
a

ge,

hic

com-
ork of

e and
mann

4].
J. Math. Anal. Appl. 311 (2005) 218–230

www.elsevier.com/locate/jma

Variation of cone metrics on Riemann surfaces

Georg Schumachera,∗, Stefano Trapanib

a Fachbereich Mathematik und Informatik der Philipps-Universität, Hans-Meerwein-Strasse, Lahnber
D-35032 Marburg, Germany

b Dipartimento di Matematica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica,
I-00133 Roma, Italy

Received 19 May 2004

Available online 28 April 2005

Submitted by M. Passare

Abstract

We discuss the variational properties of the unique conical metric of constant curvature−1 asso-
ciated to a compact Riemann surface together with a weighted divisor.
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1. Introduction

In the present note we study hyperbolic metrics with conical singularities on
pact Riemann surfaces. Such metrics have been considered beginning with the w
Picard [12]. Starting from the classical results by Kazdan–Warner [5–7], existenc
uniqueness of conical hyperbolic metrics in every conformal class on a compact Rie
surfaceX equipped with anR-divisor were proved by McOwen [10] and Troyanov [1
In higher dimensions, results are due to by Cheeger, Tian and others.
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On a Riemann surface, anR-divisor is of the forma = ∑n
j=1 ajpj , where theaj are

real numbers subject to the condition 0� aj � 1, andχ(X,a) := χ(X) − ∑n
j+1 aj < 0.

Here, by abuse of language, we say that the metric has a conical singularity of weaj

at the puncturepj , if

aj = 0 andg is smooth in a neighborhood ofpj , or
aj = 1 andg satisfies a Poincaré growth condition atpj or
0< aj < 1 and the metric is like 1

|z|2aj
nearpj (cf. Definition 2.3).

In the view of the recent construction of the moduli space of weighted punctured
curves [2] and the related hierarchy of compactifications ofMγ,n, we want to consider th
variation of hyperbolic conical metrics in holomorphic families, and introduce a gen
ized Weil–Petersson metric.

The main difficulty in the application of analytic methods arises from the lack
Hodge theory for Kähler metrics with conical singularities. It is still possible to introd
“harmonic Beltrami differentials” with respect to a hyperbolic conical metric, toge
with a Kodaira–Spencer map, needed for the notion of a Weil–Petersson metric. L
the classical case, harmonic Beltrami differentials are closely related to the variat
hyperbolic conical metrics in a holomorphic family.

It turned out that for 0< aj < 1 the Weil–Petersson metric depends in a smo
monotone way on the weightsaj . For aj → 0 we recover the Weil–Petersson metric
non-punctured surfaces, assigning norm equal to zero to vectors corresponding to a
itesimal motion of the puncture.

Later we need to assume that all weights are smaller than 1/2. This range seems to b
relevant. In fact, under this assumption, by a recent result of Wang and Zhu [16], ex
conical metrics are known to be hyperbolic. Properties of the generalized Weil–Pet
metric depend on solving the equation for constant curvature with parameters, and
entiability with respect to the parameter in the family follows, implyingC1 smoothness o
the Weil–Petersson metric.

2. The hyperbolic cone metrics

Let X be a connected, compact Riemann surface, letg = ρ(z)|dz|2 be a smooth metri
on some open set ofX. As we will need the notions of Kähler geometry, we have to use
complex Laplace operator∆g = 1

g
∂2/(∂z∂z̄), and we denote by∇ the covariant derivative

in z-direction with respect tog. Accordingly, we will prefer to use the scalar curvatu
instead of the Gaussian one, i.e., the curvature ofg is

Kg = − 1

ρ
· ∂2 log(ρ)

∂z∂z̄
.

Let us fix some numberp > 1, and consider the Sobolev spacesH
p
k (X) of complex-

valued functions, which possess distributional derivatives up to orderk in Lp(X). An
operator
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L : Hp

2 (X) → Lp(X),

is defined byL(Ψ ) = ∆g(Ψ )−bΨ , whereb ∈ Lp(X) is a real function withb(z) � b0 > 0
almost everywhere.

