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Abstract

We propose a new family of linear mixed-effects models based on the generalized Laplace
distribution. Special cases include the classical normal mixed-effects model, models with Laplace
random effects and errors, and models where Laplace and normal variates interchange their
roles as random effects and errors. By using a scale-mixture representation of the generalized
Laplace, we develop a maximum likelihood estimation approach based on Gaussian quadrature.
For model selection, we propose likelihood ratio testing and we account for the situation in
which the null hypothesis is at the boundary of the parameter space. In a simulation study, we
investigate the finite sample properties of our proposed estimator and compare its performance to
other flexible linear mixed-effects specifications. In two real data examples, we demonstrate the
flexibility of our proposed model to solve applied problems commonly encountered in clustered
data analysis. The newly proposed methods discussed in this paper are implemented in the R

package nlmm.
Keywords: best linear predictor; chi-bar squared; convolution; heterogeneity of treatment effects;
longitudinal data; meta-analysis.

1 Introduction

The normal (or Gaussian) distribution historically has played a prominent role not only as limiting
distribution of a number of sample statistics, but also for modeling data obtained in empirical
studies. Its probability density is given by

fN (y) =
1√
2πσ

exp

{
−1

2

(
y − µ
σ

)2
}
, (1.1)

for −∞ < y < ∞. The Laplace (or double exponential) distribution, like the normal, has a long
history in statistics. However, despite being of potentially great value in applied research, it has
never received the same attention. Its density is given by

fL(y) =
1√
2σ

exp

{
−
√

2

∣∣∣∣y − µσ
∣∣∣∣} . (1.2)

Throughout this paper, these distributions will be denoted by N (µ, σ) and L(µ, σ), respectively.
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Figure 1: (a) Left: The normal (solid line) and double exponential (dashed line) densities. The
location parameter is set to 0 and the variance is set to 1. (b) Right: The Normal-Normal (solid
line), Normal-Laplace (dashed line), and Laplace-Laplace (dot-dash line) densities. The location
parameter is set to 0 and the variance is set to 1.

In (1.1) and (1.2), µ and σ, where −∞ < µ < ∞ and σ > 0, represent a location and a scale
parameters, respectively. These two densities are shown in the left plot of Figure 1. The normal
and Laplace distributions are both symmetric about µ and have variance equal to σ2. As compared
to the normal one, the Laplace density has a more pronounced peak (a characteristic technically
defined leptokurtosis) and fatter tails. While visually the densities may seem to overlap on the
tails, one can appreciate the difference between a normal and a Laplace distribution in terms of the
cumulative probability: at y = 3, this is approximately 99.9% for a standard normal, but 99.3%
for a Laplace with the same median and variance. Therefore the occurrence of an ‘extremely’ large
value in a Laplace population is more than five times as likely as in a normal population.1

Interestingly, the Laplace distribution can be represented as a scale mixture of normal distri-
butions. Let Y ∼ L(µ, σ), then2

Y
d
=µ+ σ

√
WU, (1.3)

where W and U are independent standard exponential and normal variables, respectively. That
is, the Laplace distribution emerges from heterogeneous normal sub-populations. Both laws were
proposed by Pierre-Simon Laplace: the double exponential in 1774 and the normal in 1778 (for an
historical account, see Wilson3).

It is well known that, under the Gaussian error law (1.1), the maximum likelihood estimate of µ
is the sample mean but, under the double exponential error law (1.2), it is the sample median. The
former is the minimizer of the least squares (LS) estimator, while the latter is the minimizer of the
least absolute deviations (LAD) estimator. In the past few years, theoretical developments related
to least absolute error regression4,5 have led to a renewed interest in the Laplace distribution and its
asymmetric extension as pseudo-likelihood for quantile regression models of which median regression
is a special case.6–10 In parallel, computational advances based on interior point algorithms have
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made LAD estimation a serious competitor of LS methods.11,12 Another reason for the ‘comeback’
of the double exponential is related to its robustness properties which makes this distribution and
distributions alike desirable in many applied research areas.13

In this paper we are interested in processes where the source of randomness can be attributed
to more than one ‘error’ (a hierarchy of errors is also established). For instance, this is the case of
longitudinal studies where part of the variation is attributed to an individual source of heterogeneity
(called ‘random effect’), say ε1, independently from the noise, ε2, where the distributions of ε1 and
ε2 are often assumed to be symmetric about zero. The resulting model is a mixed-effects model
(or mixed model for short). The distribution of the outcome can be obtained from the convolution
of ε1 and ε2. Typically, the errors are assumed to be normal.14,15 However, distributions other
than normal have been considered by several authors to make the model more flexible.16–18 Mixed
models are widely applied in medical research. An important area of application is the study of
patient-level heterogeneity in human genetics19 and precision medicine.20 In these contexts, it
is natural to see each patient as a population in and of itself, with unique characteristics that,
in response to a given treatment, determine individual variability. But this is tantamount to a
population generated as in (1.3). Therefore, mixed models that are able to capture heterogeneity
at the sub-population level have particular relevance in similar contexts.

Our contribution to the literature of mixed models is three-fold. First, we introduce a mixed-
effects model based on the generalized Laplace distribution which includes the Gaussian and Laplace
distributions as special cases. Our mixed models can be seen also as a full extension of Zhang and
Davidian’s18 mixed models with flexible random effects distributions. Secondly, we discuss model
choice within the newly introduced class. Third, we demonstrate the flexibility of our proposed
models with different applications to clinical and biological data.

The rest of the paper is organized as follows. In Section 2, we introduce some notation and defi-
nitions. In Section 3, we consider generalized Laplace convolutions and discuss in detail four special
cases. In Section 4, we discuss inference, including parameter and standard errors estimation, and
model selection. In Section 5, we study finite-sample properties and comparative performance of
our methods, while in Section 6 we report the results of two applications, namely an analysis of
repeated measurements from a clinical trial on Crohn’s disease patients, and a growth curve mod-
eling study. We conclude with final remarks in Section 7. All the methods are implemented in the
R21 package nlmm, for which we give a brief tutorial in Supplemental Material.

2 Notation and definitions

We consider data from two-level nested cluster designs. Let Yi = (Yi1, Yi2, . . . , Yini)
> be a multi-

variate ni × 1 continuous random vector, and xij and zij be, respectively, p × 1 and q × 1 vectors
of covariates for the jth observation, j = 1, . . . , ni, in cluster i, i = 1, . . . ,M . Also, let Xi and Zi
be, respectively, ni× p and ni× q design matrices for cluster i. The total sample size is denoted by
N =

∑M
i ni. Observations in different clusters are assumed to be independent. The n× n identity

matrix will be denoted by In. The n-variate normal distribution with location parameter µ and
variance-covariance matrix Σ will be denoted by Nn(µ,Σ), while the n-dimensional t-distribution
with location parameter µ, scale matrix Σ and degrees of freedom δ will be denoted by tn(µ,Σ, δ)
(we will make use of the multivariate t-distribution only in the simulation study).

