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We revisit real-valued preconditioned iterative methods for the solution of complex linear systems, with
an emphasis on symmetric (non-Hermitian) problems. Different choices of the real equivalent formu-
lation are discussed, as well as different types of block preconditioners for Krylov subspace methods.
We argue that if either the real or the symmetric part of the coefficient matrix is positive semidefinite,
block preconditioners for real equivalent formulations may be a useful alternative to preconditioners
for the original complex formulation. Numerical experiments illustrating the performance of the various
approaches are presented.
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1. Introduction

In this paper, we consider nonsingular linear systems of equations of the form

Cz = d, with C = A + iB, z = x + iy and d = b + ic. (1.1)

Here i =
√

−1, then × n matricesA and B are real and the vectorsx, y, b andc are all inRn. We
are especially interested in the symmetric case:A = AT 6= O and B = BT 6= O. Note that these
conditions rule out the Hermitian and skew-Hermitian cases. Complex symmetric systems arise in
a number of applications, including wave propagation (Sommerfeld, 1949), diffuse optical tomogra-
phy (Arridge, 1999, Section 3.3), quantum mechanics (numerical integration of the time-dependent
Schr̈odinger equation by implicit methods) (van Dijk & Toyama, 2007), electromagnetism (Maxwell’s
equations) (Hiptmair, 2002), molecular scattering (Poirier, 2000), structural dynamics (frequency re-
sponse analysis of mechanical systems) (Feriani et al., 2000), electrical power system modelling
(Howle & Vavasis, 2005) and lattice quantum chromodynamics (Frommer et al., 2000). Another
important source of complex symmetric linear systems is the discretization of certain self-adjoint
integrodifferential equations arising in environmental modelling (see, e.g.Gambolati & Pini, 1998).

In all these applications, the matrices are large and usually sparse; hence, preconditioned Krylov
subspace methods are a natural choice. There are two options: either tackling then × n system (1.1)
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directly or working with one of the several 2n×2n equivalent real formulations. Each option has its own
advantages and disadvantages. A natural question is which form of the equations to use when solving a
complex linear system. Working with the original linear system (1.1) requires using complex arithmetic.
There are several reasons why one may wish to avoid this. For instance, it is often the case that most
of the entries ofC are real, with the nonreal entries localized in just a few positions, e.g. on the main
diagonal (see, e.g.Bertaccini, 2004; Haber & Ascher, 2001; Howle & Vavasis, 2005; Poirier, 2000).
Using complex arithmetic throughout the code would be wasteful. For instance, when using Krylov
subspace methods, the matrixC is used only in the form of matrix–vector products and savings in the
implementation may be possible by keeping the (relatively few) nonreal entries ofC separate from the
real ones (see, e.g.Bertaccini, 2004). However, preconditioning is almost always mandatory, and many
standard preconditioning techniques will have the undesirable effect of ‘spreading’ nonreal entries to
most positions in the preconditioning matrix. This will be the case, for instance, for standard incomplete
factorization and sparse approximate inverse preconditioners. Simpler preconditioners, like diagonal or
SSOR preconditioning (or polynomial preconditioners), do not suffer from this problem, but they are
often not effective enough for complex linear systems of practical interest. Another difficulty, mentioned
in Day & Heroux(2001), is the scarcity of available preconditioning software supporting complex arith-
metic, at least compared to the widespread availability of high-quality packages for the real case.

Because of all these reasons, there is an interest in iterative methods for real equivalent formulations
of complex linear systems. It was shown inDay & Heroux(2001) that nonsymmetric Krylov subspace
methods preconditioned by standard incomplete LU (ILU) factorizations can perform reasonably well
with the so-calledK -formulation of the equations (see Section2), with a performance comparable to
that obtained with ILU-preconditioned Krylov methods applied to the original complex form.

Motivated in part byDay & Heroux(2001), we further consider preconditioning techniques for real
equivalent formulations of complex symmetric systems. Rather than applying general-purpose precon-
ditioners to theK -formulation, however, we work with one of the ‘classical’ real equivalent forms (such
as (2.3) below) with the goal of exploiting the block 2×2 structure. Much work has been done in recent
years on preconditioning linear systems with block 2× 2 structure, especially in the context of saddle-
point problems (see, e.g.Bai, 2006; Benzi et al., 2005; Ipsen, 2001; Murphy et al., 2000). Our main
goal is to investigate the use of such ‘segregated’ block preconditioners in the context of real equivalent
formulations of complex linear systems.

We add as a further motivation that while every preconditioner for the complex form (1.1) has a
real equivalent formulation, there are infinitely many choices of the preconditioner for the block 2× 2
real equivalent formulation that do not have any complex equivalent. Iff : Cn×n −→ R2n×2n is the
homomorphism of the algebra ofn × n complex matrices into the algebra of 2n × 2n real matrices
defined by

f (A + iB) =

(
A −B

B A

)

,

the range space (image) off is a subalgebra of dimension 2n2 of R2n×2n, which has dimension 4n2;
note that the image off has Lebesgue measure zero inR2n×2n. Thus, it is plausible that the additional
‘degrees of freedom’ available with any of the real equivalent formulations will make it possible to find
more effective preconditioning techniques than for the original system in complex form.

While we do not claim that real equivalent formulations should be preferred to the original complex
form, we think that there is a role for block preconditioners applied to real formulations, especially when
eitherA or B is (semi) definite, a condition frequently satisfied in practice.
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The paper is organized as follows: Section2 contains a brief description of different real equivalent
formulations. Spectral properties of complex symmetric matrices and their equivalent formulations,
with special emphasis on half-plane conditions for the eigenvalues, are briefly reviewed in Section3.
Section4 reviews previous work. Section5 presents our own contribution, i.e. block preconditioners for
real formulations. The nonsymmetric case is briefly examined in Section6, while Section7 is devoted
to numerical experiments. We present our conclusions in Section8.