Note thatL is well defined and bounded, since for some positiveβ, we haveHp

2 (X) ⊆
Cβ(X) with a bounded inclusion. We shall need the following fact.

Lemma 2.1. The operatorL is invertible with bounded inverse.

The statement can be shown like in [1, pp. 104, 105]: There exist unique weak sol
φ ∈ H 2

1 (X) of the equation

L(φ) = f (1)

for all f ∈ Lp(X), because of the positivity assumption onb. The rest follows from regu
larity theorems (cf. [1, p. 55]).

Now let a = ∑n
i=1 aipi be areal divisor on X, i.e., a linear combination of distinc

pointspi ∈ X with real coefficients, and assume 0� ai � 1. Such a pair(X,a) is called a
weighted punctured Riemann surface.

Definition 2.2. The Euler–Poincaré characteristic of a weighted punctured surface(X,a)

equalsχ(X,a) := χ(X) − ∑
i ai .

In moduli theoretic applications the corresponding log-canonical divisorK(X,a) :=
KX +a is introduced, and the notion of stability corresponds to the negativity of the E
Poincaré characteristic.

Definition 2.3. By a conical metric on a weighted punctured Riemann surface(X,a) we
mean a smooth metric onX′ = X \ ⋃

i pi such that (with respect to a local coordinatez

centered at a puncturepj )

(1) g is smooth in a neighborhood ofpj , if aj = 0,
(2) g satisfies a Poincaré growth condition atpj , i.e., g = ρ(z)

|z|2 log2(|z|2) |dz|2, andρ is a

continuous positive function, ifaj = 1, and
(3) g = ρ(z)

|z|2aj
|dz|2, whereρ is a continuous positive function, if 0< aj < 1.

Existence of conical metrics holds according to McOwen [10], and Troyanov [14
also [4,9,11,15]).

Originally, in the definition of a cone metric, the coefficientρ was supposed to b
bounded. However, Heins [3], and McOwen [10] showed Hölder continuity.

Theorem (McOwen, Troyanov). Let (X,a) be anR-stable weighted punctured Riema
surface. There exists a unique conformal conical metricga having constant curvature−1
onX′. Moreover, the following Gauss Bonnet formula holds:

−1

π
Vol(ga) = χ(X,a).
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We will refer toga as thehyperbolic conical metricof (X,a), and
⋃

i pi as thesupport
of a.

If a andb have the same underlying compact Riemann surfaceX, such that the suppo
of a is contained in the support ofb, we definea � b, if aj � bj for all j .

Proposition 2.4. Let (X,a), and(X,b) beR stable weighted punctured Riemann surfa
with a � b. Thenga � gb.

Proof. Due to the construction of a hyperbolic conical metric, the functionΨ = ga/gb
is smooth, and positive onX′. In a neighborhood of a puncturepj it is of the form
|z|2(1−aj ) log2(|z|2)ρj (z), if 0 � aj < bj = 1, or of the form|z|2(bj −aj )ρj (z) otherwise.
Hereρj is some continuous positive function on the coordinate neighborhood ofpj . In
particularΨ is continuous, and non-negative onX.

Let ∆b = 1
gb

∂∂̄ be the Laplace operator associated togb onX′. On the open surfaceX′
the equation for curvature constantly equal to−1 gives us

∆b
(
log(Ψ )

) = Ψ − 1.