We now introduce the generalized Laplace distribution2 and its multivariate extension.22 In
particular, we present their symmetric formulations. The original models, which incorporate an
additional parameter for asymmetry, are not relevant to the ensuing discussion as we focus our
attention on symmetric distributions only.
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Definition 1. A random variable Y is said to follow a generalized (symmetric) Laplace (GL)
distribution, Y ∼ GL(µ, σ, α), if its density is given by

fGL(y) =
1√

π
2Γ(1/α)σ1/α+1/2

(
|y − µ|√

2

)ω
Bω

(√
2|y − µ|
σ

)
, (2.1)

where µ ∈ R, σ > 0, 0 < α ≤ 1, ω = 1
α −

1
2 and Bu is the modified Bessel function of the third kind

with index u.

Remark 1. If Y ∼ GL(µ, σ, α), then E(Y ) = µ and var(Y ) = 1
ασ

2.

The GL distribution defined above admits the representation

Y
d
=µ+ σ

√
WU (2.2)

where W is standard gamma with shape 1/α, W ∼ G(1/α, 1), and U ∼ N (0, 1), independent from
W .

It follows that if W ∼ G(1, 1), then (2.2) reduces to (1.3). Thus, for α = 1 the GL dis-
tribution coincides with the Laplace distribution (1.2). Moreover, if Y ∼ GL(µα, σα, α) where

limα→0+ µα/α = µ0 and limα→0+ σ
2
α/α = σ20, then Y

d−→N (µ0, σ0). The parameter α controls the
behavior of the tails and kurtosis. Although the GL distribution is defined also for α > 1, we
restrict the space of α to the unit interval since the behavior of fGL(y) for y → 0+ is troublesome
when α > 1.2

The density (2.1) is a particular case of the generalized Laplace distribution.2 The generalized
(asymmetric) Laplace distribution has been extended to the multivariate case.22 Again, here we
consider its symmetric formulation.

Definition 2. An n-dimensional random variable Y = (Y1, Y2, . . . , Yn)> is said to follow a multi-
variate generalized (symmetric) Laplace distribution if it has density

fGL(y) =
2

(2π)n/2Γ(1/α)|Σ|1/2

(
Q(y, µ)√

2

)ω
Bω

(√
2Q(y, µ)

)
, (2.3)

where µ ∈ Rn, Σ is a positive-definite n × n matrix, 0 < α ≤ 1, ω = 1
α −

n
2 , and Q(y, µ) =√

(y − µ)>Σ−1(y − µ). This distribution is denoted by GLn(µ,Σ, α).

Remark 2. If Y ∼ GLn(µ,Σ, α), then E(Y ) = µ and var(Y ) = 1
αΣ.22 For a diagonal matrix

Σ = diag(ς1, . . . , ςq), the coordinates of the multivariate GL are uncorrelated, but not necessarily
independent.

As in the univariate case, we restrict the space of α to the unit interval. The multivariate GL has
a number of properties that are desirable in our modeling framework. First of all, if n = 1 we obtain
the one-dimensional GL introduced in (2.1). Secondly, a linear combination of the coordinates of
the multivariate GL is still GL.22 Namely, if Y ∼ GLn(0,Σ, α) and z is an n × 1 real vector with
at least one non-zero element, then z>Y ∼ GL(0, σ, α) where σ = z>Σz. Finally, the multivariate
GL distribution admits the representation

Y
d
=µ+

√
WU, (2.4)

where W ∼ G(1/α, 1) and U ∼ Nn(0,Σ).
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It follows that the multivariate GL converges to a multivariate normal when α→ 0+. To see this,

express (2.4) as Y
d
=µ+ U0Cα

√
W , where U0 ∼MVNn(0, In), Cα/

√
α→ C0, and C>0 C0 = Σ0 is a

positive-definite matrix. Then it is straightforward to verify that Cα
√
W converges in probability

to C0, and therefore Y converges in distribution to Nn(µ,Σ0). A proof in the univariate case can
be found in the book by Kotz and colleagues.2

Also, GLn(µ,Σ, 1)
d
=Ln(µ,Σ). The latter denotes the n-variate Laplace distribution and is a

multivariate generalization of (1.2). The multivariate Laplace distribution is defined as follows.

Definition 3. An n-dimensional random variable Y = (Y1, Y2, . . . , Yn)> is said to follow a multi-
variate Laplace distribution, Y ∼ Ln(µ,Σ), if its density is given by

fL(y) = K ·
{

(y − µ)>Σ−1(y − µ)

2

}ω/2
Bω

{√
2(y − µ)>Σ−1(y − µ)

}
, (2.5)

where K =
2

(2π)n/2|Σ|
1
2

, µ ∈ Rn, Σ is an n × n positive-definite symmetric matrix, and ω =

(2− n)/2.

Remark 3. If Y ∼ Ln(0,Σ), then var(Y ) = Σ.2 For a diagonal matrix Σ = diag(ς1, . . . , ςq),
the coordinates of the multivariate Laplace are uncorrelated, but not independent. Therefore, the
joint distribution of n independent univariate Laplace variates does not have the properties of the
multivariate Laplace with diagonal variance-covariance matrix.

For n = 1, the multivariate Laplace density defined in (2.5) reduces to the univariate density
(1.2) with σ = Σ1/2. Moreover, as in the case of a multivariate GL, a linear combination of the
coordinates of the multivariate Laplace is still a Laplace.2 Indeed, if we assume Y ∼ Lq(0,Σ) and

z is an n× 1 real vector, then z>Y ∼ L(0, σ), where σ =
√
z>Σz.

3 Generalized Laplace mixed-effects models

3.1 The general model

We first consider a general model where ε1 and ε2 have densities as in (2.3). Subsequently, we
consider four special cases which include the multivariate normal and Laplace distributions. The
subscripts 1 and 2 indicate, respectively, which of the two random variables plays the role of a
random effect and which one is considered to be the noise. Here, the former may in general be
associated with a vector of covariates and may represent an inferential quantity of interest; the
latter is treated as a nuisance.

We define the following generalized Laplace mixed-effects (GLME) model

Yi = Xiβ + Ziε1i + ε2i, (3.1)

where ε1i ∼ GLq(0,Σ1, α1) and ε2i ∼ GLni(0,Σ2i, α2), for 0 < αa ≤ 1, a = 1, 2, with ε1i ⊥ ε2i.
The location parameter is modeled as a linear function of a p× 1 dimensional vector of regression
coefficients, β ∈ Rp. We assume that the q × 1 vector of random effects ε1i has q × q variance-
covariance matrix Ψ1 = 1

α1
Σ1 for all i = 1, . . . ,M . The errors ε2i are assumed to have variance-

covariance Ψ2i = 1
α2

Σ2i, i = 1, . . . ,M , which allows for heteroscedasticity (but not for residual
correlation). Possible models for Σ1 and Σ2i are discussed in Section 4.3.

To our knowledge, the use of the generalized Laplace distribution in mixed-effects models is novel
and there are no proposals comparable to ours. Yet, it is worth briefly discussing the proposal by
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Figure 2: Model space A with Normal-Normal (NN), Normal-Laplace (NL), Laplace-Normal (LN),
and Laplace-Laplace convolutions at the boundary of the space.