2. Real equivalent formulations

We begin this section with some simple observations on various equivalent formulations of a complex
linear system. In the complex formulation (1.1), matricesA andB are the real and imaginary part ofC,
respectively. However, multiplying both sides of (1.1) by i leads to the equivalent system

(−B + i A)(x + iy) = −c + ib or (B − i A)(x + iy) = c − ib. (2.1)

Hence, the choice of the real and imaginary part of the coefficient matrix is largely arbitrary. Thus, if
we need to assume that the real or the imaginary part ofC enjoys a particular property, such as being
(semi) definite, we can always assume thatA has the required property. Furthermore, if we denote by
CH the Hermitian conjugate ofC, problem (1.1) is equivalent to the system of normal equations

CHCz = CHd. (2.2)

The advantage of the normal equations is that the coefficient matrix is Hermitian positive definite. The
main disadvantage is that its condition number is the square of the condition number ofC. This makes
this approach rather unappealing, especially whenC itself is ill conditioned.

The complexn × n linear system (1.1) also admits several 2n × 2n real equivalent formulations.
We begin with

(
A −B

B A

)(
x

y

)

=

(
b

c

)

or Mu = d. (2.3)

This is in turn is equivalent to
(

A B

B −A

)(
x

−y

)

=

(
b

c

)

, (2.4)

which is symmetric ifA and B are. Other equivalent real-valued forms, which may be regarded as
corresponding to the second equation in (2.1), are

(
B A

−A B

)(
x

y

)

=

(
c

−b

)

(2.5)

and
(

B A

A −B

)(
x

y

)

=

(
c

b

)

. (2.6)

Again, the latter system is symmetric ifA andB are. The equivalent real formulations (2.3–2.6) do not
preserve the bandwidth or the structure ofC. The performance of sparse direct linear solvers applied to
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(2.3–2.6) often suffers in comparison to the original complex coefficient case. Also, the effectiveness of
preconditioners, like ILU, that are related to sparse direct solvers degrades similarly. For such solvers, it
is better to consider real equivalent formulations that preserve the structure ofC. As described inDay &
Heroux(2001), this can be achieved by simply rewriting each entry in the originaln×n complex matrix
as an equivalent 2× 2 real matrix (and performing analogous replacements in the unknown and right-
hand side vectors). For instance, ifci j = ai j + ibi j denotes the(i, j )-entry ofC, then Day and Heroux
explicitly form the real 2n × 2n matrix K whose entries are 2× 2 real blocks of the form

(
ai j −bi j

bi j ai j

)

.

The resulting matrix is just a symmetric permutation ofM in (2.3), and the eigenvalues ofK are the
same as those ofM . Day and Heroux call this the ‘K -formulation’. For instance, let

C =











c11 0 c13 0 c15

0 c22 c23 0 0

c31 0 c33 c34 0

0 0 c43 c44 0

c51 0 0 0 c55











, whereci j = ai j + ibi j .

Then, the coefficient matrix of the correspondingK -formulation is

K =























a11 −b11 0 0 a13 −b13 0 0 a15 −b15

b11 a11 0 0 b13 a13 0 0 b15 a15

0 0 a22 −b22 a23 −b23 0 0 0 0

0 0 b22 a22 b23 a23 0 0 0 0

a31 −b31 0 0 a33 −b33 a34 −b34 0 0

b31 a31 0 0 b33 a33 b34 a34 0 0

0 0 0 0 a43 −b43 a44 −b44 0 0

0 0 0 0 b43 a43 b44 a44 0 0

a51 −b51 0 0 0 0 0 0 a55 −b55

b51 a51 0 0 0 0 0 0 b55 a55























.

We note that in some cases it may be possible to avoid storing each entryai j andbi j twice. For instance,
incomplete factorizations ofK can be implemented by generating only one row (or column) ofK at a
time, which avoids doubling the storage for the coefficient matrix. However, the incomplete factors are
2n × 2n matrices and for most dropping strategies the amount of storage required for the incomplete
factors will be generally higher than that for the originaln × n complex form.

3. Spectral properties

The spectrum of a general complex symmetric matrix has no special properties whatever: indeed, it
can be shown that ‘any’ square complex matrix is similar to a complex symmetric matrix (seeHorn
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& Johnson,1985, Theorem 4.4.9). Thus, the eigenvalue distribution of a complex symmetric matrix
need not exhibit any type of symmetry. The situation is different for the real equivalent formulations
(2.3–2.6). This is obvious since the eigenvalues of a real matrix come in complex conjugate pairs—
the spectrum is always symmetric with respect to the real axis. More precisely, letC = A + iB have
spectrumσ(C) = Λ = {λi |1 6 i 6 n} ⊂ C. Let Λ denote the set of conjugates of the elements ofΛ.
The spectrum of the real equivalent form

M =

(
A −B

B A

)

is thenσ(M) = Λ ∪ Λ.
For the symmetric forms (2.4) and (2.6), the eigenvalues are, of course, all real, but additional struc-

ture is present. Consider, e.g. the real equivalent form (2.4). It can be shown that ifλ is an eigenvalue,
then−λ is also an eigenvalue; therefore, the spectrum is symmetric with respect to the origin. We re-
fer to Freund(1992) for a detailed discussion of the spectral properties of the various real equivalent
forms.

It is often the case that for complex linear systems that arise in practice, the eigenvalues lie in a half-
plane which excludes the origin. In particular, many complex symmetric matrices satisfy a ‘half-plane
condition’ such as

σ(C) ⊂ {λ ∈ C|Reλ > 0} or σ(C) ⊂ {λ ∈ C|Im λ > 0}.

This will be the case, in particular, wheneverA or B is symmetric positive definite (SPD). In this case,
the real equivalent form (2.3) (or (2.5)) will be positive definite, in the sense that its symmetric part will
be SPD. Thus, eigenvalues of one of the real equivalent formulations (2.3) or (2.5) will also satisfy a half-
plane condition. This is a desirable property for many Krylov subspace solvers, like GMRES (Saad &
Schultz, 1986). Below, we list some of the important properties of the real equivalent formulation (2.3)
when matrixA in (1.1) is symmetric positive semidefinite:

(i) If B is nonsingular,M in (2.3) is nonsingular (sufficient condition only).