Let Ψ (x0) be a maximum ofΨ in X. We claim thatΨ (x0) � 1. If by contradiction we
hadΨ (x0) > 1, then by continuity ofΨ the function log(Ψ ) would be subharmonic i
a neighborhood ofx0, and it would have an internal maximum, thereforeΨ would be
a positive constant. It would follow thata = b, but thenΨ ≡ 1, a contradiction agains
Ψ (x0) > 1. �

In order to prove continuous dependence on the weights, we need the following f
Let (X,a) be a weighted punctured Riemann surface with support

⋃
pi . Let g be a

smooth conformal metric onX. We denote byGi the Green’s function of the globa
Laplace operator∆g on X with singularity atpi (cf. [8, Chapter II, §1]). In a coordi
nate discD = {|z| < 1} centered atpi , we know thatGi + 1

2π
log|z| is smooth inD. From

[10] we have thatga = euag with ua = ∑
4πaiGi + va, andva ∈ H

p

2 (X) for all p with
1 < p < mini (1/ai). Note that McOwen’s result is true also, ifai � 0 for somei. In this
case we haveva ∈ H

p

2 (X) with 1 � p < min{i: ai�0}(1/ai).
Fix some set of weightsa0 with 0� a0i < 1, and a positiveε ∈ R such thata0i + ε < 1

for all i. Let Ia0,ε = {a ∈ R
n: ai < a0i + ε}. Let 1< p < mini (

1
a0i+ε

).

Proposition 2.5. The mapa → va defined onIa0,ε with values inH
p

2 (X) is smooth. In
particular, onX′ we have continuity ofga with respect toa in the compact-open topolog

Proof. For simplicity we assumen = 1, i.e., with puncturep0, weight a, and Green’s
functionG singular atp0. The proof in the general case follows along the same lines.

Let K be the curvature ofg, the equation of constant curvature−1 for the metricga
gives

∆g(ua) − eua = K,

i.e.,

∆g(va) − e4πaGeva = K

onX′.
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We consider the mapΨ : Ia0,ε × H
p

2 (X) → Lp(X) given by

Ψ (a, v) = ∆g(v) − e4πaGev − K.

In order to show that all partial derivatives ofΨ with respect toa and v exist and de-
pend continuously on these variables, we make the following observation. Fix a coor

neighborhoodU centered atp0. For a ∈ Ia0,ε, and anyk ∈ R, we havelog(|z|)k
|z|2a ∈ Lp(U),

moreover any function inHp

2 (X) is in someCβ(X). SoΨ has actually values inLp(X),
and moreover it is of classC∞. On the other hand, by Lemma 2.1 the partial derivative

D2Ψ |(a1,v1)(w) = ∆g(w) − e4πa1Gev1w

is invertible, so we can conclude the proof by means of the implicit function theorem�

3. The generalized Weil–Petersson metric

We first choosea such that 0< ai � 1 for all 1� i � n. LetS be an open set of someCk ,
by definition a holomorphic family(X ,a) → S of weighted punctured Riemann surfac
of genusγ � 0, is a holomorphic familyX → S together withn holomorphic sections
σ1 . . . σn such that for alls ∈ S the pointsσj (s) are pairwise distinct. From a deformatio
theoretic standpoint the Teichmüller space of such objects is just the usual Teich
spaceTγ,n, whereγ is the genus of the compact surface. Given a point inTγ,n with induced
n-punctured Riemann surfaceX, we assign the weightaj to the puncturepj . Denote by
H 0(X,Ω2

(X,a)) the space of holomorphic quadratic differentials with at most simple p
at the punctures, identified with the cotangent space atTγ,n at the given point.

Definition 3.1. The Weil–Petersson inner product onH 0(X,Ω2
(X,a)) is given by

〈φ,ψ〉WP,a =
∫
X

φψ̄

g2
a

dAa,

wherega is the hyperbolic conical metric, with surface elementdAa.

Observe that the above integrals are finite, because 0< ai � 1 for all i.
It follows from Theorem 2.5 that for 0< ai < 1 the Weil–Petersson inner product d

pends continuously on the weights.
We use an ad hoc definition of the space ofharmonic Beltrami differentialswith respect

to the hyperbolic conical metricga.