Yavuz and Arslan,23 brought up to our attention by a referee as possibly related to our GLME
model. Here, we point out fundamental differences showing that this is not the case. In their
model, called Laplace linear mixed model, Yavuz and Arslan considered a multivariate formulation
of the power exponential (PE) distribution24,25 whose density is given by

fPE(y) =
nΓ(n/2)

πn/22
1+ n

2γ Γ(1 + n
2γ )|Λ|1/2

exp

{
−1

2

(√
(y − µ)>Λ−1(y − µ)

)γ}
,

where Λ is a positive-definite variance-covariance matrix and γ > 0 is a parameter related to
kurtosis. In particular, Yavuz and Arslan set γ equal to 1/2 to obtain what they called “multi-
variate Laplace”. However, the PE distribution defined above with γ = 1/2 is not related to the
multivariate Laplace distribution (2.5).26

The reason that probably led Yavuz and Arslan to give the Laplace appellative to their model
resides in the connection between the multivariate PE and GL distributions that was reported by
Arslan.27 By setting α ≡ 2

n+1 and Σ ≡ 8Λ, the density fGL in (2.3) reduces to the density fPE
above with γ = 1/2. Unfortunately, in this formulation α is no longer a free parameter, while,
worryingly, the shape of the distribution is dictated by the dimension of the support. Another
drawback of Yavuz and Arslan’s approach is that random effects and errors in each cluster are
constrained to have a common shape (see their eq. 5), which is equivalent to setting the shape
parameter in the GL distribution equal to 2

ni+q+1 ≤
2
3 , jointly for (Yi, ε1i). In conclusion, not only

can Yavuz and Arslan’s model never be Laplace, but it is also a heterogeneous mix of cluster-specific
power exponentials, each gradually morphing into a normal as soon as ni + q increases.

In contrast, the parameter α in our GLME model is unknown and estimated from the data
(although it can be constrained if so desired). This entails a continuum of distributions ranging
from the normal to the Laplace, independently for the random effects and the error. We illustrate
this graphically in Figure 2, which depicts A = (0, 1]× (0, 1], the parameter space of α = (α1, α2)

>.
Each point in A represents a model in the GLME family. In particular, note that the corners on
the boundary of A represent four special cases of model (3.1), which we discuss in the next section.

3.2 Special cases

Four special cases arise from (3.1) and these are schematically shown in Figure 2. For ease of
presentation, the letters ν and λ are used to denote normal and Laplace variates, respectively.
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With a slight abuse of notation, we will write α1 = 0+ or α2 = 0+ whenever α1 → 0+ or α2 → 0+,
respectively.

3.2.1 Normal-Normal (NN)

The first special case of (3.1) for α = (0+, 0+)> is the Normal-Normal convolution (NN)

Yi = Xiβ + Ziν1i + ν2i, (3.2)

where ν1i ∼ Nq(0,Σ1) and ν2i ∼ Nni(0,Σ2i). Model (3.2) is known as a linear mixed effects (LME)
model.14,15 There is a vast number of applications of LME models, especially for the analysis of
clustered data in the social, life and physical sciences.

3.2.2 Normal-Laplace (NL)

The second special case of (3.1) for α = (0+, 1)> consists of a normal and a Laplace components,
that is

Yi = Xiβ + Ziν1i + λ2i, (3.3)

where ν1i ∼ Nq(0,Σ1) and λ2i ∼ Lni(0,Σ2i). The Normal-Laplace (NL) convolution28 arises from
a Brownian motion whose starting value is normally distributed and whose stopping hazard rate is
constant. An extension of the NL model to skewed forms can be obtained by letting λ2i follow an
asymmetric Laplace distribution.28 Applications of the NL convolution can be found in finance.29,30

See also the double Pareto-lognormal distribution, associated with exp(Y ), which has applications
in modeling size distributions.31

Model (3.3) is a median regression model with normal random effects, a special case of the
linear quantile mixed models (LQMMs).7,32 LQMMs have been used in a wide range of research
areas, including marine biology,33–35 environmental science,36 cardiovascular disease,37,38 physical
activity,39,40 and ophthalmology.41,42

3.2.3 Laplace-Normal (LN)

The third special case of (3.1) for α = (1, 0+)> is the Laplace-Normal (LN) convolution

Yi = Xiβ + Ziλ1i + ν2i, (3.4)

where λ1i ∼ Lq(0,Σ1) and ν2i ∼ Nni(0,Σ2i). As compared to the NL convolution, the Laplace
component in the LN convolution is associated with the random effects, not with the error term.
The LN model appears in robust meta-analysis.15

3.2.4 Laplace-Laplace (LL)

The fourth and last convolution, which represents the special case of (3.1) for α = (1, 1)>, consists
of two Laplace variates, i.e.

Yi = Xiβ + Ziλ1i + λ2i, (3.5)

where λ1i ∼ Lq(0,Σ1) and λ2i ∼ Lni(0,Σ2i). The Laplace-Laplace (LL) model (3.5) is a median
regression model with ‘robust’ random effects, another special case of LQMMs.32
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3.3 Some properties

The marginal densities of the convolutions (3.2), (3.3), (3.3), and (3.5) are symmetric, unimodal,
twice differentiable and have continuous first and second derivatives (the NN and NL are also
smooth). Also, they are log-concave since both the normal (1.1) and Laplace (1.2) densities are
log-concave.43 The analytic expressions of the marginal densities are given elsewhere44 and are
shown in the right plot of Figure 1. As compared to the NN density, the NL (LN) and LL densities
are leptokurtic and have more weight in the tails, with the NL density sitting between the NN and
LL distributions.

4 Inference

In this section, we introduce inferential methods for GLME models, all of which are implemented
in the R package nlmm.45 A brief tutorial on nlmm is given in Supplementary Material.

4.1 Estimation

There are several approaches to mixed effects model estimation,14,15 each approach having its own
advantages and disadvantages. One approach is to work with the marginal likelihood of Yi. Starting
from the scale-mixture representation of the GL distribution (2.4), the model’s likelihood takes the
form of a multivariate normal likelihood weighted by a gamma distribution. Indeed, model (3.1)
can be represented as a convolution of two mixtures, namely as

Yi = Xiβ +
√
W1iU1i +

√
W2iU2i, (4.1)

where the independent coordinates of the vector Wi = (W1i,W2i)
> each have a standard gamma

distribution with shape 1/αa, a = 1, 2, U1i ∼ Nni(0, ZiΣ1Z
>
i ), and U2i ∼ Nni(0,Σ2i). We note that

conditional on Wi = (w1i, w2i)
>, Yi is normal, i.e. Yi|Wi ∼ Nni(Xiβ,Ωi), where Ωi = w1iZiΣ1Z

>
i +

w2iΣ2i. Based on (4.1), the distribution of Y can be found as the marginal distribution g (y) =∫
g (y|w) · h(w) dw = Ew{g (y|w)}. The latter integral does not seem to have an immediate closed-

form solution, except for α = (0+, 0+)>.
To estimate the parameters of interest, we resort to numerical integration. Alternatively, one

can use an expectation-maximization (EM) algorithm.46 The disadvantage of quadrature methods
is that they are notoriously inefficient if the dimension of the integral is large. However, the EM
often results in an intractable form of the expectation step. As discussed by Geraci44 for the four
special cases in Section 3.2, the E-step can be approximated via Monte Carlo sampling, whereby
the unobservable variable w is sampled from the conditional density g(w|y). While the computa-
tional efficiency of Monte Carlo EM (MCEM) estimation does not depend as much on dimension-
ality as quadrature methods do, convergence can be slower for MCEM than for quadrature-based
methods.46 Indeed, in a simulation study with NL models and moderately-sized datasets,47 com-
putational times were reported in the region of 1 second using numerical integration, against a
whopping 42 minutes for a (supposedly fast) stochastic approximation of the EM algorithm.48