(ii) M is semipositive real, i.e.vTMv > 0 for all v ∈ R2n, and positive semistable (i.e. its eigenval-
ues have non-negative real part).

(iii) If A is positive definite, then (regardless ofB) M is nonsingular, positive real (vTMv > 0 for
all v 6= 0) and positive stable (all its eigenvalues have positive real part).

Of course, similar properties hold for the nonsymmetric real formulation (2.5) if B is symmetric
positive (semi) definite. In contrast, the symmetric forms (2.4) and (2.6) are necessarily indefinite. For
this reason, wheneverA (or B) is definite, we prefer to use the nonsymmetric but positive-definite form
(2.3) (or (2.5)). Our goal is to find block preconditioners that not only preserve positive definiteness
(whenever it is present) but also achieve a strong clustering of the spectrum away from 0.

As an example, we consider the eigenvalues of a complex symmetric matrixC = A+ iB with A in-
definite andB positive definite. The matrix arises from a finite-difference discretization of an Helmholtz-
type problem on a 16× 16 grid, see Problem7.1in Section7.1. Figure1 displays the eigenvalues ofC.
Note that the eigenvalues all lie in the upper half-plane.

In Fig. 2(a, b), we plot the eigenvalues of the real equivalent formulations (2.5) and (2.3), respec-
tively. Note that the eigenvalues of (2.3) surround the origin; this often results in very slow convergence
of Krylov subspace methods.
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FIG. 1. Eigenvalues of complex symmetricC = A + iB with B being SPD.

FIG. 2. Eigenvalue plots for two real equivalent formulations. Here, the matrix (2.5) is positive real, hence all its eigenvalues lie
in the right-half plane. In contrast, the symmetric part of (2.3) is indefinite and the eigenvalues of (2.3) surround the origin.

4. Previous work

Until about 1990, the most common approaches for solving complex symmetric systems were to use
preconditioned conjugate gradients (PCG) on the normal equations (2.2) or real-valued approaches
using either nonsymmetric Krylov subspace methods applied to the nonsymmetric forms (2.3) and (2.5)
or a symmetric solver like MINRES or SYMMLQ (Paige & Saunders, 1975) applied to the symmetric
forms (2.4) and (2.6). The latter requires the preconditioner to be SPD. Krylov methods specifically
developed for complex linear systems did not appear until the late eighties and early nineties; see, e.g.
Bunse-Gerstner & Stöver(1999), Freund(1990, 1992), Jacobs(1986), Joly & Meurant(1993), Markham
(1990) and van der Vorst & Melissen(1990), as well as the recent survey (Simoncini & Szyld, 2007,
Sections 12 and 13.3).



604 M. BENZI AND D. BERTACCINI

Influential work by Freund (especiallyFreund, 1992) indicated that the complex-valued formulation
is generally better from the point of view of Krylov subspace convergence. As a result, real-valued
formulations have generally been shunned. However, preconditioning was not considered inFreund
(1992). Of course, preconditioning changes the spectral properties of the matrices involved, and the
possible disadvantages of the real formulations may disappear or at least be less of an issue.

Many papers have addressed the problem of finding effective preconditioners for complex linear
systems. Besides special solvers developed with a particular application in mind, like, e.g. those studied
in Adams(2007), Elmanet al.(2001), Erlanggaet al.(2004), Haber & Ascher(2001), Howle & Vavasis
(2005), Poirier (2000) andReitzingeret al. (2003), there has been some work on the use of general-
purpose techniques such as SSOR, polynomial preconditioning, incomplete factorizations and sparse
approximate inverses (see, e.g.Freund, 1990; Horeshet al., 2006; Mazzia & Pini, 2003; Mazzia &
McCoy, 1999). Somewhere in between, we mention the work of Magolu monga Made (2001, e.g. and
the references therein) on a class of incomplete factorization preconditioners specifically tailored to the
Helmholtz equation. In spite of much work in this area, it is fair to say that preconditioning complex
symmetric matrices remains a challenge—even more so than in the real case.

For reasons discussed in Section1, in recent years there has been renewed interest in approaches
based on real equivalent formulations and particularly in preconditioning for such forms. Besides the
already mentioned paper (Day & Heroux, 2001), we mention (Axelsson & Kucherov, 2000) where an
efficient preconditioning method is introduced for problems where bothA andB are symmetric positive
semidefinite with at least one of the two positive definite. This situation is rather special. In practice, it
is much more common to find matrices where only one ofA or B is definite (or at least semidefinite),
with the other being strongly indefinite.

5. Preconditioners for real formulations

In this section, we consider block preconditioners for the real equivalent formulations. We work pri-
marily with the form (2.3). Ideally, we would like to find preconditioners that are well defined under
minimal assumptions onA and B, do not double storage requirements, are reasonably efficient and
robust and are fairly straightforward to implement. Concerning storage, we insist that the only arrays of
dimension 2n should be the vectors needed by the Krylov subspace method. Obviously, matrix–vector
products with the coefficient matrix of (2.3) can be implemented using only a single copy ofA andB.
Our preconditioners will only require the (approximate) solution of sparse real linear systems of ordern.
Therefore, no matrix of order 2n is actually ever explicitly formed by the preconditioned Krylov meth-
ods applied to (2.3). In other words, we use a segregated approach to preconditioning instead of a
fully coupled one. This is one point where our approach differs from that taken inDay & Heroux
(2001).

