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Abstract

We discuss the variational properties of the unique conical metric of constant curvdtagso-
ciated to a compact Riemann surface together with a weighted divisor.
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1. Introduction

In the present note we study hyperbolic metrics with conical singularities on com-
pact Riemann surfaces. Such metrics have been considered beginning with the work of
Picard [12]. Starting from the classical results by Kazdan—-Warner [5-7], existence and
uniqueness of conical hyperbolic metrics in every conformal class on a compact Riemann
surfaceX equipped with arR-divisor were proved by McOwen [10] and Troyanov [14].

In higher dimensions, results are due to by Cheeger, Tian and others.
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On a Riemann surface, ddivisor is of the forma=}"_; a; p;, where thes; are
real numbers subject to the conditiondz; < 1, andy (X, a) := x(X) — 274-101' < 0.
Here, by abuse of language, we say that the metric has a conical singularity of weight
at the puncture, if

a; =0 andg is smooth in a neighborhood of;, or

a; =1 andg satisfies a Poincaré growth conditionzgtor

0 <aj <1 and the metric is Iik% nearp; (cf. Definition 2.3).
zZ|

In the view of the recent construction of the moduli space of weighted punctured stable
curves [2] and the related hierarchy of compactificationstf ,,, we want to consider the
variation of hyperbolic conical metrics in holomorphic families, and introduce a general-
ized Weil-Petersson metric.

The main difficulty in the application of analytic methods arises from the lack of a
Hodge theory for Kéhler metrics with conical singularities. It is still possible to introduce
“harmonic Beltrami differentials” with respect to a hyperbolic conical metric, together
with a Kodaira—Spencer map, needed for the notion of a Weil-Petersson metric. Like in
the classical case, harmonic Beltrami differentials are closely related to the variation of
hyperbolic conical metrics in a holomorphic family.

It turned out that for O< a; < 1 the Weil-Petersson metric depends in a smooth
monotone way on the weights. Fora; — 0 we recover the Weil-Petersson metric for
non-punctured surfaces, assigning norm equal to zero to vectors corresponding to an infin-
itesimal motion of the puncture.

Later we need to assume that all weights are smaller thianThis range seems to be
relevant. In fact, under this assumption, by a recent result of Wang and Zhu [16], extremal
conical metrics are known to be hyperbolic. Properties of the generalized Weil-Petersson
metric depend on solving the equation for constant curvature with parameters, and differ-
entiability with respect to the parameter in the family follows, implyi@gsmoothness of
the Weil-Petersson metric.

2. Thehyperbolic cone metrics

Let X be a connected, compact Riemann surfaceg teto(z)|dz|? be a smooth metric
on some open set &f . As we will need the notions of K&hler geometry, we have to use the
complex Laplace operatat, = %82/(8z82), and we denote by the covariant derivative
in z-direction with respect tg. Accordingly, we will prefer to use the scalar curvature
instead of the Gaussian one, i.e., the curvaturg ief

_ 1 92log(p)
&7 p o 8z97
Let us fix some numbep > 1, and consider the Sobolev spade,ﬁ(X) of complex-

valued functions, which possess distributional derivatives up to drdar L?(X). An
operator
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L:HY(X)— LP(X),
is defined byL (V) = Ag(¥) — bW, whereb e LP(X) is a real function withb(z) > bg > 0
almost everywhere.

Note thatL is well defined and bounded, since for some posifiyeve haveHé’(X) C
C#(X) with a bounded inclusion. We shall need the following fact.

Lemma 2.1. The operatorL is invertible with bounded inverse.

The statement can be shown like in [1, pp. 104, 105]: There exist unique weak solutions
¢ € HZ(X) of the equation

L®)=f (1)
forall f € L?(X), because of the positivity assumption @nThe rest follows from regu-
larity theorems (cf. [1, p. 55]).

Now leta= )"} ,a;p; be areal divisoron X, i.e., a linear combination of distinct
points p; € X with real coefficients, and assumelQy; < 1. Such a paicX, a) is called a
weighted punctured Riemann surface.

Definition 2.2. The Euler—Poincaré characteristic of a weighted punctured suffaa®
equalsy (X, a) := x(X) — > _; a;.

In moduli theoretic applications the corresponding log-canonical divisgfa) :=
Kx +aisintroduced, and the notion of stability corresponds to the negativity of the Euler—
Poincaré characteristic.