Definition 3.2. Let H 1(X,a) be the space of Beltrami differentials of the form

µ = µ(z)
∂

∂z
dz = φ(z)

ga(z)

∂

∂z
dz,

whereφ = φ(z) dz2 ∈ H 0(X,Ω2
(X,a)), andga = ga(z) dz dz is the hyperbolic conical met

ric.
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Lemma 3.3. There is a natural non-degenerate pairing

Φ : H 0(X,Ω2
(X,a)

) × H 1(X,a) → C,

where

Φ

(
φ(z) dz2,µ(z)

∂

∂z
dz

)
=

∫
X

φ(z)µ(z) dz dz̄.

Proof. We have

Φ

(
φ(z) dz2,

φ(z)

ga(z)

∂

∂z
dz

)
= ‖φ‖2

WP,a. �
The Weil–Petersson metric on the cotangent space toTγ,n together with the above dua

ity defines a Weil–Petersson metricGWP,a on the tangent space identified withH 1(X,a).

Lemma 3.4. Letµ1, andµ2 in H 1(X,a), then

〈µ1,µ2〉WP,a =
∫
X

µ1 µ2 dAa.

Proof. By polarization it is sufficient to prove the lemma forµ1 = µ2.
We have by definition

‖µ1‖2
WP,a = sup

‖ψ‖�=0

|Φ(ψ,µ1)|2
‖ψ‖2

WP,a

.

It follows from the Cauchy–Schwarz inequality that the right-hand side is smaller or

to
∫ |µ1|2 dAa. With µ1 = φ1

ga

∂
∂x

dz, settingψ = φ1, we get equality. �
Denoting by(b,0) the weighted punctured surface with fake puncturespm+1, . . . , pn,

whose weights are zero, the notion of convergencea → (b,0) becomes meaningful. Be
cause of the regularity theorem for an elliptic non-linear equation, the hyperbolic co
metricgb can be identified withg(b,0).

Denote byχ : Tγ,n → Tγ,m the holomorphic map, forgetting punctures. We equipTγ,n,
andTγ,m with GWP,a, andGWP,b respectively, then we have

Theorem 3.5. For a → b the metricGWP,a converges to the degenerate metricχ∗(GWP,b).

Proof. Because of Theorem 2.5, the metricga depends in a continuous way upon theaj .
For aj > 0 this implies thatGWP,a is continuous inaj . For simplicity we letan → 0,
and fix the rest. We choose local coordinates(t1, . . . , tN ) around(X,a) in Tγ,n such that
N = 3γ − 3 + n, and the coordinatest3γ−3+j corresponds to moving the puncturepj .
Thereforedt3γ−3+j on the cotangent space toTγ,n corresponds to a holomorphic quadra
differentialφ3γ−3+j with a simple pole atpj whereasφk is holomorphic fork � 3γ − 3.

Now for a → (b,0), i.e.,an → 0, the hyperbolic cone metricga converges to a metri
which is smooth aroundpn. So‖φN‖WP,a → +∞. Therefore〈φj ,φN 〉WP,a has a finite
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limit as an → 0. On the tangent space we get that〈 ∂
∂tN

, ∂
∂tj

〉 = 0 for all 1� j � N . Fur-
thermore, we see that fori, j < N the functionsti , andtj can be considered as coordina
in Tγ,n−1, so that〈dti, dtj 〉WP,(b,0) = 〈dti, dtj 〉WP,b. This implies the claim. �

4. Variation with respect to parameters in a family

Let Π : (X ,a) → S be a holomorphic family of weighted punctured Riemann surfa
Let us takeS = {s ∈ C: |s| < 1}. Let X = Π−1(0). We will consider local coordinate
(z, s) in X such thatΠ is the projection onto the second factor. Punctures are define
holomorphic sectionsσj with weightsaj ,0 � aj < 1, and local equationtj (s). Denote by
X ′ the open subsetX \ ⋃

j σj (S). For eachj choose a functionψj which is smooth on

X \ σj (S), and of the form log(|z − tj (s)|2) nearσj (S). For simplicity let us assume th
n = 1 , a1 = a, t1(s) = t (s), andψ1 = ψ .

