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Abstract. Large deformations of helical springs are affected by coil contact, but most available 

spring modelling techniques only account for nonlinear vertical motion, and Finite Elements 

(FE) nonlinear analysis that considers contact between coils can be very expensive. A 2D model 

based on equivalent beam and penalty-based contact algorithm is developed for efficient yet 

realistic prediction of non-uniform spring deflection. The proposed model is tested versus FE, 

where the helical wire is modelled using beam elements. Two scenarios are taken into account: 

a cylindrical spring in compression/bending and a progressive conical spring under simple 

compression. It is shown that the proposed model matches FE at a very low computational cost.  

1. Introduction 

In many applications, contact between coils of helical compression springs allows introducing extra 

damping and increasing stiffness in the system while deforming. Just to give an example, this has been 

widely used for valve springs in internal combustion engines over the last decades [1]. Simulation of 

such systems, where nonlinear springs are involved, requires an appropriate modelling strategy. A full 

simulation of the coiled wire, e.g. using finite elements, would be too expensive to run and a correct 

managing of contact algorithm is nontrivial. Therefore, most commercial packages provide several tools 

to account for the nonlinear springs at a lower computational cost. A common approach is the multi 

mass model, where the spring is represented by several masses connected with a sequence of stiffness 

and damping elements [2]. Usually the parameters are computed from coils properties, and nonlinearity 

arises as the gaps between consecutive masses close. It is also possible to directly provide the nonlinear 

spring characteristics, obtained from previous computations (analytically or via finite elements) or direct 

experiments. However, these methods only account for vertical motion and it seems to the authors that 

there is a lack in literature about the influence of coils contact on flexural and lateral behavior. In these 

cases, clash between coils not only affect the stiffness, but also changes the direction of spring motion 

and the volume occupied during operation. 

Starting from Haringx’s work on instability [3], several researchers have studied the lateral motion 

of compression springs. Analytical solutions have been obtained using equivalent beams under large 

displacements, [4] [5], but these models cannot manage coils contact. On the other end, the dynamics of 

the wire has been addressed by many authors using numerical methods: finite elements [6] , transfer 

matrix method [7], finite differences [8], dynamic stiffness matrix method [9]. However, also in those 

cases it is still hard, and in some cases not practicable, to account for coil contacts and large deflection. 

In this paper a modelling strategy for nonlinear spring with coil contact is presented, with the aim of 

providing a tool for quick and accurate prediction of the component behavior. The proposed model takes 

advantage of the equivalent beam formulation and discretizes the spring with nonlinear beam-like 



elements placed along the axis of the helix. At the same time, contact surfaces are related to the nodes 

and it is possible to introduce contact relations between adjacent coils. By this way, the contact acts in 

its real geometric occurrence and can provide both axial and radial effects, within the limits due to the 

in-plane formulation. The equivalent beam formulation is based on the assumptions of nonlinear 

Haringx’s model and is discussed in section 2. Then, the contact definition is described in sections 3. 

Finally, several numeric examples are provided, considering FE as benchmark and conclusions are 

drawn.  

 

2. 2D equivalent beam discrete model 

 

2.1 Outline of the model 

An illustration of the model is given in Figure 1. The spring is represented by beam elements (green) 

along helix axis, representing half a coil. Each node is associated with a contact zone (white) located 

where the working plane intersect the coiled wire. The 3D render of the spring can be obtained from 

nodal displacements and rotations. 

 

2.2  Large displacement kinematics and internal forces 

Haringx studied the buckling of springs referring to beams following the spring axis [3]. Although, 

otherwise from classical Timoshenko beam [10], Haringx’s equivalent beam rotation is only affected by 

the bending component. This implies that compression and shear reactions are oriented according to the 

rotation of cross-section due to bending. In the following, normal and shear directions are oriented 

according to Haringx’s assumption: an illustration is given in Figure 2. 