Definition 2.3. By a conical metric on a weighted punctured Riemann surface) we
mean a smooth metric ok’ = X \ |J; p; such that (with respect to a local coordinate
centered at a punctuye;)

(1) g is smooth in a neighborhood of;, if a; =0,
. . . ~ oy . _ ﬂ(Z) 2 .
2) g sa_tlsﬂes a Pgl_ncare gr_ovvth conditionat, i.e., g = 7|Z‘2|092(|Z‘2)|dz| ,andp is a
continuous positive function, if; = 1, and
) g= %|dz|2, wherep is a continuous positive function, if 8 a; < 1.
z I

Existence of conical metrics holds according to McOwen [10], and Troyanov [14] (cf.
also [4,9,11,15]).

Originally, in the definition of a cone metric, the coefficiemtwas supposed to be
bounded. However, Heins [3], and McOwen [10] showed Hdlder continuity.

Theorem (McOwen, Troyanov)Let (X, a) be anR-stable weighted punctured Riemann
surface. There exists a unigue conformal conical metgibaving constant curvature 1
on X’. Moreover, the following Gauss Bonnet formula holds

-1
— Vol(ga) = x (X, @).
b
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We will refer to ga as thehyperbolic conical metriof (X, a), and( J, p; as thesupport
of a.

If aandb have the same underlying compact Riemann surfacguch that the support
of ais contained in the support bf we definea<< b, if a; < b; for all .

Proposition 2.4. Let (X, a), and (X, b) beR stable weighted punctured Riemann surfaces
witha < b. Thenga < gp.

Proof. Due to the construction of a hyperbolic conical metric, the functlor= ga/gp
is smooth, and positive oX’. In a neighborhood of a puncture; it is of the form
1212290 l0g?(1z]?)p; (2), if 0 < a; < b; = 1, or of the form|z|2?i=%)p;(z) otherwise.
Here p; is some continuous positive function on the coordinate neighborhogg.dh
particulary is continuous, and non-negative &n

Let Ap = éaé be the Laplace operator associateggmn X’. On the open surfacg’
the equation for curvature constantly equaktb gives us

Ap(log(¥)) =w — 1.

Let ¥ (xo) be a maximum o in X. We claim that¥ (xg) < 1. If by contradiction we
had ¥ (xg) > 1, then by continuity of the function log¥) would be subharmonic in
a neighborhood ofp, and it would have an internal maximum, therefarewould be
a positive constant. It would follow that = b, but then¥ = 1, a contradiction against
Uxo)>1 0O

In order to prove continuous dependence on the weights, we need the following fact.
Let (X, a) be a weighted punctured Riemann surface with supppp;. Let g be a
smooth conformal metric otX. We denote byG; the Green’s function of the global
Laplace operatort, on X with singularity atp; (cf. [8, Chapter IlI, §1]). In a coordi-

nate discD = {|z| < 1} centered ap;, we know thatG; + % log|z| is smooth inD. From
[10] we have thaga = e"ag with ua = Y 47a;G; + va, andva € H} (X) for all p with
1 < p < min;(1/a;). Note that McOwen'’s result is true also.dif < 0 for somei. In this
case we have, € HY (X) with 1< p < ming: ¢,>0(1/a;).

Fix some set of weightag with 0 < ag; < 1, and a positive € R such thatig; +¢ < 1
foralli. LetIp, . = {acR": a; <ag; +¢}. Letl< p < mini(Flﬂ).
Proposition 2.5. The mapa — v, defined onl,, . with values inHz”(X) is smooth. In
particular, on X’ we have continuity of, with respect ta in the compact-open topology.

Proof. For simplicity we assume = 1, i.e., with puncturepg, weighta, and Green'’s
function G singular atpg. The proof in the general case follows along the same lines.
Let K be the curvature of, the equation of constant curvaturel for the metricga
gives
Ag(ua) — e =K,
ie.,
Ag(va) _ e47mGeva —K

onX’.
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We consider the mag : 1, . x Hjy (X) — LP(X) given by
U(a,v) = Ag(v) — et — K.

In order to show that all partial derivatives &f with respect tae andv exist and de-
pend continuously on these variables, we make the following observation. Fix a coordinate

k
neighborhood/ centered apg. Fora € 1,y ¢, and anyk € R, we have'oi(% e LP(U),

moreover any function ier”(X) is in someC#(X). So¥ has actually values i? (X),
and moreover it is of clags®>°. On the other hand, by Lemma 2.1 the partial derivative

Do¥|(ag,0p) (W) = Ag(w) — e e"w

is invertible, so we can conclude the proof by means of the implicit function theorem.