The holomorphic familyX → S of the underlying compact Riemann surfaces can
chosen to be a trivial differentiable family. Therefore the various Sobolev spacesH

q
k (Xs)

with Xs = Π−1(s) can be identified withHq
k (X). Let the differential operators∂/∂z de-

pend on the parameters in such a way that the induced conformal structure is the g
one. So we can choose a differentiable liftV of ∂/∂s so that[V, V̄ ] ≡ 0. Explicitly,
we let V (s) = ∂

∂s
+ η(z, s) ∂

∂z
+ θ(z, s) ∂

∂z̄
, and we assume thatη ≡ 0, andθ ≡ 0, i.e.,

V = (∂/∂s)|(z,s) in a neighborhood of the sectionσ , which defines the punctures depen
ing ons.

Choose a smooth familyg(s, z)|dz|2 of smooth conformal metrics onXs of curva-
ture K(s, z). Let ga(z, s) be the hyperbolic conical metric onXs . Thenga(z, s)|dz|2 =
eu(z,s)g(z, s). Hereu(z, s) = aψ +w(z, s), where for fixeds, and fixedp with 1< p < 1/a

the functionw(z, s) belongs toHp

2 (X).
We use the implicit function theorem to produce (the unique) hyperbolic cone metr

neighboring fibers in a holomorphic family from the one on the central fiber. This app
yields an understanding, and estimates of derivatives ofga(z, s) with respect tos.

The equation for hyperbolicity onX gives

∆u − eu = K, (2)

where∆ is the Laplace operator with respect to the metricg, andK the curvature. It is
equivalent to

∆w − eaψew = K − a∆(ψ). (3)

Sinceψ is harmonic in a neighborhood of the setσj (S), in such a neighborhood the abo
equation is locally of the form

∆w − ew

|z − t |2a
= K. (4)

We want to study the solutions of (3) depending on the parameters.
Let us first assume for simplicity that the holomorphic familyX → S is trivial. Then

(3) is of the form

∆w(z, s) − b(z, s)ew(z,s) = f (z, s).
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(This is a global equation expressed in a local coordinatez.)
Define

Φ : S × H
p

2 (X) → Lp(X)

by

Φ(s,w) = ∆(w) − eaψew − K + a∆(ψ) = ∆(w) − b · ew − f, (5)

where∆(ψ) is considered as a function that is identically zero near the punctures
solutionw(z, s) satisfies the equationΦ(s,w(z, s)) ≡ 0.

At this point we assume 0� a < 1/2, and chosep such that 1< p < 2
2a+1. We claim

thatΦ is a map of classC1: The only singularity ofb = eaψ is at the punctures, where
equals ew

|z−t (s)|2a , and where∂b
∂s

= − t ′(s)
z−t (s)

· ew

|z−t (s)|2a . So ∂b
∂s

∈ Lp(X), and it depends con
tinuously ons andw. The functionf is smooth ins (and independent ofw). Furthermore
the coefficients of the Laplacian are smooth functions ins, and

∂

∂s
(∆w) = − ∂

∂s

(
logg(z, s)

) · ∆(w) ∈ Lp(X)

for any fixeds ∈ S, w ∈ H
p

2 (X), and it depends continuously ons andw. So(D1Φ)(s,w) ∈
Lp(X) for all (s,w) ∈ S × H

p

2 (X). Furthermore, the map

(D2Φ)(s,w) : Hp

2 (X) → Lp(X)

is given by

(D2Φ)(s,w)(W) = ∆(W) − ew · W.

This map depends continuously ons andw, and by Lemma 2.1 it is a continuous line
map with a bounded inverse. By the implicit function theorem the solutionw(z, s) : S →
H

p

2 (X) is of classC1 in s. In particular it is differentiable ins as a function ofz ands,
and asHp

2 (X) ⊂ Cβ(X) for someβ > 0 it is continuous inz ands. So we can also appl
local regularity theorems on the complement of the punctures, and see that it is o
C∞ there.