Elastic forces are assumed to be linear function of elongation, shear displacement, and cross-section 

rotation: 

 

 𝑁 = 𝐾𝑎𝑥(𝑙 − 𝑙0) (1) 

 

 𝑇 = 𝐾𝑠ℎ(𝑣 − 𝑣0) (2) 

 

 𝑀 = 𝐾𝑓𝑙(Δ𝜃 − Δ𝜃0) (3) 

 

Where the subscript 0 refers to the undeformed configuration (usually 𝑣0 = 0 and Δ𝜃0 = 0).  𝐾𝑎𝑥 𝐾𝑠ℎ 

𝐾𝑓𝑙 are axial, bending and shearing stiffness of half a coil, computed according to Haringx’s hypothesis. 

For a wire with constant circular cross section with diameter d, and coil diameter D, they are: 

Figure 1. 2D equivalent beam model of a spring. 



 

 𝐾𝑎𝑥 = 2
𝐺𝑑4

8𝐷3 cos 𝑝 

 

 𝐾𝑠ℎ = 2
𝐸𝑑4

8𝐷3 cos𝑝 

 

 𝐾𝑓𝑙 = 2
4𝐸𝐺𝑑4

64𝐷(2𝐺+𝐸)
cos 𝑝 

 

where p is helix angle, G and E are elastic and torsion modulus of the material. Average properties of 

half a coil are taken in case of non-uniform springs. 

The factor cos 𝑝 is omitted by Haringx, but it is here introduced, as in [2], to account for the effect 

of the helix angle on the real wire length, while the effect of helix angle on wire bending and torsional 

moments is neglected. Indeed, when considering the stress state in the wire, it is costume to neglect the 

helix angle due to the consideration that bending and torsion add themselves in the wire [11]. 

 

 

Equilibrium equations in local coordinate system of the element write: 

 

 𝑁1 + 𝑁2 = 0 (4) 

 

 𝑇1 + 𝑇2 = 0 (5) 

 

 𝑀1 + 𝑀2 + 𝑁2𝑣 − 𝑇2𝑙 = 0 (6) 

 

Together with equations (1), (2), (3) they give: 

 

 𝑁2 − 𝑁1 = 𝐾𝑎𝑥(𝑙 − 𝑙0) (7) 

   

 𝑇2 = −𝑇1 = 𝐾𝑠ℎ(𝑣 − 𝑣0) (8) 

 

Assuming that bending reaction is equal to the average of the moments applied at the nodes it follows 

that:  
𝑀2 − 𝑀1

2
= 𝐾𝑓𝑙(Δ𝜃 − Δ𝜃0) 

𝑀2 

𝑀1 

Figure 2. Half-coil element. 
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And from rotational equilibrium:  

 

 𝑀2 = 2𝐾𝑓𝑙(Δ𝜃 − Δ𝜃0) + 𝑀1 = 𝐾𝑓𝑙(Δ𝜃 − Δ𝜃0) − 𝑁2
𝑣

2
+ 𝑇2

𝑙

2
 (9) 

 

In global cartesian coordinate system, the half-coil element has six degrees of freedom. The 

corresponding generalized coordinates and forces are: 

 

 𝒑 =  {𝑥1, 𝑦1, 𝜃1, 𝑥2, 𝑦2, 𝜃2} 
 

 𝑭 = {𝐹𝑥1
, 𝐹𝑦1

,𝑀1𝐹𝑥2
, 𝐹𝑦2

,𝑀2} 

 

Only rotations Δ𝜃 can be directly computed, while 𝑙 and 𝑣, nonlinearly depend on 𝒑 components. 