Before we proceed, we need to re-parameterize (4.1). Let Σ1 = σ2Σ̃1 and Σ2i = σ2Σ̃2i. Since Σ̃2i

is positive-definite, it admits an invertible square root, say Λi ≡ Σ̃
−1/2
2i . Let Ỹi = Λ>i Yi, X̃i = Λ>i Xi,

and Z̃i = Λ>i Zi. Then

Ỹi = X̃iβ +
√
W1iŨ1i +

√
W2iŨ2i, (4.2)

where Ũ1i ∼ Nni(0, σ2Z̃iΣ̃1Z̃
>
i ) and Ũ2i ∼ Nni(0, σ2Ini). For estimation purposes, the relative

precision matrix Σ̃−11 = σ2Σ−11 is parameterized in terms of an unrestricted r-dimensional vector,
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1 ≤ r ≤ q(q + 1)/2, of non-redundant parameters ξ1 ∈ Rr. The parameter ξ1 is defined to be
the vector of non-zero elements of the upper triangle of the matrix logarithm of C, where C is
the q × q matrix obtained from the Cholesky decomposition Σ̃−11 = C>C.14 Let ξ2 ∈ Rs be the
unrestricted s-dimensional vector of parameters in the error variance function (see Section 4.3 for
more details). Moreover, we define φ = log(σ), and τa = log{αa/(1−αa)}, a = 1, 2. The parameter

to be estimated is then θ =
(
β>, ξ>1 , ξ

>
2 , φ, τ1, τ2

)> ∈ Rd, where d = p+ r + s+ 3.
Let wk = (wk1 , wk2) and πk = (πk1 , πk2) be, respectively, nodes and weights of the 2-dimensional

Gaussian quadrature rule resulting from two standard gamma distributions with shape parameters
1/α1 and 1/α2. Each element of the 2-dimensional index k = (k1, k2) runs from 1 to K, where K
is the number of integration points for a 1-dimensional rule. This entails a total of K2 integration
points. The log-integrated likelihood for model (4.1) is then given by

`GQ(θ) =

M∑
i=1

log |Λi|+
M∑
i=1

log

K∑
k1=1

K∑
k2=1

|Ωik|−1/2

(2πσ2)ni/2
exp

{
− 1

2σ2
(ỹi − X̃iβ)>Ω−1ik (ỹi − X̃iβ)

}
πk1πk2 ,

(4.3)
where Ωik = wk1Z̃iΣ̃1Z̃

>
i + wk2Ini . Our maximum likelihood (ML) estimator is given by

θ̂ = arg max
θ

`GQ(θ). (4.4)

Estimation is carried out iteratively. At iteration t, the estimate θ̂(t) is updated according

to a general-purpose optimization algorithm (e.g., Nelder-Mead). The starting values β̂(0), ξ̂
(0)
1 ,

ξ̂
(0)
2 , and φ̂(0) can be obtained from analogous LME models. In preliminary numerical studies

(not shown), we experimented different starting values τ̂
(0)
1 and τ̂

(0)
2 and observed sensitivity of

the final estimates of θ. Therefore, we recommend using a multi-start strategy with starting

values τ̂
(0)
a ∈ {−6.9067, 0, 6.9067} (which correspond to the logit of 0.001, 0.5, and 0.999), for

each a = 1, 2, giving a grid with 9 possible combinations. These starting values are used by default
in the nlmmControl function of the nlmm package. However, when the number of clusters is small,
or the number of parameters is large, or both, it is advisable to use a fine sequence of additional
starting values, which includes those used by default. Increasing the number of integration points
should also be considered. Finally, we point out that the nlmm package implements a Cholesky
decomposition to obtain the square-root inverse of Ωik. Thus, poor scaling of the input may cause
numerical instability.

The variance-covariance of θ̂ can be obtained by first calculating a numerical approximation to
the Hessian matrix of (4.3) (evaluated at the parameter’s estimate) and then calculating its Moore-
Penrose generalized inverse. Estimates of the random effects for the ith cluster can be recovered
by using the best linear predictor32

Ziε̂1i = E(Ziε1i) + {cov(Ziε1i, yi)}(ZiΨ1Z
>
i + Ψ2i)

−1{yi − E(yi)}. (4.5)

The first term of (4.5) is zero and, by model’s assumption, cov(Ziε1, yi) = ZiΨ1Z
>
i . Hence, by

plugging in the ML estimates of θ in (4.5), we obtain the estimated best linear predictions

ε̂1i =
1

α̂1
Σ̂1Z

>
i

(
1

α̂1
ZiΣ̂1Z

>
i +

1

α̂2
Σ̂2i

)−1 (
yi −Xiβ̂

)
, i = 1, . . . ,M. (4.6)

4.2 Likelihood ratio testing for model selection

In Section 3.2, we have seen that model (3.1) takes on different special forms involving the normal
and Laplace distributions if we constrain the parameters α1 and α2 to particular values. In Table 1,
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we defined eight particular scenarios where either or both α-parameters are constrained to 0 or 1
under specific null hypotheses of interest. For example, the first hypothesis corresponds to testing
whether an LME model fits the data sufficiently well, against the alternative hypothesis that a
generalized Laplace model is required. Of course, the list in Table 1 is not exhaustive. For instance,
one might want to test H0 : α1 = 0, α2 = 0.5. More in general, we might be interested in testing
the null hypothesis that α1 or α2 or both are equal to some real constants between 0 and 1.
This effectively is equivalent to testing between models with different random-effects and error
distributions. We consider the likelihood ratio test (LRT) statistic

D = −2{l(θ̂α0)− l(θ̂)}, (4.7)

where θ̂α0 is the ML estimate of θ from a model with constraints on one or both α-parameters, while
θ̂ is the ML estimate from the unconstrained model. Let θ0 denote the true value of θ conditionally
on H0. If the constraints on the α-parameters are in the interior of the unit interval, the null
distribution of (4.7) is a chi-squared distribution. However, the null hypotheses in Table 1 place
the parameter on the boundary of the parameter space, and therefore the LRT is not regular.49

Table 1: Special cases of null and alternative hypotheses for the shape parameters α1 and α2 and
corresponding null models.

Null model H0 H1

(1) Normal-Normal α1 = α2 = 0 0 < α1 ≤ 1 and 0 < α2 ≤ 1
(2) Normal-Laplace α1 = 1 and α2 = 0 0 < α1 < 1 and 0 < α2 ≤ 1
(3) Laplace-Normal α1 = 0 and α2 = 1 0 < α1 ≤ 1 and 0 ≤ α2 < 1
(4) Laplace-Laplace α1 = α2 = 1 0 ≤ α1 < 1 and 0 ≤ α2 < 1
(5) Normal random effects α1 = 0 0 < α1 ≤ 1
(6) Normal errors α2 = 0 0 < α2 ≤ 1
(7) Laplace random effects α1 = 1 0 ≤ α1 < 1
(8) Laplace errors α2 = 1 0 ≤ α2 < 1

We reparameterize θ as θ̃ so that the hypotheses can be expressed as H0 : Gθ̃ = 0 vs H1 : Gθ̃ > 0,
where G has g rows, corresponding to the number of constrained shape parameters under H0. If we
test for a normal model, then θ̃ = θ. Let J(θ̃) denote the average information matrix as a function
of θ̃. Also, let w = (w0, . . . , wg)

> be a (g + 1)-dimensional vector of weights that depend on the
positive-definite matrix GJ(θ̃0)

−1G>. Such weights can be computed as outlined elsewhere.49,50

Then, D is distributed according to the following χ̄2-type law49

Pr(D ≤ d) =

g∑
j=0

wj Pr
(
χ2
j ≤ d

)
, (4.8)

where χ2
j is chi-squared with j degrees of freedom. Expression (4.8) can be used to compute

p-values based on (4.7), with the log-likelihood approximated by (4.3). The information matrix
can be evaluated at the (consistent) constrained ML estimate via numerical differentiation of the
log-integrated likelihood.