In our situation, the holomorphic family is usually non-trivial, and derivatives with
spect to a parameter are meaningful with respect to a differentiable trivialization
process is equivalent to taking Lie derivatives with respect to the vector fieldV . Let us
denote byL the operator of derivation in theV -direction. We have

[L,V ] = L(logg) · ∆ + R,

whereR is a differential operator of order two in fiber direction, whose coefficients
first and second order derivatives ofη andθ . In particular,R vanishes on a neighborhoo
of the punctures. Up to inserting the differentiable trivialization ofX → S coming from an
integration ofV , a map

Φ : S × H
p

2 (X) → Lp(X)

is given by the same formula (5). The derivativeD1(Φ)(s,w) is defined either by applyin
∂/∂s onX × S or L onX . So
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D1(Φ)(s,w) = eaψew
(
L(logg) − aL(ψ)

) + L(K)

− L(logg)(K − a∆ψ) − R(w) − aL
(
∆(ψ)

)
.

This element represents a function onXs � X, whose restriction to a neighborhood of t
punctures equals

−eaψewL(logg) − eaψewaL(ψ) − L(logg) · K + L(w).

The previous argument applies again: The derivativeD1(Φ)(s,w) is in Lp(X) for any
s ∈ S, w ∈ H

p

2 (X) and depends continuously ons andw. Furthermore(D2Φ)(s,w)(W) =
∆(W) − eaψewW .

Theorem 4.1. Let0 � ai < 1/2 for all i, and1< p < mini
2

2ai+1 . Consider a holomorphic
family of punctured Riemann surfaces with conical hyperbolic metricsga(s), and write
ga(s) = eu(s)g(s), whereg(s) is a smooth family of smooth metrics on theXs . Let u =∑

i aiψi + wa(s).
Thenwa(s) andLV (wa(s)) are contained inHp

2 (X) for all s ∈ S, and they depend in
C1 smooth way ons. Moreoverwa(s), andLV (wa(s)) areC∞ onX ′.

Corollary 4.2. The generalized Weil–Petersson metric is alsoC1 smooth with respect tos.

5. The generalized Kodaira–Spencer map

We now want to compute harmonic Beltrami differentials in the sense of Section 3
the variation of hyperbolic cone metrics.

In the case of compact Riemann surfaces with no punctures, the harmonic Be
differentialµ = µ(z) ∂

∂z
dz̄ associated to∂

∂s
|s=0 equals

µ = − ∂

∂z̄

(
1

g

∂2 log(g(z, s))

∂z̄∂s

)∣∣∣∣
s=0

∂

∂z
dz̄

(see [13]).
From now on all values are taken ats = 0.
A formal calculation shows thatφ = −gµ̄ is aholomorphicquadratic differential. On

the other hand, the above Beltrami differential is the∂̄ exterior derivative of a smooth lif
of the tangent vector∂

∂s
to the total spaceX of the family (restricted to the central fibe

X = Π−1(0)).
In the case of conical hyperbolic metrics we define the smooth Beltrami different

X′ given by

µa

(
∂

∂s

)
= − ∂

∂z̄

(
1

ga

∂2 logga

∂z̄∂s

)
∂

∂z
dz̄. (6)

and the quadratic differentialφa(
∂
∂s

) = gaµa(
∂
∂s

).

Lemma 5.1. The quadratic differentialφa(
∂ ) is in L1(X).

∂s



G. Schumacher, S. Trapani / J. Math. Anal. Appl. 311 (2005) 218–230 227

n

es,

f
wing

e

Proof. Assume againn = 1. From formula (6) we derive that

φa

(
∂

∂s

)
= ∂ logga

∂z
· ∂2 logga

∂z∂s̄
− ∂3 logga

∂z2∂s̄

By the Sobolev embedding theoremHp

1 (X) ⊆ Lh(X) for all h < p′ := 2p
2−p

. However,

asp can been chosen between 1 and21+2a
, the exponentp′ can be any number betwee

2 and 1
a
. Recall that∂

2 log(|z−t (s)|2)
∂z∂s̄

≡ 0, and that∂ log(|z−t (s)|2)
∂z

= 1
z−t (s)

∈ Lq(D) for all
1� q < 2, whereD ⊂ C denotes the unit disk.