Tangent and normal to the cross section are oriented, respectively: 

 

 𝒕 =  (
cos 𝜃𝑏

sin 𝜃𝑏
) 

 

 𝒏 = (
− sin 𝜃𝑏

cos 𝜃𝑏
) 

 

where 𝜃𝑏 is the average angle orienting the equivalent beam element: 

  

𝜃𝑏 =
(𝜃2 + 𝜃1)

2
 

 

Deformed length and shear displacement are then: 

 

𝑙 = 𝒂 ⋅ 𝒏 

 

𝑣 = 𝒂 ⋅ 𝒕 

 

Where 𝒂 is the vector connecting the nodes: 

 

𝒂 =  (
𝑥2 − 𝑥1

𝑦2 − 𝑦1
) 

 

Given 𝑙 and 𝑣, internal forces are computed using equations (7), (8), (9) and as a matter of fact, the 

kinematics of the system gives the resulting internal forces.  

 

2.3 Stiffness matrix 

Stiffness matrix should be derived from internal forces and displacements. However, for this study it 

was preferred to use the matrix of the analytical shearing beam, where cross section and material 

properties are substituted by axial, shearing and bending stiffness. The element matrix than writes: 

 

 



𝐾 = 

[
 
 
 
 
 
 
 
 
 
 
 
𝐾𝑎𝑥 0 0 −𝐾𝑎𝑥 0 0

0
12𝐾𝑓𝑙

𝐿2(1 + Φ)

6𝐾𝑓𝑙

𝐿(1 + Φ)
0

−12𝐾𝑓𝑙

𝐿2(1 + Φ)

6𝐾𝑓𝑙

𝐿(1 + Φ)
𝐾𝑓𝑙(4 + Φ)

(1 + Φ)
0

−6𝐾𝑓𝑙

𝐿(1 + Φ)

𝐾𝑓𝑙(2 − Φ)

(1 + Φ)

𝐾𝑎𝑥 0 0

𝑆𝑦𝑚
12𝐾𝑓𝑙

𝐿2(1 + Φ)

−6𝐾𝑓𝑙

𝐿(1 + Φ)
𝐾𝑓𝑙(4 + Φ)

(1 + Φ) ]
 
 
 
 
 
 
 
 
 
 
 

 

 

Where shearing factor Φ  can be computed as: 

Φ =
𝐾𝑓𝑙

𝐾𝑠ℎ𝐿2
 

 

3. Contact implementation 

 

3.1 Contact kinematics and force 

A penalty-based contact algorithm has been developed to account for coils contact in a realistic, yet 

efficient manner. The contact is evaluated on working plane using contact circles A and B in figure 3. 

Those circles are obtained as the intersection of the working plane with the spring wire (neglecting a 

secondary effect due to helix angle). When the distance between centers is less than the mean wire 

diameter, a contact force generates. The direction of the force is that of the line connecting the center of 

the two circles. Of course, the forces are applied to nodes 1 and 3 involved in contact and thus a moment 

arise. Thus, the contact is computed in the real location where it develops and then transferred to the 

equivalent beam nodes. 

 

With reference to figure 3, the coordinates of contact circles centers are: 

 

 {
𝑥𝐴

𝑦𝐴
} = {

𝑥1

𝑦1
} +

𝐷1

2
{
cos𝜃1

sin𝜃1
} (10) 

 

 {
𝑥𝐵

𝑦𝐵
} = {

𝑥3

𝑦3
} +

𝐷3

2
{
cos𝜃3

sin𝜃3
} (11) 

 

1 

  

  

C 

𝜙 

𝜃1 

𝐷3

2
 

𝜃3 

𝐷1

2
 

𝐹 

𝐹 

𝐵 

𝐴 

x 

y 

3 

Figure 3. Contact description. 