Finally, we note that a correction for multiplicity is warranted when using the same data to
evaluate several hypotheses corresponding to different null models (e.g., NN and NL).51
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4.3 Modeling of variance-covariance

In this section, we briefly introduce some alternative models for Σ1 and Σ2i. The reader is referred
to the book by Pinheiro and Bates14 for more details.

There are different possible structures for Σ1. The simplest is a multiple of the identity matrix,
with constant diagonal elements and zero off-diagonal elements. Other structures include, for
example, diagonal (variance components), compound symmetric (constant diagonal and constant
off-diagonal elements), and the more general symmetric positive-definite matrix. These are all
available in the nlmm,45 nlme,52 lme4,53 and lqmm54 packages, as well as in SAS procedures for
mixed effects models.

To model the residual heteroscedasticity Σ2i, we consider variance structures of the type14

var(ε2ij |ε1i) = σ2h2(vij , ξ2), (4.9)

where vij is a vector of variance covariates, ξ2 ∈ Rs is a vector of unrestricted variance parameters,
and h(·) is the variance function, assumed to be continuous in ξ2. For example, the nlmm and nlme

packages support several models for h including exponential, power, and fixed-weights variance
functions.

5 Simulation study

We carried out a simulation study organized into two parts, (a) and (b). In part (a), we assessed:
bias and mean squared error (MSE) of the GLME estimator; coverage of 95% confidence intervals
for β̂; and rejections rates of the LRT in Section 4.2. The goal was to evaluate finite-sample
properties of the proposed estimator and related tests. In part (b), we compared bias, MSE and
coverage for the GLME estimator with those for corresponding estimators from analogous standard
and heavy-tailed16 LME models. The goal was to understand the advantages and disadvantages
of our proposal relative to existing alternatives. The R code to run the simulation is included in
Supplementary Material.

5.1 Part (a): finite-sample properties

We generated data from two scenarios: the NN model

Yi = Xiβ + Ziν1i + ν2i,

and the LL model

Yi = Xiβ + Ziλ1i + λ2i,

as defined in (3.2) and (3.5), respectively. The matrix Xi had generic vector xij = (1, x1,ij , x2,ij)
>,

where x1,ij = γi+ζij , γi ∼ N(0, 1), ζij ∼ N(0, 1) and x2,ij ∼ Binom(1, 0.5). Note that, realistically,
covariates may, too, show intraclass correlation. This is accounted for in the generation of x1,ij . The
matrix Zi had generic vector zij = (1, x1,ij)

>. The parameters were set as follows: β = (1, 2, 0)>,

Σ1 =

[
2 0.8

0.8 1

]
, Σ2i = σ2Ini , and σ = 1. (In this setting, the random effects have a Pearson’s

correlation equal to 0.56.) We considered a balanced design for all possible combinations of n ∈
{5, 10} repetitions and M ∈ {20, 50} clusters. In total, there were 8 simulation cases (4 sample
sizes for each of the 2 scenarios). For each case, we independently replicated R = 500 datasets
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Table 2: Mean square error of the estimator for the generalized Laplace mixed-effects model with
data generated under the Normal-Normal and Laplace-Laplace scenarios.

Sample size (n,M) β0 β1 β2 ς11 ς12 ς22 ψ2 α1 α2

Normal-Normal scenario

(5, 20) 0.150 0.070 0.062 0.694 0.216 0.184 0.035 0.120 0.033
(10, 20) 0.128 0.059 0.028 0.552 0.187 0.137 0.013 0.115 0.003
(5, 100) 0.029 0.014 0.012 0.157 0.048 0.039 0.007 0.028 0.002
(10, 100) 0.024 0.013 0.005 0.106 0.034 0.031 0.003 0.021 0.001

Laplace-Laplace scenario

(5, 20) 0.102 0.052 0.032 0.867 0.270 0.273 0.109 0.382 0.108
(10, 20) 0.081 0.041 0.011 0.898 0.251 0.220 0.096 0.279 0.062
(5, 100) 0.017 0.008 0.006 0.186 0.055 0.056 0.023 0.069 0.025
(10, 100) 0.015 0.007 0.002 0.158 0.050 0.047 0.040 0.055 0.031

Table 3: Coverage of 95% confidence intervals for the generalized Laplace mixed-effects model with
data generated under the Normal-Normal (NN) and Laplace-Laplace (LL) scenarios.

Normal-Normal Laplace-Laplace
scenario scenario

Sample size (n,M) β0 β1 β2 β0 β1 β2
(5, 20) 0.914 0.912 0.944 0.938 0.930 0.944
(10, 20) 0.914 0.930 0.930 0.946 0.932 0.954
(5, 100) 0.950 0.940 0.948 0.968 0.950 0.948
(10, 100) 0.938 0.940 0.936 0.960 0.962 0.938

and fitted the GLME model (3.1) to each dataset. For estimation, we used the multi-start strategy
described in Section 4.1 with K = 8 quadrature points per integral.

We then estimated element-wise bias and MSE for the estimators of the fixed effects β, variance-

covariance of the random effects Ψ1 = 1
α1

Σ1 ≡
[
ς11 ς12
ς12 ς22

]
, variance of the error ψ2 = σ2/α2, and

shape parameter α, averaged over all replications. We also computed element-wise 95% confidence
intervals for β using standard errors based on the numerically-approximated Hessian of the log-
integrated likelihood (as detailed in Section 4.1). Coverage probabilities were estimated by the
proportions (over 500 replications) of confidence intervals containing the true parameter. (Note
that the third element of β is 0, hence one minus the coverage gives the observed significance level
of the corresponding Wald test.) Finally, we calculated the rejections rates at the 5% significance
level of the LRT for H0: α1 = α2 = 0 vs H1: 0 < α1 ≤ 1 and 0 < α2 ≤ 1. Note that the rejection
rate is an estimate of the level of significance of the test under the NN scenario, but an estimate of
its power under the LL scenario.

The results are reported in Supplementary Table 1 and Supplementary Figure 1 for the bias, and
in Table 2 for the MSE. Bias and MSE for β̂ and ψ̂2 were small at all considered sample sizes and
in both scenarios. Comparatively, the estimators of Ψ1 and α showed larger MSE values, though
these decreased rapidly with increasing number of clusters M . Bias was, in contrast, conspicuous
for α̂ under the LL scenario but, again, it decreased with increasing M .

The confidence intervals for β (Table 3) had coverage close to the nominal 95% level at all
considered sample sizes and in both scenarios. Similarly, rejection rates of the LRT were reasonably
close to the nominal 5% (Table 4) under the true null hypothesis (NN scenario), though slightly
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conservative at larger values of M . On the other hand, the test was rather powerful. Even with as
little as M = 20 clusters, the power was above 90% under the LL scenario.