Around the puncture,

∂2 logga

∂z∂s̄
= ∂2w

∂z∂s̄
.

By Theorem 4.1, we have

∂w

∂s̄
∈ H

p
s (X)

for all 1� p < 2
2a+1. So ∂2 logga

∂z∂s
∈ H

p

1 (X) ↪→ Lh(X) for all 1� h < 1/a.

Furthermore,∂ logga
∂z

∈ Lq(X) for all 1� q < 2.
As 0� a < 1/2, we can findq, h in the above range with 1/q + 1/h = 1. By Hölder

inequality,

∂ logga

∂z
· ∂2 logga

∂z∂s̄
∈ L1(X).

On the other hand, Theorem 4.1 gives us that

∂3 logga

∂z2∂s̄

is also inL1(X) so thatφa(
∂
∂s

) ∈ L1(X). �
Proposition 5.2. Let (X ,a) → S be a holomorphic family of punctured Riemann surfac
with 0� ai < 1/2 for all 1� i � n. Then the quadratic differentialφa(

∂
∂s

) is holomorphic
onX′ with at most simple poles at the punctures. In particularµa ∈ H 1(X,a).

Proof. The proof thatφa(
∂
∂s

) is holomorphic inX′ follows as in [13] from hyperbolicity o
the metric. To show thatφa has at most simple poles at the punctures we use the follo
well-known fact. �
Lemma 5.3. Let D ⊂ C be the unit disk, and letf be holomorphic onD\{0}, let Dr be a
disk of radius0< r < 1. The functionf is in L1(Dr), if and only if it has at most a simpl
pole at0. In this casef ∈ Lp(Dr) for all 1� p < 2. Moreover,f is L2(Dr), if and only if
it extends holomorphically toD.
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trivial.
Proof. As 1/z ∈ Lp(Dr) for all 1� p < 2, anyf with at most a simple pole is inLp(Dr).
In order to prove the converse, letf (z) = ∑

j�2 aj z
−j , and assume that 0�≡ f ∈ L1(Dr).

Write f (z) = 1
zk h(1

z
) with h holomorphic onC, h(0) �= 0, andk � 2. So

∞ >

∫

|w|> 1
r

∣∣h(w)
∣∣ · |w|k−4 i

2
dw ∧ dw̄,

in particular

I =
∫

|w|> 1
r

h(w) · |w|k−4 i

2
dw ∧ dw̄

is finite. As for anyρ the integral
∫ 2π

0 h(ρeiθ ) dθ equals 2πh(0), we getI = 2πh(0) ×∫ ∞
1
r

ρk−3 dρ, which is not finite fork � 2.

Now letf (z) = ∑
j�1 aj z

−j . Then

(‖f ‖2
)2 = 2π

∑
j�1

|aj |2
1∫

0

dρ

ρ2j−1
,

which equals∞, unless all coefficients vanish.�
Let X → S be a holomorphic family of weighted punctured Riemann surfaces not

essarily over a disc. Ifv �= 0 is a tangent vector ofS at the distinguished base point, we c
find a local embedding ofS into some ambient spaceU , such thatv equals∂/∂s, wheres is
one of the holomorphic coordinates. Since in our case tangent directions are not obs
(in the sense of deformation theory), we can always assume thatS is a disc.

Proposition 5.2 allows us to define thegeneralized Kodaira Spencer mapρ : T0S →
H 1(X,a), which associates to the tangent vector∂/∂s|s=0 of a holomorphic one paramet
family in S, the Beltrami differentialµa(

∂
∂s

) defined in (6). By Proposition 5.2 the Beltram
differentialµa(

∂
∂s

) is harmonic in the sense of Definition 3.2.