Thus, it is possible to compute the actual distance and penetration: 

 

  ℎ = √(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 

  

 𝑑 =
1

2
(𝑑1 + 𝑑3)  

 

Introducing a convenient contact force expression [2] with appropriate stiffness and exponent: 

 

 {
𝐹 = 𝐾𝐶(𝑑 − ℎ)𝑘 

(𝑑 − ℎ) > 0
 (12) 

 

Angle 𝜙 gives the direction of the force and allows to calculate the coordinates of contact point C: 

  

cos𝜙 =
𝑥𝐵 − 𝑥𝐴

ℎ
 

  

sin𝜙 =
𝑦𝐵 − 𝑦𝐴

ℎ
 

 

 {
𝑥𝐶

𝑦𝐶
} = {

𝑥𝐴 −
𝑑3

2
cos𝜙

𝑦𝐴 −
𝑑3

2
sin𝜙

} = {
𝑥𝐵 +

𝑑1

2
cos𝜙

𝑦𝐵 +
𝑑1

2
sin𝜙

} (13) 

 

Combining equations (10) and (13), and magnitude 𝐹 from equation (12), it is possible to compute the 

generalized nodal forces, as function of nodal coordinates only: 

 

𝑭𝟏 =  {

𝐹1𝑥

𝐹1𝑦

𝑀1

}  =  𝐹 {

− cos𝜙
−sin𝜙

sin𝜙 (
𝐷1

2
cos 𝜃1 +

𝑑1

2
cos𝜙) − cos𝜙 (

𝐷1

2
sin 𝜃1 +

𝑑1

2
sin𝜙)

} 

 

𝑭𝟐 = {

𝐹3𝑥

𝐹3𝑦

𝑀3

} = 𝐹 {

cos𝜙
sin𝜙

sin𝜙 (
𝐷3

2
cos 𝜃3 −

𝑑3

2
cos𝜙) − cos𝜙 (

𝐷3

2
sin 𝜃2 −

𝑑3

2
sin𝜙)

} 

 

 

3.2 Contact stiffness matrix 

Contact stiffness matrix is given by contact forces derivatives with respect to nodal degrees of freedom. 

The expression is trivial but tedious and is easily computed using symbolic solver.  The first column is 

obtained as follows: 

𝐾11 =
𝜕𝐹𝑥1

𝜕𝑥1
, 𝐾21 =

𝜕𝐹𝑦1

𝜕𝑥1
, 𝐾31 =

𝜕𝑀1

𝜕𝑥1
, 𝐾41 =

𝜕𝐹𝑥3

𝜕𝑥1
, 𝐾51 =

𝜕𝐹𝑦3

𝜕𝑥1
, 𝐾61 =

𝜕𝑀3

𝜕𝑥1
 

 

 

4. Numerical examples 

The model is tested versus FE simulation, for two different geometries and loads. The first example, 

Spring A, is a cylindrical spring with uniform pitch, clamped at bottom coil. The top coil is loaded by a 

force with both axial and lateral components. The second example, Spring B, is a conical spring loaded 



axially and top coil is laterally constrained, to prevent buckling. Properties of the springs are listed in 

table 1. Direction of the force is constant (the force is not following coil rotation).  

Design and modeling of end turns is not straightforward, in this work every spring ends with a full 

non-active turn, whose pitch is equal to the wire diameter (closed coil end). The FE model of the spring 

consists of beam elements, modeling the wire. The ending turns are pseudo-rigid regions, where all the 

nodes are connected to a central node using beam elements of higher stiffness. Bottom central node is 

fixed, while top central node can only move in the X-Y plane. For spring 2 it was necessary to activate 

the no-sliding option to help convergence of the finite element solution. Details of finite element 

modeling of the springs are listed in table 2. 

Figure 4 shows undeformed Spring A (wireframe) and deformed configurations from both proposed 

model (blue) and FE (red) results. The two shapes are practically superimposed and is hard to distinguish 

between them. Load deflections curves at loaded node are plotted in figure 5. It is possible to notice the 

effect of contacts, especially on the vertical displacement of the tip. Furthermore, it is noticed that the 

proposed model is always showing a softer behavior than FE, in both with and without contact solutions. 

Deformation of Spring B at maximum load is shown in figure 6 and the load-displacement 

characteristic of the spring in figure 7. Again, it is hard to distinguish between the rendering based on 

the proposed model and that based on finite elements. 