3. Thegeneralized Weil-Peter sson metric

We first choosa such that O< ¢; < 1 forall 1<i < n. LetS be an open set of soni#,
by definition a holomorphic familyX’, a) — S of weighted punctured Riemann surfaces
of genusy > 0, is a holomorphic family¥ — S together withn holomorphic sections
o1...0, such that for alls € S the pointso; (s) are pairwise distinct. From a deformation
theoretic standpoint the Teichmiller space of such objects is just the usual Teichmdller
spaceT, ,, wherey is the genus of the compact surface. Given a poifff,ip with induced
n-punctured Riemann surfacé, we assign the weight; to the puncturep;. Denote by
HO(X, Qz(xya)) the space of holomorphic quadratic differentials with at most simple poles
at the punctures, identified with the cotangent spa@ atat the given point.

Definition 3.1. The Weil-Petersson inner product &?(X, Qz(x,a)) is given by
(b, ¥)wpa= / gdAa,
X fa

wheregj, is the hyperbolic conical metric, with surface elemént,.

Observe that the above integrals are finite, because;0< 1 for all ;.

It follows from Theorem 2.5 that for & a; < 1 the Weil-Petersson inner product de-
pends continuously on the weights.

We use an ad hoc definition of the spacéafmonic Beltrami differentialaiith respect
to the hyperbolic conical metrig,.

Definition 3.2. Let H1(X, a) be the space of Beltrami differentials of the form

0 —  ¢(z) 0 —
p=n@ 92 °¢ ga(2) 9z ¢
where¢ = ¢(z) dz? € HO(X, Q(ZX,a))’ andga = ga(z) dzdz is the hyperbolic conical met-

ric.
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Lemma 3.3. There is a natural non-degenerate pairing
®: HO(X, % 5) x H'(X.a) > C,

where

¢<¢(Z)dzz,u(z)8%d_z> =/¢(Z)u(z)dzd2.
X

Proof. We have

—
A —dz)=||¢||%vp,a. 0

2
? <¢ @dz% @82

The Weil-Petersson metric on the cotangent spa@g taogether with the above dual-
ity defines a Weil-Petersson mettiGy p 4 on the tangent space identified witht (X, a).

Lemma3.4. Letuq, andus in H1(X, @), then

(Mlv M2>WP,a=//¢L1/¢L_2dAa.
X

Proof. By polarization it is sufficient to prove the lemma fof = u».
We have by definition

P (. 1) [?
lnalypa= Sup ————.
lwizo ¥ lypa

It follows from the Cauchy—Schwarz inequality that the right-hand side is smaller or equal
to [ |n1|2dAa. With g = %% dz, settingy = ¢1, we get equality. O

Denoting by(b, 0) the weighted punctured surface with fake punctyigsas, ..., px,
whose weights are zero, the notion of convergeamee (b, 0) becomes meaningful. Be-
cause of the regularity theorem for an elliptic non-linear equation, the hyperbolic conical
metric gp can be identified witlgp o).

Denote byy : 7, , — 7, » the holomorphic map, forgetting punctures. We edijip,
and7, , with Gwp a, andGw p b respectively, then we have

Theorem 3.5. For a— b the metricG w p,a cOnverges to the degenerate meyiadGwp ).

Proof. Because of Theorem 2.5, the metgicdepends in a continuous way upon the
For a; > 0 this implies thatGwy p 5 is continuous inz;. For simplicity we leta, — O,
and fix the rest. We choose local coordinates. . ., rx) around(X, a) in 7, ,, such that
N =3y — 3+ n, and the coordinates, _3,; corresponds to moving the punctupg.
Thereforedts, _3, ; on the cotangent spaceT0 ,, corresponds to a holomorphic quadratic
differential ¢s, _34 ; with a simple pole ap; whereasp; is holomorphic fork < 3y — 3.
Now for a— (b, 0), i.e.,a, — 0, the hyperbolic cone metrig; converges to a metric

which is smooth aroung,. So||¢x|lwp,a — +0c. Therefore(e;, ¢n)wp.a has a finite
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limit as a, — 0. On the tangent space we get thgk-, %) =0forall 1< j < N. Fur-

thermore, we see that forj < N the functions;, andz; can be considered as coordinates
in 7, ,_1, so thatdy;, dt;)wp,b,0) = (dt;, dt;)wp p- This implies the claim. O

4. Variation with respect to parametersin a family

Let IT: (X, a) — S be a holomorphic family of weighted punctured Riemann surfaces.
Let us takeS = {s € C: |s| < 1}. Let X = IT~1(0). We will consider local coordinates
(z,s) in & such that/T is the projection onto the second factor. Punctures are defined by
holomorphic sections; with weightsa;, 0 < a; < 1, and local equatiory (s). Denote by
X’ the open subset \ U,- 0;(S). For eachj choose a function; which is smooth on

X\ o;(S), and of the form log|z — ¢; ()1? nearo;(S). For simplicity let us assume that
n=1,a1=a,t1(s) =1t(s), andyr1 = .