5.1 Preconditioners having both real and complex forms

We begin with preconditioners that have both real and complex forms. In some applications, it happens
that one of the two matricesA andB ‘dominates’ the other. For instance,B may have small norm and/or
rank compared toA. Another fairly typical situation is whenA represents a differential operator (for
instance, a discretized Laplacian) andB a bounded operator (such as a mass matrix) or, more generally,
a differential operator of lower order thanA. Then, A−1B can be thought of as a discretization of a
compact operator and most of its eigenvalues will be clustered around the origin in the complex plane.
Thus, much of the spectrum ofA−1C = I + i A−1B will be clustered around(1, 0). In this case, a good
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approximationÂ of A, assumed to be invertible, might be a reasonable choice as a preconditioner for
C = A + iB. Equivalently, the block-diagonal matrix

PA =

(
Â O

O Â

)

(5.1)

might be a good preconditioner for (2.3), except in situations where the preconditioned operator retains
a non-negligible number of eigenvalues near the origin. This happens, for instance, ifB is very ill
conditioned, as is the case whenB is a mass matrix for a regular nonuniform finite-element mesh
whose element diameters vary over several orders of magnitude. In the case of acoustics and other wave
phenomena, however, quasi-uniform meshes must be used in order to maintain sufficient resolution per
wave length, and this problem does not typically arise.

We mention that other options are available whenC is an imaginary perturbation of a SPD matrix,
e.g.C = A + iB with A being SPD andB diagonal with small norm or of low rank. In this case, it
is sometimes possible to ‘update’ a preconditioner forA in order to obtain a preconditioner forC; see
Bertaccini(2004), where good results are reported for certain differential equation problems.

If B is dominant, there are two possibilities. One is to exchange the roles ofA andB (see (2.1)) and
to use a block preconditioner of the form (5.1) with B̂ ≈ B replacingÂ. This may be inconvenient ifB
is large in norm but has a sizable null space, as it happens in some applications. In this case, it may be
better to precondition (2.3) with

Pα =

(
α I −B̂

B̂ α I

)

, (5.2)

whereα > 0 is a scalar that guarantees the invertibility ofPα. Note that this is a shifted skew-symmetric
preconditioner. Linear systems of the formPαz = r can be solved by a Schur complement reduction,
leading to a linear system of ordern with coefficient matrix of the form̂B2 + α2I . Note that this matrix
is SPD if B̂ is symmetric. Moreover, if̂B is scaled so thatλmax(B̂2) = 1, then the spectral condition
number ofB̂2 + α2I satisfiesκ2(B̂2 + α2I ) 6 1 + 1/α2. If α is not too small, then̂B2 + α2I is well
conditioned and it may be easy to find approximate solutions to linear systems involvingB̂2 + α2I , for
instance using PCG. Shifted skew-symmetric preconditioning has been introduced, in a different context
(convection-dominated flow problems), inGolub & Vanderstraeten(2000). Of course, preconditioning
M with Pα is mathematically equivalent to preconditioning the complex matrixC = A + iB with
α I + i B̂. Note that the latter is a shifted skew-Hermitian matrix ifB̂ is symmetric.

The foregoing discussion suggests that simple choices are available if one ofA or B is (semi) definite
and strongly dominates, in some sense, the other matrix. Frequently, however, bothA andB need to be
taken into account if we want the preconditioner to be effective. IfÂ ≈ A and B̂ ≈ B are such that
Â + i B̂ is easily invertible, then the latter can be used as a preconditioner for the complex system (1.1).
This is of course equivalent to preconditioning the real equivalent formulation (2.3) (say) with the block
2 × 2 preconditioner

P =

(
Â −B̂

B̂ Â

)

. (5.3)

In practice, however, there seem to be very few situations where a preconditioner of the form (5.3) can be
effectively employed for the solution of (2.3). Another possible choice of a preconditioner that includes
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both A andB is given by the ‘alternating’ Hermitian/skew-Hermitian splitting (HSS) preconditioner

PHSS =

(
A + α I O

O A+ α I

)(
α I −B

B α I

)

, (5.4)

whereα > 0. HSS preconditioning is based on the splitting

M =

(
A −B

B A

)

=

(
A O

O A

)

+

(
O −B

B O

)

= H + K . (5.5)

The shiftα > 0 is used to makeH + α I positive definite andK + α I invertible. The idea of the
preconditioner (5.4) is to alternate between the (shifted) symmetric and the skew-symmetric parts of
M . The complex equivalent form of this preconditioner is clearly the complexn × n matrix (A + α I )
(α I + iB). The HSS preconditioner is well defined (invertible) for semidefiniteA and anyB. It may be
well defined for more general problems as well. As long asA is symmetric positive semidefinite and
B is symmetric, its application only requires the solution of SPD systems of ordern. If A is positive
definite, we have%(I − P−1

HSSM) < 1 for all α > 0, where%(∙) denotes the spectral radius (Bai et al.,
2003). Moreover, taking

α =
√

λmin(A)λmax(A)

minimizes an upper bound on the spectral radius. Also, the result on the spectral radius remains valid
under the assumptions thatA is positive semidefinite andB nonsingular (Benzi & Golub, 2004). In
practice,A and B are often replaced by approximationŝA and B̂. See, e.g.Bai et al. (2003), Benzi &
Golub(2004) andBertacciniet al. (2005) for detailed analyses and variants of this approach.

In Fig. 3(a, b), we plot the eigenvalues of the real equivalent form of the discrete Helmholtz operator
preconditioned with HSS, takingα = 0.1. The left-hand plot displays the eigenvalues using the positive
definite form (2.5), while the right-hand plot displays the eigenvalues using the indefinite form (2.6).
We note that in the first case the eigenvalues lie inside the disk of radius 1 centred at(1, 0), as predicted

FIG. 3. Eigenvalues for HSS preconditioning of real equivalent formulations of Helmholtz problem.
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by the theory. On the other hand, the eigenvalues in the second plot surround the origin. Although
the clustering seems stronger in the second plot, the convergence rate of HSS-preconditioned Krylov
methods is much worse than for the other case.

5.2 Preconditioners that have no complex counterpart

All the preconditioners discussed in Section5.1 have equivalent real and complex forms. Next, we
consider block preconditioners for the real formulation (2.3) that have no equivalent complex form.
Clearly, any ‘block-triangular’ preconditioner of the form

(
Â −B

O Ŝ

)

, (5.6)

with Â andŜ invertible, can be used as a preconditioner for (2.3) but there is no corresponding complex
preconditioner for (1.1). The identity

(
Â −B

O Ŝ

)−1

=

(
Â−1 O

O I

)(
I B

O I

)(
I O

O Ŝ−1

)

(5.7)

shows that application of the preconditioner requires one application ofÂ−1, one of̂S−1 and one sparse
matrix–vector multiply withB.