Table 4: Rejection rates of the likelihood ratio test for the Normal-Normal hypothesis (1) in Table 1
at the nominal 5% significance level for the Normal-Normal and Laplace-Laplace scenarios.

Normal-Normal Laplace-Laplace
Sample size (n,M) scenario scenario

(5, 20) 0.042 0.911
(10, 20) 0.040 0.998
(5, 100) 0.018 1.000
(10, 100) 0.022 1.000

5.2 Part (b): relative performance

We generated data from two scenarios: the LL model

Yi = Xiβ + Ziλ1i + λ2i,

as defined in (3.5), and the model (which we label ‘TT’) with multivariate t-distributions for both
random effects and errors, i.e.

Yi = Xiβ + Ziε1i + ε2i,

where ε1i ∼ tq(0,Σ1, δ1) and ε2i ∼ tni(0,Σ2, δ2). We set δ1 = δ2 = 4. All other simulation settings
were the same as in the previous section. In addition to our proposed GLME model (3.1), we fitted
a standard LME model and an LME model with t-distributed random effects and errors (tLME).16

The former is available in the R package nlme, while the latter is implemented in the R package
heavy.55 Note that the t-distribution has heavier tails than the normal distribution and, thus,
represents an alternative to the Laplace distribution.

In this part of the simulation study, we compared average bias and MSE for the estimators of
β and Ψ1 (in the TT model, Ψ1 = δ1

δ1−2Σ1), as well as coverage probabilities for β.
The results are reported in Supplementary Table 2 and Supplementary Figure 2 for the bias,

and in Table 5 for the MSE. Our proposed GLME estimator outperformed the LME estimator at
all considered sample sizes and in both scenarios. This was expected since LME cannot handle data
from heavy-tailed distributions. This is particularly evident from the very large values of the bias
and MSE for Ψ̂1, with out-of-control estimates under the TT scenario, which signal convergence
issues in LME. Although the very same LME estimates were used as starting values in GLME
fitting, our estimator was able to yield acceptable results. Surprisingly, bias and MSE from tLME
were also out of control in both scenarios, not only for Ψ̂1, but also for β̂. Finally, coverage of the
confidence intervals for β was close to the nominal 95% for GLME and LME, but off the mark for
tLME (Table 6).

We are not able to explain why tLME failed so dramatically, even under its own TT scenario,
but we cannot exclude possible bugs in the software. Whatever the explanation, we can conclude
that GLME estimation offers a reliable, robust, and superior alternative to existing tools for mixed-
effects modeling when data originate from particular heavy-tailed distributions.
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Table 5: Mean square error of the estimator for the generalized Laplace mixed-effects (GLME)
model, linear mixed-effects (LME) model, and heavy-tailed LME (tLME) model with data gener-
ated under the Laplace-Laplace and t-t scenarios.

Sample size (n,M) β0 β1 β2 ς11 ς12 ς22
Laplace-Laplace scenario

GLME

(5, 20) 0.102 0.052 0.032 0.867 0.270 0.273
(10, 20) 0.081 0.041 0.011 0.898 0.251 0.220
(5, 100) 0.017 0.008 0.006 0.186 0.055 0.056
(10, 100) 0.015 0.007 0.002 0.158 0.050 0.047

LME

(5, 20) 0.138 0.066 0.057 291.645 364.672 436.508
(10, 20) 0.110 0.056 0.024 39.578 70.326 112.517
(5, 100) 0.026 0.012 0.011 0.873 6.082 9.955
(10, 100) 0.023 0.011 0.005 0.516 4.863 8.347

tLME

(5, 20) 49850.301 1982.035 0.017 7.98× 1010 7.52× 109 1.65× 109

(10, 20) 4447.144 23.154 0.008 2.80× 1010 4.12× 108 7.46× 106

(5, 100) 1576.992 3.127 0.003 1.54× 108 2.91× 105 1.14× 103

(10, 100) 537.904 2.169 0.001 2.06× 107 4.23× 104 417.90

t-t scenario

GLME

(5, 20) 0.220 0.097 0.085 7.714 1.701 1.583
(10, 20) 0.173 0.076 0.031 6.081 1.494 1.489
(5, 100) 0.044 0.018 0.014 4.015 0.781 0.966
(10, 100) 0.035 0.016 0.006 4.076 0.730 0.924

LME

(5, 20) 0.265 0.114 0.113 1.10× 1016 1.12× 1016 1.13× 1016

(10, 20) 0.217 0.094 0.051 76.51 126.95 3.43× 103

(5, 100) 0.057 0.023 0.023 32.66 51.27 103.85
(10, 100) 0.045 0.021 0.009 12.35 19.30 57.87

tLME

(5, 20) 8.77× 104 877.470 0.033 1.54× 1011 1.28× 109 4.68× 107

(10, 20) 1.11× 104 61.823 0.020 2.74× 109 1.89× 107 4.78× 105

(5, 100) 5.88× 103 9.098 0.006 1.92× 109 1.60× 106 4.77× 103

(10, 100) 2.36× 103 5.901 0.004 1.56× 108 3.02× 105 1.14× 103
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Table 6: Coverage of 95% confidence intervals for the generalized Laplace mixed-effects (GLME)
model, linear mixed-effects (LME) model, and heavy-tailed LME (tLME) model with data gener-
ated under the Laplace-Laplace and t-t scenarios.

Laplace-Laplace t-t scenario
scenario

Sample size (n,M) β0 β1 β2 β0 β1 β2
GLME

(5, 20) 0.938 0.930 0.944 0.914 0.924 0.934
(10, 20) 0.946 0.932 0.954 0.934 0.932 0.932
(5, 100) 0.968 0.950 0.948 0.934 0.960 0.956
(10, 100) 0.960 0.962 0.938 0.940 0.942 0.938

LME

(5, 20) 0.946 0.942 0.946 0.936 0.932 0.949
(10, 20) 0.950 0.940 0.954 0.958 0.944 0.928
(5, 100) 0.958 0.954 0.948 0.940 0.954 0.950
(10, 100) 0.960 0.960 0.952 0.948 0.956 0.964

tLME

(5, 20) 0.994 0.982 1.000 0.988 0.982 1.000
(10, 20) 0.998 1.000 1.000 1.000 1.000 1.000
(5, 100) 0.758 0.864 1.000 0.774 0.868 1.000
(10, 100) 0.609 0.711 1.000 0.646 0.702 1.000
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6 Examples

In this section, we present two real-data analyses that are relevant to medical researchers. In the
first example, we analyze repeated measurements from a clinical trial on Crohn’s disease patients.
In the second example, we revisit a classical biological dataset with observations from a weight gain
experiment in rats.