The holomorphic familyX¥ — S of the underlying compact Riemann surfaces can be
chosen to be a trivial differentiable family. Therefore the various Sobolev sﬁﬂc‘éekx)
with X, = IT~1(s) can be identified WithH,f(X). Let the differential operatord/dz de-
pend on the parameterin such a way that the induced conformal structure is the given
one. So we can choose a differentiable lftof 3/ds so that[V, V] = 0. Explicitly,
we letV(s) = £ + n(z. )L + 0(z.5) %, and we assume that=0, and¢ =0, i.e.,

V = (8/3s)|(.5) in @ neighborhood of the sectien which defines the punctures depend-
ing ons.

Choose a smooth family (s, z)|dz|? of smooth conformal metrics o/ of curva-
ture K (s, z). Let g,(z,s) be the hyperbolic conical metric ofi;. Theng,(z, s)|dz|? =
e g(z,5). Hereu(z, s) = ay +w(z, s), where for fixeds, and fixedp with 1 < p < 1/a
the functionw(z, s) belongs toH5 (X).

We use the implicit function theorem to produce (the unique) hyperbolic cone metrics on
neighboring fibers in a holomorphic family from the one on the central fiber. This approach
yields an understanding, and estimates of derivativeg @f, s) with respect to.

The equation for hyperbolicity oX gives

Au—e" =K, ()]
where A is the Laplace operator with respect to the megri@and K the curvature. It is
equivalent to

Aw — VeV = K —aA(y). 3)

Sinceyr is harmonic in a neighborhood of the 86(5), in such a neighborhood the above
equation is locally of the form

w

Aw_|z_—;|2a:K (4)

We want to study the solutions of (3) depending on the parameter
Let us first assume for simplicity that the holomorphic famity— S is trivial. Then
(3) is of the form

Aw(z, s) — b(z, s)e @) = f(z,s).
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(This is a global equation expressed in a local coordingte
Define

@ :8x HY (X)— LP(X)

by
D(s,w)=Aw) —eVe¥ — K +aA(y) = A(w) —b-e¥ — f, (5)

where A(y) is considered as a function that is identically zero near the punctures. Our
solutionw(z, s) satisfies the equatiof (s, w(z, s)) =

At this point we assume € a < 1/2, and chose such that < p < 2a+1 We claim
that® is a map of clasg': The only smgulanty ob = ¢*¥ is at the punctures, where it

b_ 1) ab ; _
equals ()‘2,,, and where% = -0 7|Z ol Sog; € LP(X), and it depends con

tlnuously ons andw. The functionf is smooth ins (and mdependent ab). Furthermore,
the coefficients of the Laplacian are smooth functions, iand

9 Aw) = 9 lo A LP(X
—(Aw) = —=—(logg(z.5)) - Aw) € L (X)

for any fixeds € S, w € Hé’(X), and it depends continuously smndw. SO(D1®) s, ) €
LP(X) forall (s,w) € § x Hf(X). Furthermore, the map

(D29)(s,w) : Hy (X) = LP(X)
is given by
(DZ(p)(s,w)(W) =AW) — eV - W.

This map depends continuously esrandw, and by Lemma 2.1 it is a continuous linear
map with a bounded inverse. By the implicit function theorem the solutit s) : S —

HZ”(X) is of classC? in s. In particular it is differentiable in as a function ot ands,

and asHZ”(X) c CP(X) for somep > 0 it is continuous ir; ands. So we can also apply

local regularity theorems on the complement of the punctures, and see that it is of class
C® there.

In our situation, the holomorphic family is usually non-trivial, and derivatives with re-
spect to a parameter are meaningful with respect to a differentiable trivialization. This
process is equivalent to taking Lie derivatives with respect to the vector Wielcet us
denote byL the operator of derivation in theé-direction. We have

[L,V]=L(logg)- A+ R,

whereR is a differential operator of order two in fiber direction, whose coefficients are
first and second order derivativesmpand6. In particular,R vanishes on a neighborhood
of the punctures. Up to inserting the differentiable trivializatiodtof> S coming from an
integration ofV, a map

@ :8 x HJ (X) > LP(X)

is given by the same formula (5). The derivatide(P) s, is defined either by applying
d/dsonX x SorLonX.So
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D1(P)(s,uy = ¢V e (L(logg) — aL(¥)) + L(K)
— L(Iogg)(K —aAy) — R(w) —aL(A®W)).