How should the matrix̂S be chosen? To try to answer this question, we note that ifA is invertible,
thenM has the block LU factorization

M =

(
A −B

B A

)

=

(
I O

B A−1 I

)(
A −B

O S

)

,

whereS = A + B A−1B denotes the Schur complement. Note thatS is SPD if A is SPD andB is
symmetric. It follows that letting

P =

(
A −B

O S

)

, (5.8)

we haveσ(M P−1) = σ(P−1M) = {1}. Furthermore, the minimum polynomial of the preconditioned
matrix M P−1 (or P−1M) has degree 2, and GMRES is guaranteed to find the solution in at most two
steps (seeIpsen, 2001; Murphyet al., 2000).

In some situations (for instance, ifA−1 is diagonal or block diagonal with small blocks), it may be
possible to form the Schur complementS explicitly and solve linear systems withS (at least approxi-
mately). In practical situations, however, formingS and/or solving systems with it is out of question.
Instead, it is necessary to use some approximation. The simplest approach is to letŜ = Â. To see when
such a choice may work reasonably well, consider the ‘exact’ block preconditioner

Pt =

(
A −B

O A

)

. (5.9)
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From the identity

P−1
t M =

(
A −B

O A

)−1(
A −B

B A

)

=

(
I + (A−1B)2 O

A−1B I

)

,

one can see that, again, good results can be expected if the spectrum ofA−1B is clustered around the
origin, for in this case the preconditioned matrixP−1

t M (or M P−1
t ) will have most of its eigenvalues

clustered around(1, 0). In other words, this approach can be expected to work well when block-diagonal
preconditioning (withPA) works well. Because of the squaring ofA−1B, block-triangular precondi-
tioning can be expected to provide a rate of convergence at least as fast as (and often better than) that
obtained with block-diagonal preconditioning when the latter works well. By the same token, block-
triangular preconditioning is likely to be much worse than block-diagonal preconditioning when the
latter performs poorly. Of course, this informal argument neglects important aspects such as the effects
of non-normality on the behaviour of the preconditioned iteration, and therefore it is not to be taken too
literally.

If Â is an approximation ofA such that̂A has a sparse inverse, then it may be possible to explicitly
form the approximate Schur complementŜ = Â + BÂ−1B (or evenŜ = A + BÂ−1B) for use in a
block-triangular preconditioner. For instance, ifA is diagonally dominant, then a diagonal approxima-
tion Â = diag(A) may suffice. Also, in some cases, it may be possible to construct (either explicitly
or implicitly, in the form of some iteration) approximations to the inverse of the Schur complement,
S−1 = [ I + (A−1B)2]−1A−1. Clearly, there are many possible choices here—the best choice is highly
problem dependent—and a good understanding of the specific underlying application is required in
order to derive a good approximation. It may also pay off to switch the roles ofA andB in order to have
a Schur complement that can be more easily approximated.

We emphasize that if eitherA or B is SPD, all preconditioners considered so far can be implemented
in a way that only requires the solution of SPD systems of ordern. This is also true if either one ofA or
B is symmetric positive semidefinite, for in this case we can always add a small diagonal perturbation
to A (or to B) to make it SPD.

6. The nonsymmetric case

The nonsymmetric case has received scant attention in the literature, especially as far as the use of real
equivalent formulations is concerned. Most of the block preconditioners discussed in Section5 can be
extended to the nonsymmetric case, where at least one ofA and B is nonsymmetric. In this case, of
course, at least some of the subsystems to be solved when applying the preconditioners will not be
symmetric, in general.

As far as the HSS preconditioner is concerned, rather than splittingM as the sum of12(M + MT) and
1
2(M − MT) it is better to use the splittingA = H + K given by (5.5), even thoughH will no longer be
symmetric (orK skew symmetric). Similarly, it will no longer be true in general that the eigenvalues of
the HSS-preconditioned matrix lie in the disk of radius 1 centred at(1, 0), and furthermore, the matrices
H + α I and K + α I are no longer guaranteed to be invertible. Nevertheless, the preconditioner may
still be well defined in practice, see Section7.2.
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7. Numerical experiments

In this section, we present the results of some numerical tests computed with Matlab using various com-
binations of block preconditioners and iterative methods. We consider real equivalent formulations of
complex symmetric problems arising from the discretization of different types of Helmholtz equations,
similar to those considered inFreund(1992). Another set of experiments concerns linear systems arising
in molecular dynamics (seeDay & Heroux, 2001). Finally, we include a few tests with linear systems
arising in frequency analysis of mechanical systems (seeFerianiet al., 2000).

In all the experiments, the initial guess used is the zero vector. The stopping criterion is‖rk‖2 <
10−6‖r0‖2, whererk denotes the true residual afterk iterations. We experiment with our implementa-
tions of full GMRES (Saad & Schultz, 1986), flexible GMRES (FGMRES,Saad, 1993), BiCGSTAB
(van der Vorst, 1992) and BiCGSTAB(2) (Sleijpen & Fokkema, 1993). Note that each iteration of
BiCGSTAB requires two matrix–vector multiplies and two applications of the preconditioner, and
BiCGSTAB(2) requires four of each. Right preconditioning is used in all cases.

7.1 Helmholtz-type equations

Helmholtz equations are of fundamental importance in the modelling of wave propagation phenom-
ena. Similar toFreund(1992), we consider two types of model problems based on the finite-difference
discretization of the partial differential equation (PDE)

−∇ ∙ (c∇u) − σ1u + iσ2u = f, (7.1)

where the coefficientsc, σ1 andσ2 are real-valued functions. The above equation, supplemented by
appropriate boundary conditions, is used to describe the propagation of damped time-harmonic waves.
We consider (7.1) on the 2D domainΩ = [0, 1] × [0, 1] with different values ofσ1, σ2 and boundary
conditions. For the ‘diffusivity’ coefficientc, we used both the constant valuec = 1 and the discontinu-
ous function defined as follows:

c(x, y) = 10, (x, y) ∈ [0.25, 0.75] × [0.25, 0.75]; c(x, y) = 1, otherwise.