Theorem 5.4. Let a be anR-divisor such that0 < ai < 1
2 for all 1 � i � n. A tangent

vectorv to S at 0, is in the kernel of the generalized Kodaira-Spencer map, if and on
the family of punctured Riemann surfaces is infinitesimally trivial in the direction ofv.

Proof. As explained above, we can assume thatS is a disc. If the given family is infinites
imally trivial in the direction ofv = ∂

∂s
|s=0, as far as the computation ofµa(

∂
∂s

) concerns,
we can replace our family with the trivial family over a disc tangent tov at 0, because ther
are no obstructions. Henceµa(

∂
∂s

) ≡ 0.
Assume conversely that for some tangent vector 0�= ∂

∂s
the Beltrami differentialµa(

∂
∂s

)

vanishes.
In a first step, we show that the given family with punctures disregarded has to be
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Let us set

γ (z)
∂

∂z
= −

(
1

ga

∂2 log(ga(z, s))

∂z̄∂s

)∣∣∣∣
s=0

∂

∂z
.

The vector fieldW = ∂
∂s

+ γ (z) ∂
∂z

is a smooth lifting toX ′ of the vector field∂
∂s

onS (cf.
[13]). By the above assumptionW is a holomorphic vector field onX′, whereX = X0. To
prove that it extends holomorphically toX, we show that it isL2(X), and apply Lemma 5.3
According to Theorem 4.1, and by the same reasoning as in Lemma 5.1 we get ats = 0:

∂2 logga

∂z∂s̄
∈ L2(X).

Since 1
ga

is continuous, hence bounded, the claim follows.

Now sinceW = ∂
∂s

+ γ ∂
∂z

is holomorphic on the first infinitesimal neighborhood
X in X , the family of compact Riemann surfaces is infinitesimally trivial in the direc
of ∂

∂s
.

With no loss of generality we can assumeX � X × S → S is actually trivial, and also
that the familyg of smooth reference metrics to be independent ons. In this geometric
situation,γ (z) ∂

∂z
is a holomorphic vector field onX.

It is sufficient to show that the directiont ′j (0) of the movement of a puncturepj with
respect to the parameters is equal to the value ofγ at the puncture. Therefore, the vec
field W provides an infinitesimal holomorphic trivialization of the punctured family.

Around any puncturepj , according to Section 4 we have

ga = eug = ewg

|z − tj (s)|2aj

with w ∈ H
p

2 (X). On the other hand,∂∂̄ logga = ga, and sinceγ is holomorphic, we have
at s = 0,

∂

∂z̄

(
∂ logga

∂s
+ γ

∂ logga

∂z

)
≡ 0.

Hence, the function

χ = ∂w

∂s
+ γ

∂w

∂z
+ γ

∂ log(g)

∂z

is holomorphic on a punctured disc aroundpj . Since∂w
∂s

∈ H
p

2 (X) and ∂w
∂z

∈ H
p

1 (X), the
function χ is in L2(X). So by Lemma 5.3 it is holomorphic in a neighborhood of
puncture, and finally the function

χ0 = ∂w

∂s
+ γ

∂w

∂z

is smooth in a neighborhood of the puncture. By differentiating the hyperbolicity e
tion (4), we find that up to additive terms of classC∞(X) the function∆(χ0) equals

eu

(
∂u + ∂γ + γ

∂ logg + γ
∂u

)
.

∂s ∂z ∂z ∂z
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Sincee−u is continuous aroundpj , we conclude that

∂u

∂s
+ γ

∂u

∂z

is also continuous aroundpj . It follows immediately thatγ (pj ) = t ′j (0). �
Corollary 5.5. The generalized Kodaira–Spencer mapρ : T0S → H 1(X,a) is an isomor-
phism for universal families of punctured Riemann surfaces.
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