6.1 Repeated measurements in clinical trials

Ten Crohn’s disease patients with endoscopic recurrence were followed over time.56 Colonoscopy
was performed and surrogate markers of disease activity were collected on four occasions. One of
the goals of this trial was to assess the association between fecal calprotectin (FC – mg/kg) and
endoscopic score (ES – Rutgeerts). The data were analyzed using a log-linear median regression
model under the assumption of independence between measurements.56 Here, we take the multilevel
structure into account and analyze the data using the following three models: the NN model

Yi = Xiβ + ν1i + ν2i, i = 1, . . . , 10,

the LL model

Yi = Xiβ + λ1i + λ2i, i = 1, . . . , 10,

and the GL model

Yi = Xiβ + ε1i + ε2i, i = 1, . . . , 10,

where the response Yi is a 4 × 1 vector of log-FC measurements taken on patient i = 1, . . . , 10,
Xi is a design matrix with generic vector xij = (1, wij)

> and wij is the ES measurement on
occasion j, β = (β0, β1)

>, ν1i ∼ N (0, ψ1), ν2i ∼ N4(0, ψ
2
2I4), λ1i ∼ L(0, ψ1), λ2i ∼ L4(0, ψ2

2I4),
ε1i ∼ GL(0, σ1, α1), and ε2i ∼ GL4(0, σ2, α2).

Here, the parameters of interest are the slope β1 and the intraclass correlation coefficient
(ICC) ρ = ψ2

1/(ψ
2
1 + ψ2

2), where ψ2
1 = 1

α1
σ21 and ψ2

2 = 1
α2
σ22 in the GL model. Estimation

was carried out using the nlmm package. Given the relatively small number of clusters, we fit-

ted the GL model using a multi-start strategy as introduced in Section 4.1 with values τ̂
(0)
a ∈

{−6.9067,−2.1972,−0.8473, 0, 0.8473, 2.1972, 6.9067} (which correspond to the logit of 0.001, 0.1,
0.3, 0.5, 0.7, 0.9, and 0.999). In addition, we used K = 10 quadrature points.

The results are shown in Table 7. The estimates of the regression coefficients β tallied across
models, although the standard errors from the NN model were larger than those compared to the
LL and GL models. Moreover, there seems to be a discrepancy between the NN model and the
other models in terms of ICC, with the former showing a larger value (16% vs 13%).

As compared to the NN model, the GL model gave a larger value of the log-likelihood, suggesting
that the goodness of the fit is improved by using the GL distribution instead the normal distribution.
In particular, there is evidence that the random effects follow a Laplace distribution (α̂1 = 0.999),
and, in general, that both the random effects and the error term have heavier tails than normal,
although the estimate of α2 was more uncertain than that of α1. The LRT statistic comparing the
fitted NN and GL models was 7.455 with weights w = (0.5, 0.5, 0)> and p-value equal to 0.003,
which gives further support to GLME regression. In contrast, the likelihood of the LL model was
very similar to that of the GL model, while the corresponding LRT had a large p-value (0.218).
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Table 7: Association between fecal calprotectin and endoscopic score in Crohn’s disease patients.
Estimates of the fixed effects (β), random effects parameter (ψ2

1), intraclass correlation (ρ), and
shape parameter (α) from three models. Standard errors (SE) are given for β, ψ2, and, unless
constrained (†), for α. The log-likelihood (`) is reported in brackets.

β0 β1 ψ2
1 ρ α1 α2

Normal-Normal (` = −18.2)
Estimate 3.299 0.906 0.024 0.161 0.000† 0.000†

SE 0.111 0.057 0.128
Laplace-Laplace (` = −14.8)
Estimate 3.263 0.913 0.021 0.126 1.000† 1.000†

SE 0.088 0.042 0.150
Generalized Laplace (` = −14.4)
Estimate 3.266 0.914 0.021 0.126 0.999 0.569
SE 0.096 0.043 0.169 0.001 0.397

6.2 Growth curves

In a weight gain experiment, 30 rats were randomly assigned to three treatment groups: treatment
1, a control (no additive); treatments 2 and 3, which consisted of two different additives (thiouracil
and thyroxin, respectively) to the rats drinking water.57 Weight (grams) of the rats was measured
at baseline (week 0) and at weeks 1, 2, 3, and 4. Data on three of the 10 rats from the thyroxin
group were subsequently removed due to an accident at the beginning of the study. Supplementary
Figure 3 shows estimated intercepts and slopes obtained from rat-specific LS regressions of the type

Yi,k = Xiβi,k + εi,k, εi,k ∼ Nni(0,Σi,k), (6.1)

where the response Yi,k is an ni× 1 vector of weight measurements Yij,k taken on rat i = 1, . . . ,Mk

on occasion j = 1, . . . , 5 conditional on treatment group k = {1, 2, 3}, Xi is a design matrix with
generic vector xij = (1, tj)

>, tj = j − 1, βi,k = (β0i,k, β1i,k)
>, and Σi,k = σ2i,kIni . (Note that

M1 = M2 = 10 and M3 = 7.) It is evident that the weight of rats treated with thiouracil grew
slower than the controls’, though at baseline the former tended to be heavier than the latter. In
contrast, rats in the control and thyroxin groups had, on average, similar intercepts and slopes. The
distributions of intercepts and slopes showed the presence of skewness and bimodality. Therefore,
some degree of robustness against departures from normality might be needed.

To model the heterogeneity between rats within each treatment group, random intercepts and
slopes were included in the following two models: the NN model

Yi,k = Xiβk + Ziν1i + ν2i,

j = 1, . . . , 5, i = 1, . . . ,Mk, k = 1, 2, 3,

and the GL model

Yi,k = Xiβk + Ziε1i + ε2i,

j = 1, . . . , 5, i = 1, . . . ,Mk, k = 1, 2, 3,

where Xi was defined as in (6.1), βk = (β0,k, β1,k)
>, Zi = Xi, and where we assumed ν1i ∼

N2(0,Ψ1), ν2i ∼ Nni(0,Ψ2i), ε1i ∼ GL2(0,Σ1, α1), and ε2i ∼ GLni(0,Σ2i, α2). The variance-
covariance of the random effects is given by Ψ1, where Ψ1 = 1

α1
Σ1 in the GL model. Similarly, the

variance-covariance of the error is Ψ2i, where Ψ2i = 1
α2

Σ2i in the GL model.
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Figure 3: Rats weight gain data. Rat-specific predicted growth trajectories by treatment group
using the heteroscedastic generalized Laplace mixed-effects model.

The 2× 2 matrix Ψ1 is symmetric

Ψ1 =

[
ς11 ς12
ς12 ς22

]
.

Further, in one specification of the NN and GL models above, we considered homoscedastic errors
Ψ2i = ψ2

2Ini , while, in another specification, we fitted heteroscedastic models using the varIdent

function in nlme,
var(ε2ij |ε1i) ≡ ψ2

2ij = ψ2
2δ

2
j ,

where δj represents the ratio between the standard deviations at time tj and time t1 (baseline),
j = 2, . . . , 5, with the identifiability constraint δ1 = 1.14 Therefore, the parameter of the variance
function as defined in (4.9) is given by ξ2 = (log δ2, log δ3, log δ4, log δ5)

>.
Estimation was carried out using the nlmm package. Given the relatively small number of

clusters, we fitted the GL models using a multi-start strategy as introduced in Section 4.1 with

values τ̂
(0)
a ∈ {−6.9067,−2.1972,−0.8473, 0, 0.8473, 2.1972, 6.9067} (which correspond to the logit

of 0.001, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.999). In addition, we used K = 10 quadrature points.
The NN and GL models, either homoscedastic or heteroscedastic, gave similar estimates of the

fixed effects as well as of the variances of the random effects (Table 8). The residual standard devia-
tions {ψ̂2ij , j = 1, . . . , 5} from the NN and GL models were equal to {0.486×10−3, 5.847, 5.047, 1.902,
6.414)} and to {0.731×10−4, 2.215, 1.876, 1.191, 2.712}, respectively. Differences between treatment
groups in terms of variability of the rat-specific trajectories and residual heteroscedasticity can be
better appreciated in Figure 3. Predictions of rat weight at each time point were obtained from
the GL model with heteroscedastic errors, with random effects estimated via the best linear pre-
dictor (4.6).