  

Coils in 

contact 
Coil compenetration 

Figure 4. Spring A deformed at maximum load, without coil contact (left) and with coil contact. 

Proposed model result is blue and FE is red. 



 

Figure 5. Spring A, displacements at tip. 



 

 

 

 

  

Coils in 

contact 

Figure 6. Spring B deformed configuration at maximum load. Result of 

proposed model in blue, FE in red. 

Figure 7. Load-deflection characteristic of spring B, proposed model (solid) and FE (dashed). 



 

Table 1. Properties of the springs used in the examples. 

Feature Spring A Spring B 

Wire diameter (mm) 1.5 1.5 

Mean bottom coil diameter 

(mm) 

10 12 

Mean top coil diameter (mm) 10 6 

Number of active coils 14.5 7.5 

Number of non-active coils 2 2 

Pitch of non-active coils (mm) 1.5 1.5 

Active height of spring (mm) 28.6 28.6 

Total height of spring (mm) 31.6 31.6 

Fx at time 1 (N) -9 0 

Fy at time 1 (N) -4 -200 

 

 

Table 2. Finite elements model of the springs. 

Element type 2D Beam 

Number of elements per turn 40 

Contact element Sphere to sphere contact (no sliding for spring 2) 

Number contact elements per turn 4 

Bottom node constrained dofs ALL 

Top node constrained dofs UZ, ROTX, ROTY, (also UX, ROTZ, for spring 2) 

 

 

Table 3. Solution time for proposed model and FE simulations. 

Case Finite elements  

(s) 

Proposed model 

(s) 

Reduction 

Spring A 154 24 84% 

Spring A w/o contacts 81 38 53% 

Spring B 122 8 93% 

Spring B w/o contacts 68 4 94% 

 

 

A further interesting point is the comparison of the computer time to obtain the solution between the 

FE and the proposed model. In table 3 the comparison is done keeping the same step size in the nonlinear 

solution and it appears that, when contact affects the solution, the proposed model is much more 

competitive.  

It is also possible to make some considerations about the impact of contact on computing time. It 

seems that contact is little affecting the solution time for FE simulation of Spring A, while it is even 

helping convergence for the proposed model. The behavior of the proposed model can be explained with 

the consideration that coil contact is preventing very large deformation of bottom coils, which in the 

non-contact case are compenetrating.  

On the other hand, the presence of contact almost doubles the solution time of Spring B for both 

modeling techniques, but in this case, the non-contact scenario is absolutely unrealistic, since the spring 

telescopes with the top coil going under the bottom. Finally, it is interesting to notice that the proposed 

model shows a great difference in solution time between the two cases Spring A and Spring B. Figure 8 

shows the number of iterations required at each substep when contact is considered. In fact, Spring B, 

excluding contact, is linear (only compression and no geometric effects) and before first contact occurs, 



converges at first iteration. Conversely, nonlinear geometric effects are dominating large displacements 

in Spring A and an increasing number of iterations are required as the solution proceeds. 

 

4. Conclusions 

The provided examples show that the proposed model matches static finite elements simulations, even 

though a quite simple nonlinear model has been assumed for the half-coil deformation. Indeed, nonlinear 

phenomena like radial expansion and changing of helix angle due to deformation are neglected but may 

be implemented in the future.  

Another important limit of the proposed model is the assumption of in-plane motion. This is a quite 

complex aspect that involves the effect of ending turns, which is hard to account also in FEM analysis. 

However, developing at least a 3D equivalent beam, with quarter-coil elements, is just a matter of 

implementation. 

Finally, it seems important to remark that the proposed model took less than 1/6 of the time of the FEM 

for spring A and about 1/20 for spring B, when running on the same machine. Since there is still room 

for improvement in the algorithm, the proposed 2D nonlinear static model is thought to be an interesting 

basis for addressing more complex dynamic problems. 
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