This element represents a function &n~ X, whose restriction to a neighborhood of the
punctures equals

—ee”L(logg) — eV ePaL(y) — L(Iogg) - K + L(w).

The previous argument applies again: The derivalg®) s, is in LP(X) for any
seS,we Hz”(X) and depends continuously erandw. FurthermoreDo®) s ) (W) =
A(W) — eV e W.

Theorem 4.1. Let0 < q; < 1/2forall i, and1 < p < min; 2a ~1- Consider a holomorphic
family of punctured Riemann surfaces with conical hyperbollc meics), and write
gals) = e“(s)g(s), whereg(s) is a smooth family of smooth metrics on thig Letu =
Y i aivi + wals).

Thenwga(s) and Ly (wa(s)) are contained irHZ{’(X) forall s € S, and they depend in a
C! smooth way on. Moreoverwa(s), and Ly (wa(s)) are C* on X”.

Corollary 4.2. The generalized Weil-Petersson metric is al8csmooth with respect ta

5. Thegeneralized Kodair a—Spencer map

We now want to compute harmonic Beltrami differentials in the sense of Section 3 from
the variation of hyperbolic cone metrics.

In the case of compact Riemann surfaces with no punctures, the harmonic Beltrami
differential u = u(z)ai dz associated tg% |s=0 equals

_ 8( ﬁmmaznd 0 .
= _— —daz

0z dzZ0s 5=002

(see [13)).
From now on all values are takensat 0.
A formal calculation shows that = —gx is aholomorphicquadratic differential. On
the other hand, the above Beltrami differential is éhexterior derivative of a smooth lift
of the tangent vecto{% to the total spacer’ of the family (restricted to the central fiber
X =11-10)).
In the case of conical hyperbolic metrics we define the smooth Beltrami differential on
X’ given by

9 1 92logga
)= dz. 6
Ma(?)S) 8Z<ga 9zds >8z : ©

and the quadratic differentiga(:) = gatta(2).

Lemma5.1. The quadratic dlfferennaba( S)isin LY(X).
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Proof. Assume again = 1. From formula (6) we derive that

9\ _0dlogga 9%logga 9%logga
as) oz 3705 87295

By the Sobolev embedding theorer(X) c LX) forall h < p’ 2—” However,
as p can been chosen between 1 aﬂ% the exponenp’ can be any number between
a2 2 P 2
2 and2. Recall that” %100 — 0, and that?29E 00 — e L4(D) for all
1< g < 2,whereD c C denotes the unit disk.
Around the puncture,

z— l(a)

3logga _ 3w
3z05 9705
By Theorem 4.1, we have
9

w p
— € Hy (X)
as

fmmu<p<ZHlSG“W%eHﬁxy»wanmmu<h<ya

Furthermoreo"’gga eLi(X)forall1<qg <2.
AsO0<a< 1/2 ‘we can findg, & in the above range with/ + 1/h = 1. By Hélder
inequality,

dlogga 08°logga
0z 070§

On the other hand, Theorem 4.1 gives us that

e LY(X).

93 logga
97205

is also inL1(X) sothatqsa( )eL (X). O

Proposition 5.2. Let (X, a) — S be a holomorphic family of punctured Riemann surfaces,
with0 < a; < 1/2forall 1 <i < n. Then the quadratic differentiaia(af’—s) is holomorphic
on X’ with at most simple poles at the punctures. In particytare H1(X, a).

Proof. The proof thatﬁa(aa—s) is holomorphic inX’ follows as in [13] from hyperbolicity of
the metric. To show thag, has at most simple poles at the punctures we use the following
well-known fact. O

Lemma5.3. Let D C C be the unit disk, and lef be holomorphic orD\{0}, let D, be a
disk of radius0 < r < 1. The functionf is in L1(D,), if and only if it has at most a simple
pole at0. In this casef € LP(D,) forall 1< p < 2. Moreover,f is L?(D,), if and only if
it extends holomorphically t®.
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Proof. As1/z € LP(D,)forall1< p <2, anyf with at most a simple pole is ib” (D).
In order to prove the converse, I¢tz) = Zj>2ajz*/, and assume that® f € L1(D,).