The first problem is a complex Helmholtz equation with bothσ1 andσ2 strictly positive, so as to
make the real partA of the discrete operatorC = A + iB indefinite and the imaginary partB definite.
Note thatB is diagonal. The boundary conditions are of Dirichlet type. The second problem is a ‘nice’
Helmholtz-like equation withσ2 = 0, σ1 < 0 and complex boundary conditions. In this case, the real
part A of C is positive definite, while the imaginary partB is indefinite and rank deficient. The problems
were discretized by finite differences using uniformm× m grids with mesh sizeh = 1/(m+ 1), where
m ranges fromm = 32 tom = 512. The size of the corresponding complex linear systems isn × n with
n = m2 ranging from 1024 to 262 144. Right-hand sides were generated at random with components
uniformly distributed in [−1, 1] + i[−1, 1]. We remark that for all these problems, Krylov subspace
methods either diverge or converge very slowly in the absence of preconditioning. Additional details
follow.

PROBLEM 7.1 (Complex Helmholtz equation). The finite-difference approximation results in complex
symmetric linear systems of the form

Cz = d, C = T − h2σ1I + ih2D = A + iB, (7.2)

whereD is diagonal andT is a standard second-order finite-difference discretization of the diffusion
operator−∇ ∙ (c∇u), normalized so as to haveλmax(T) = O(1) andλmin(T) = O(h−2) for h → 0.
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The diagonal entries ofD are the values ofσ2 at the grid points. The coefficientσ1 is a constant chosen
so as to make the real part of the matrix highly indefinite. For instance,σ1 ∙ h2 ≈ 1.025 forh = 1/33
(i.e. m = 32). The diagonal matrixD has random entries in the interval(0, 200). With this setting of
the coefficients, we have (forh = 1/33)

‖A‖∞ ≈ 78.9, ‖B‖∞ ≈ 0.183,

making the real partA strongly dominant. SinceA is indefinite andB is positive definite, we work with
the real equivalent formulation (2.5). Results for GMRES with the (shifted) skew-symmetric and HSS
preconditioners

Pα =

(
α I A

−A α I

)

and PHSS =

(
B + α I O

O B + α I

)(
α I A

−A α I

)

(7.3)

with different values of the shiftα > 0 are shown in Fig.4(a, b) for the 32× 32 grid. These plots
show that the number of iterations is not overly sensitive to the value ofα (note the logarithmic scale
on the horizontal axis). We then performed experiments on a sequence of increasingly finer grids (up to
256× 256) with the fixed value of the parameterα = 0.1 and always found thatPα and HSS result in
eight iterations with GMRES. Note that both preconditioners require the solution of SPD linear systems
of the form(A2 + α2I )u = r , whereA2 = (T − h2σ1I )2 can be interpreted as a discretization of a
‘fourth-order’ differential operator. At first sight, it may seem strange to transform the initial (complex)
second-order PDE into a fourth-order, albeit real, one. It is important to observe, however, that ifα is
kept constant (as we do here), the condition number ofA2 + α2I is uniformly bounded with respect
to h. Here, we use a sparse Cholesky factorization to perform ‘exact’ solves. In practice, forh small it
is better to use inexact solves obtained with some inner iteration like PCG (using a flexible method like
FGMRES for the outer iteration). This would also eliminate the need to explicitly formA2+α2I , which
may be expensive. For smallα, however, this auxiliary linear system with matrixA2 + α2I will need a
preconditioner which may be difficult to find, especially if the matrix itself is not explicitly available.

It is clear from our results that for this problem HSS has no advantage over the shifted skew-
symmetric preconditioner, which is perhaps not surprising in view of the fact thatB has very small
norm relative toA. Likewise, block-diagonal or block-triangular preconditioners withB on the main
diagonal were found to be ineffective. Using block-diagonal or block-triangular preconditioners withA
on the main diagonal with the formulation (2.3) is more effective, but requires solving linear systems
with the highly ill-conditioned and indefinite matrixA, which is exceedingly expensive.

We also note that the best results are obtained forα = 0.1. Furthermore, we observed that for
this problem the performance of BiCGSTAB is generally inferior to GMRES, especially for suboptimal
choices ofα. In one case, BiCGSTAB suffered a fatal breakdown. Nevertheless, BiCGSTAB has much
lower storage requirements than GMRES and this makes it advantageous for large problems. Similar
results were obtained with BiCGSTAB(2).

Next, we experiment with block-triangular preconditioners of the form

(
B A

O Ŝ

)

, (7.4)

whereŜ is a computationally viable approximation to the Schur complementS = B + AB−1A. Note
that S is SPD sinceB is. Forming the Schur complement explicitly is possible sinceB is diagonal and
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A is a sparse matrix. Using (7.4) with Ŝ = Sresults in convergence in exactly two iterations of GMRES,
but it is expensive owing to the high cost of solving linear systems withS. We experimented with an
inexact variant using FGMRES as the outer iteration and PCG with incomplete Cholesky precondition-
ing for the approximate solution of linear systems involving the Schur complementS. We found that
using an inner PCG-relative residual tolerance of just 10−1 resulted in convergence in 7–8 FGMRES
iterations, independent of the mesh sizeh. The total number of inner PCG iterations, however, tends to
increase as the mesh is refined. In order to keep the total number of inner PCG iterations from growing,
it is necessary to reduce the drop tolerance in the incomplete Cholesky factorization (i.e. to accept more
fill-ins in the incomplete factor). Here, we found that performance is improved ifS is first normalized so
that its largest diagonal entry is equal to 1, and a small shift (≈ 10−3) is added to the diagonal ofSprior
to computing the incomplete factorization. The shift helps in reducing fill-in and making the incomplete
factorization process more stable. Our conclusion is that for this problem, the shifted skew-symmetric
preconditionerPα (5.2) and the block-triangular preconditioner (7.4) are the most effective among the
block preconditioners considered in this paper. However, an efficient implementation requires a good
approximation to the reduced system matrixA2 + α2I (to the Schur complementS = B + AB−1A,
respectively). Here, we used an inner iteration preconditioned with a shifted incomplete Cholesky factor-
ization to compute the action of̂S−1 ≈ S−1, but more work is needed to identify better approximations.
Clearly, this is a problem-dependent task.