The homoscedastic NN and GL models gave similar values of the log-likelihood (the LRT statis-
tic comparing these two models had a p-value equal to 0.316). Introducing a within-cluster variance
function in the model improved the fits, though only moderately, resulting in similar values of the
log-likelihood for the heteroscedastic NN and GL models (the LRT statistic comparing these two
models had a p-value close to 1). These results were consistent with the estimates of the shape
parameters in the GL models, which were not far from 0, thus suggesting that random effects and
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error term follow normal distributions (though the large standard errors prevent us from draw-
ing strong conclusions). In summary, the normal mixed model with a time-specific error variance
function seems appropriate for these data.
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Table 8: Rats weight gain data. Estimates of the fixed effects (β), random effects parameter (ς), and shape parameter (α) from four
models. Standard errors (SE) are given for β and, unless constrained (†), for α. The log-likelihood (`) is reported in brackets.

β0,1 β0,2 β0,3 β1,1 β1,2 β1,3 ς11 ς12 ς22 α1 α2

Homoscedastic Normal-Normal (` = −447.5)
Estimate 52.880 57.700 52.086 26.480 17.050 27.143 27.550 −1.974 12.202 0.000† 0.000†

SE 2.016 2.016 2.409 1.214 1.214 1.451

Homoscedastic Generalized Laplace (` = −447.4)
Estimate 53.562 57.508 53.293 26.592 17.351 27.098 27.411 −0.536 11.847 0.039 0.319
SE 1.974 2.027 2.349 1.172 1.176 1.426 0.089 0.273

Heteroscedastic Normal-Normal (` = −439.3)
Estimate 54.000 54.700 55.571 25.554 17.944 25.748 19.178 1.905 12.129 0.000† 0.000†

SE 1.417 1.417 1.693 1.142 1.142 1.365

Heteroscedastic Generalized Laplace (` = −440.4)
Estimate 54.020 55.444 55.924 26.027 18.359 26.225 20.240 3.294 12.343 0.128 0.164
SE 1.477 1.432 1.669 1.171 1.135 1.487 0.161 0.380
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7 Final remarks

In the words of Wilson “No phenomenon is better known perhaps, as a plain matter of fact, than
that the frequencies which we actually meet in everyday work in economics, in biometrics, or in vital
statistics, very frequently fail to conform at all closely to the so-called normal distribution”.3 Kotz
and colleagues2 echo Wilson’s observations on the inadequacy of the normal distribution in many
practical applications and give a systematic exposition of the Laplace distribution, an unjustifiably
neglected error law which can be “a natural and sometimes superior alternative to the normal law”.

Our proposed generalized Laplace mixed models bring together the normal and Laplace dis-
tributions showing that these models represent a family of sensible alternatives as they flexibly
introduce shape parameters in the modeling process. Estimation can be approached in different
ways. The algorithm based on numerical quadrature discussed in this paper takes advantage of the
scale mixture representation of the Laplace distribution which provides the opportunity for com-
putational simplification. In a simulation study with small to moderate sample sizes, our estimator
provided satisfactory results in terms of bias, MSE and coverage, and outperformed a competing
mixed-effects model based on heavy-tailed distributions. Moreover, we developed a model selection
strategy based on likelihood ratio tests for both regular and non-regular inference which performed
satisfactorily. Although we made our models general enough to allow for residual heteroscedasticity,
we did not include within-cluster correlation structures.14 Such a development is mathematically
straightforward, but it does require additional computational and programming effort. Moreover,
it possible to extend the proposed GLME model to multiple levels of the random effects. If the ran-
dom effects levels are nested, the estimation procedure based on numerical quadrature as described
in Section 4.1 is still feasible, though computationally inefficient. On the other hand, if levels are
non-nested, then one must consider alternative estimation approaches.

To reiterate the main point of this study, these convolutions have a large number of poten-
tial applications and, as demonstrated using several examples, may provide valuable insight into
different aspects of the analysis.

21



References

1 Geraci M, Cortina-Borja M. The Laplace distribution. Significance. 2018;15(5):10–11.
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MA: Birkhäuser; 2001.

3 Wilson EB. First and second laws of error. Journal of the American Statistical Association.
1923;18(143):841–851.

4 Bassett G, Koenker R. Asymptotic theory of least absolute error regression. Journal of the
American Statistical Association. 1978;73(363):618–622.

5 Koenker R, Bassett G. Regression quantiles. Econometrica. 1978;46(1):33–50.

6 Yu KM, Moyeed RA. Bayesian quantile regression. Statistics & Probability Letters.
2001;54(4):437–447.

7 Geraci M, Bottai M. Quantile regression for longitudinal data using the asymmetric Laplace
distribution. Biostatistics. 2007;8(1):140–154.

8 Farcomeni A. Quantile regression for longitudinal data based on latent Markov subject-specific
parameters. Statistics and Computing. 2012;22(1):141–152.

9 Farcomeni A, Viviani S. Longitudinal quantile regression in presence of informative drop-out
through longitudinal-survival joint modeling. Statistics in Medicine. 2015;34:1199–1213.

10 Marino MF, Farcomeni A. Linear quantile regression models for longitudinal experiments: An
overview. Metron. 2015;73(2):229–247.

11 Portnoy S, Koenker R. The Gaussian hare and the Laplacian tortoise: Computability of squared-
error versus absolute-error estimators. Statistical Science. 1997;12(4):279–300.

12 Koenker R, Ng P. A Frisch–Newton algorithm for sparse quantile regression. Acta Mathematicae
Applicatae Sinica (English Series). 2005;21(2):225–236.

13 Kozubowski TJ, Nadarajah S. Multitude of Laplace distributions. Statistical Papers.
2010;51(1):127–148.

14 Pinheiro JC, Bates DM. Mixed-effects models in S and S-PLUS. New York: Springer Verlag;
2000.

15 Demidenko E. Mixed models: Theory and applications with R. 2nd ed. Hoboken, NJ: John
Wiley & Sons; 2013.

16 Pinheiro JC, Liu C, Wu YN. Efficient algorithms for robust estimation in linear mixed-effects
models using the multivariate t distribution. Journal of Computational and Graphical Statistics.
2001;10(2):249–276.

17 Staudenmayer J, Lake EE, Wand MP. Robustness for general design mixed models using the
t-distribution. Statistical Modelling. 2009;9(3):235–255.

18 Zhang D, Davidian M. Linear mixed models with flexible distributions of random effects for
longitudinal data. Biometrics. 2001;57(3):795–802.

22



19 Dandine-Roulland C, Perdry H. The use of the linear mixed model in human genetics. Human
Heredity. 2015;80(4):196–206.

20 Raman G, Balk EM, Lai L, Shi J, Chan J, Lutz JS, et al. Evaluation of person-level heterogeneity
of treatment effects in published multiperson N-of-1 studies: systematic review and reanalysis.
BMJ Open. 2018;8(5):e017641.

21 R Core Team. R: A Language and environment for statistical computing. Vienna, Austria; 2019.
Http://www.R-project.org.
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