ 1m︸ ︷︷ ︸
k

⊗ v−1)
)

×
(
(ψk−1(u)⊗ 1n) � (ψk−1(v)⊗ 1m)

)
×
(
(1n ⊗ . . .⊗ 1n︸ ︷︷ ︸

k

⊗ u) � (1m ⊗ . . .⊗ 1m︸ ︷︷ ︸
k

⊗ v)
)

=
(
(1n ⊗ . . .⊗ 1n︸ ︷︷ ︸

k

⊗ u−1)(ψk−1(u)⊗ 1n)(1n ⊗ . . .⊗ 1n︸ ︷︷ ︸
k

⊗ u)
)

�
(
(1m ⊗ . . .⊗ 1m︸ ︷︷ ︸

k

⊗ v−1)(ψk−1(v)⊗ 1m)(1m ⊗ . . .⊗ 1m︸ ︷︷ ︸
k

⊗ v)
)

= ψk(u) � ψk(v).

Now, by our hypotheses,

ψk(u) = ψs−1(u)⊗ 1n ⊗ . . .⊗ 1n︸ ︷︷ ︸
k−s+1

for all k ≥ s− 1, and

ψh(v) = ψt−1(v)⊗ 1m ⊗ . . .⊗ 1m︸ ︷︷ ︸
h−t+1
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for all h ≥ t− 1. Say s ≥ t. Then, if k ≥ s− 1, by (34) and Proposition 8.1

ψk(u�v) = ψk(u)�ψk(v) = (ψs−1(u)�(ψt−1⊗1m ⊗ . . .⊗ 1m︸ ︷︷ ︸
s−t

))⊗1nm ⊗ . . .⊗ 1nm︸ ︷︷ ︸
k−s+1

,

if k ≥ s− 1. Therefore,

ψk(u� v) = ψs−1(u� v)⊗ 1nm ⊗ . . .⊗ 1nm︸ ︷︷ ︸
k−s+1

,

so, by our definitions, u� v is stable of rank ≤ s. Similarly if s < t. �

By the correspondence between permutative automorphisms of the Cuntz al-
gebras and stable permutations the previous result gives a way to produce, from
two permutative automorphisms of On and Om a permutative automorphism of
Onm.
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