PROBLEM 7.2 (Real Helmholtz equation with complex boundary conditions). Here,σ1 = −200, σ2 = 0
and we impose a boundary condition of the form

∂u

∂n
+ βu = 0 on{(1, y)|0 < y < 1}

and Dirichlet boundary conditions on the remaining three sides of the unit square, with the complex
functionβ chosen so as to make the imaginary part ofC indefinite (cf.Magolu monga Made, 2001).
We takeβ such that the resulting linear system is again of the form (7.2) where the diagonal entries of

FIG. 4. Problem7.1: results for real equivalent form (2.5) of complex Helmholtz equation on 32× 32 grid. Number of GMRES
iterations forPα and HSS preconditioning as a function ofα. Note the logarithmic scale on the horizontal axis.
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D are given by

di +( j −1)m =

{
(−1) j −1100/h, if i = m,

0, otherwise
(7.5)

(i, j = 1, . . . , m). Now, the real part of the matrixA + iB is positive definite and diagonally dominant,
while the imaginary part is indefinite and singular. With this setting, we have (casem = 32)

‖A‖∞ ≈ 80.2, ‖B‖∞ ≈ 3.03.

Therefore, we choose to work with the real equivalent form (2.3). Additional numerical tests have been
performed with the value 2000 replacing 100 in (7.5), resulting in matricesA and B having norms of
the same order of magnitude. For example, form = 32, we have

‖A‖∞ ≈ 80.2, ‖B‖∞ ≈ 60.6.

In the case of the first of these two test problems, we found that the shifted skew-symmetric precon-
ditioner Pα results in very slow convergence for all values ofα. This is to be expected since the norm of
A is much larger than that ofB. In the second case,Pα performed much better, but not as well as HSS.
This is, again, not surprising since bothA andB are of significant size. In Fig.5(a, b), we show results
obtained for GMRES with the HSS preconditioner for various values ofα; similar results were obtained
with BiCGSTAB. Note, again, the mild dependence of the rate of convergence onα.

In Table1, we show results for three fine-grid discretizations of the same problem of Fig.5(b). We
report the number of BiCGSTAB iterations with HSS preconditioning for different values ofα. Now,
the best value ofα depends onh, with α = 0.1 being optimal for the finest grid. Note, however, that
the number of preconditioned iterations is noth-independent. In Table1, we also report elapsed times
using one processor of an AMD Opteron. The superlinear scaling of the timings is due in part to the
growth in the number of iterations and in part to the sparse Cholesky factorizations used to solve the

FIG. 5. Problem7.2: results for real equivalent form (2.3) of real Helmholtz equations with complex boundary conditions on
32 × 32 grid. Number of GMRES iterations with HSS preconditioning as a function ofα. Note the logarithmic scale on the
horizontal axis.
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TABLE 1 Helmholtz equation model problem7.2, same as in Fig.5(b) but with
finer grids. BiCGSTAB with HSS preconditioning, number of iterations as a
function ofα. Elapsed times (in seconds) are given in parentheses

α 128× 128 grid 256× 256 grid 512× 512grid
0.001 111 (20.4) 169 (158) 133 (638)
0.005 56 (10.3) 78 (72.6) 121 (580)
0.01 51 (9.37) 68 (63.6) 83 (399)
0.02 49 (8.99) 65 (60.7) 87 (417)
0.03 43 (7.97) 52 (49.1) 61 (296)
0.05 38 (6.96) 50 (47.2) 54 (262)
0.1 36 (6.70) 40 (37.4) 52 (248)
0.2 24 (4.48) 33 (31.3) 60 (290)
0.3 22 (4.13) 34 (32.2) 77 (372)
0.5 26 (4.78) 42 (39.3) 107 (511)
1.0 36 (6.62) 59 (55.1) 140(673)

linear systems arising from the application of the preconditioner: better scaling (per iteration) may be
obtained using multigrid.

For this problem, however, we found that both block-diagonal (5.1) and block-triangular (5.9) pre-
conditioning result inh-independent convergence rates. Using exact solves, we found these two precon-
ditioners to require about 50 and 32 BiCGSTAB iterations, respectively. This can be easily explained
observing that the preconditioned matrix corresponds to a compact perturbation of the identity opera-
tor; note that the mesh is uniform. We conclude that for this (relatively easy) problem, simple block-
triangular preconditioners of the form (5.9) are the most effective among the block preconditioners
considered in this paper.

7.2 Molecular dynamics

Here, we consider two instances of a computational chemistry model problem proposed by Sherry Li
of NERSC and also used inDay & Heroux(2001). These problems, denoted M3D2 and M4D2, are
nonsymmetric. The eigenvalues of M3D2 satisfy the half-plane condition Imλ > 0, but neither the real
part A nor the imaginary partB is definite (i.e. they have indefinite symmetric part). The matrices have
been normalized so that max{‖H‖∞, ‖K‖∞} = 1, whereH and K denote the symmetric and skew-
symmetric part of the real equivalent form (2.3), respectively. Upon this normalization, the relative size
of A andB is given by

‖A‖∞ ≈ 0.49, ‖B‖∞ ≈ 2.26

for M3D2 and by

‖A‖∞ ≈ 0.35, ‖B‖∞ ≈ 2.23

for M4D2. We considered the real equivalent form (2.5) with the dominant blockB on the main diag-
onal. For both M3D2 and M4D2, we found that preconditioning is essential in order to achieve con-
vergence in less than 300 iterations of GMRES or BiCGSTAB. Block-diagonal and block-triangular
preconditioners withB on the main diagonal (inverted exactly) resulted in full GMRES converging in
216 and 113 iterations, respectively, for M3D2. For M4D2, these preconditioners proved insufficient to
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achieve convergence within 300 iterations. Being unfamiliar with the details of this application, we did
not attempt to construct block-triangular preconditioners based on approximate Schur complements.