Write f(z) = Zikh(%) with A holomorphic onC, #(0) # 0, andk > 2. So

00 > / wmﬂ.m¢4%demu
lw|>1

in particular

I = /‘hw0¢ww4%dedw

lw|>

is finite. As for anyp the integralfoz” h(pe'?)d6 equals Zh(0), we getl = 27 h(0) x
[1° p*=2dp, which is not finite fork > 2.
Now let f(z) =Y ;5,a;z7/. Then

1

d
(I112)° =27 ) |a,-|2/ ot

izl 0

which equalsx, unless all coefficients vanish.0

Let X — S be a holomorphic family of weighted punctured Riemann surfaces not nec-
essarily over a disc. N # 0 is a tangent vector of at the distinguished base point, we can
find a local embedding of into some ambient spaég, such that equalsd/as, wheres is
one of the holomorphic coordinates. Since in our case tangent directions are not obstructed
(in the sense of deformation theory), we can always assumé fkat disc.

Proposition 5.2 allows us to define tigeneralized Kodaira Spencer map: TS —
H1(X, a), which associates to the tangent ve@pds|;—o of a holomorphic one parameter
family in S, the Beltrami differentia,ua(%) defined in (6). By Proposition 5.2 the Beltrami

differential ua(%) is harmonic in the sense of Definition 3.2.

Theorem 5.4. Let a be anR-divisor such tha0 < q; < % for all 1 <i < n. A tangent
vectorv to S at 0, is in the kernel of the generalized Kodaira-Spencer map, if and only if
the family of punctured Riemann surfaces is infinitesimally trivial in the directian of

Proof. As explained above, we can assume that a disc. If the given family is infinites-
imally trivial in the direction ofv = %h:o, as far as the computation ﬂfa(aa—s) concerns,
we can replace our family with the trivial family over a disc tangent & 0, because there
are no obstructions. Henm(%) =0.

Assume conversely that for some tangent vect¢r§ the Beltrami differentiaua(%)
vanishes.

In a first step, we show that the given family with punctures disregarded has to be trivial.
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Let us set

(}g__cgﬁmm&gxn>
V% T e ozas

d
V703Z .

The vector fieldW = + y(@ 2L 32 Is a smooth lifting taY’ of the vector fleld— on S (cf.
[13]). By the above assumptldnf is a holomorphic vector field oi’, whereX Xo. To
prove that it extends holomorphically 8, we show that it ig.?(X), and apply Lemma 5.3.
According to Theorem 4.1, and by the same reasoning as in Lemma 5.1 wes geDat

9%log g,
070§

Sinceg—lal is continuous, hence bounded, the claim follows.

e L3(X).

Now sinceW = (fv +y 83 is holomorphic on the first infinitesimal neighborhood of
X in X, the family of compact Riemann surfaces is infinitesimally trivial in the direction
of 2

W|th no loss of generality we can assutlie~ X x S — S is actually trivial, and also
that the familyg of smooth reference metrics to be independens.oim this geometric
situation,y(z)a% is a holomorphic vector field oX .

It is sufficient to show that the directiari(0) of the movement of a punctune; with
respect to the parameteis equal to the value of at the puncture. Therefore, the vector
field W provides an infinitesimal holomorphic trivialization of the punctured family.

Around any puncturg;, according to Section 4 we have

u e’'s
a=€ §=—"""—"—5—
: 2 — ()%

with w € Hf(X). On the other hand}d log ga = ga, and sincey is holomorphic, we have
ats =0,

d [dlo dlo

2 08a ty J8a —0
07 as 0z

Hence, the function

_dw ow alog(g)
K= T T T
is holomorphic on a punctured disc aroupd Slnce"w € H”(X) and%—’f € Hf(X), the
function x is in L2(X). So by Lemma 5.3 it is holomorphlc in a neighborhood of the
puncture, and finally the function

_ ow ow
X0= as 4 0z
is smooth in a neighborhood of the puncture. By differentiating the hyperbolicity equa-
tion (4), we find that up to additive terms of clag%°(X) the functionA(xo) equals

eu<8u 8_y+ alogg+ 8_u>

as "oz TV e 7%
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Sincee™ is continuous aroung;, we conclude that

ou n ou
as v 0z
is also continuous aroungl;. It follows immediately that (p;) = t} 0. O

Corollary 5.5. The generalized Kodaira—Spencer mapToS — H(X, a) is an isomor-
phism for universal families of punctured Riemann surfaces.
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