In Fig. 6 and Table2, we report results obtained with the analogues of the shifted skew-symmetric
and HSS preconditioners (7.3). Since A and B are nonsymmetric, these are not truly shifted skew-
symmetric and HSS preconditioners. However, in both cases the preconditioners turned out to be well
defined (i.e. nonsingular). Sparse LU factorization was used to solve linear systems with matricesB+α I
andA2 + α2I .

For the first of these two problems, we can see that the HSS-like preconditioner (5.4) results in faster
convergence than the preconditioner (5.2). We also note that nowα = 0.01 is optimal (or nearly so)
for both preconditioners. For the second problem, the rate of convergence is about the same, and unfor-
tunately not very good, with either approach, regardless ofα.

We conclude that matrix M4D2 is a possible example of a problem for which block preconditioners
of the type studied in this paper are not effective. To put things in perspective, however, it should be men-
tioned that this is a very difficult problem. InDay & Heroux(2001), the authors observed that in order
to have rapid convergence of ILU-preconditioned GMRES, large amounts of fill-in in the incomplete
factors have to be allowed, both for the original complex formulation and when using the equivalent
K -formulation.

FIG. 6. Problem M3D2: number of GMRES iterations as a function ofα for solving the real equivalent form (2.3) with precondi-
tionersPα and HSS. Note the logarithmic scale on the horizontal axis.

TABLE 2 Problem M4D2: number of iterations for solving the real
equivalent form(2.3) with the preconditioners(5.4) and(5.2). Original
matrix is complex nonsymmetric10 000× 10 000. GM, GMRES; BiCG,
BiCGSTAB; nc, no convergence

α Pα (GM) Pα (BiCG) HSS-like (GM) HSS-like(BiCG)

0.0005 162 202 248 nc
0.001 163 257 175 nc
0.005 nc nc 133 136
0.01 nc nc 187 237
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7.3 Structural dynamics

Finally, we consider some complex symmetric linear systems coming from direct frequency analysis in
structural dynamics. The typical form of these (linearized) problems is

(σ 2M + σCV + K∗)x = f, (7.6)

whereM is the inertia (mass) matrix, which is typically real symmetric, possibly singular;CV is the
viscous damping matrix (real, diagonal, ‘highly singular’ and possibly zero) andK∗ = K + iCH, where
K is the (real symmetric) stiffness matrix andCH is the hysteretic damping matrix, which is also real
symmetric. WhenCH = μK , whereμ is a damping coefficient, we haveK∗ = (1 + iμ)K . Also
σ = iω, whereω is the circular frequency (measured in rad/sec). For moderate values ofω, the real part
A = K −ω2M is SPD. For the right-hand side, we use a vectorf such that the solutionx has all entries
equal to 1+ i.

The first test problem considered is referred to as case ‘b’ (withω = 1 Hz) in Ferianiet al. (2000).
The second one is referred to as case ‘c1’ (also with ω = 1 Hz) in Ferianiet al. (2000). For the first
problem, we have

‖A‖∞ ≈ 2.60, ‖B‖∞ ≈ 0.25

and for the second problem,

‖A‖∞ ≈ 1.50, ‖B‖∞ ≈ 0.06.

Because of the properties ofA and B, it is natural to choose the real equivalent form (2.3). It is also
reasonable to expect that block-diagonal or -triangular preconditioners of the form (5.1) or (5.9) will
perform well. Indeed, we found that for both test problems, just two iterations of BiCGSTAB(2) (with
either (5.1) or (5.9) for the preconditioner, using exact solves) suffice to reach convergence. Without
preconditioning, the two problems require 13 and 243 BiCGSTAB(2) iterations, respectively. Recall
that each iteration of BiCGSTAB(2) involves four matrix–vector products and four applications of the
preconditioner, if present. For the first of the two test problems, we also had good results (5–6 iterations
with α = 0.1) with the shifted skew-symmetric and HSS preconditioners applied to the real equivalent
form (2.5). The same approach can also be used to solve the second test problem, but convergence is
much slower, requiring around 50 iterations of BiCGSTAB(2).

8. Concluding remarks

In this paper, we have investigated several block preconditioners for real equivalent formulations of
complex linear systems, with an emphasis on the complex symmetric case. Not surprisingly, no single
preconditioner was found to be superior to the remaining ones on all problems considered here. Never-
theless, we found that in several cases block-triangular preconditioners, for which no equivalent complex
preconditioner exists, are superior to block preconditioners that have a complex counterpart. Choosing
a good preconditioner requires a knowledge of the nature and properties of the real and imaginary parts
A andB of the original complex coefficient matrix. In this paper, we have given some guidelines for the
choice of the real equivalent formulation and corresponding block preconditioners based on the spectral
properties and relative size (in norm) ofA andB.

We have not attempted to carry out any systematic comparison of preconditioners for the real
equivalent formulations with approaches based on the original complex form. We regard the block
preconditioners for equivalent real forms and the preconditioners for the original complex systems as
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complementary, not as competitors, with the former being a potentially useful tool when one wishes to
avoid the complex form, whatever the reason may be.

An important practical issue with the block preconditioners is to find good approximations for the
corresponding reduced systems (Schur complements); clearly, this is a problem-dependent aspect. One
caveat that should be kept in mind is that problems with bothA andB indefinite are hard to solve with
any of the methods considered here and possibly with any existing method and formulation (whether
real or complex).

While more work is necessary, especially in order to find efficient (inexact) implementations of
block preconditioning for real equivalent formulations for specific complex linear systems, we believe
that such preconditioners can be useful tools and should be considered when solving large, sparse,
complex systems of linear equations. This is especially true if one wishes to avoid the use of complex
arithmetic and if efficient solvers are available for the (real)n × n linear subsystems that arise from
block preconditioning.
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