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Summary
In this paper, we present a new and straightforward approximation method-
ology for pricing a call option in a Black and Scholes market, characterized
by stochastic interest rates. The method relies on a Gaussian moment match-
ing technique applied to a conditional Black and Scholes formula, used to
disentangle the distributional complexity of the underlying price process. The
problem then reduces to exploiting the Gaussian density and the expression of
the bond price induced by the interest rate. To check its accuracy and compu-
tational time, we implement it for a CIR interest rate model correlated with the
underlying, using Monte Carlo simulations as a benchmark. The method per-
formance turns out to be quite remarkable, even when compared with similar
results obtained by the affine approximation technique presented in Grzelak and
Oosterlee, and by the expansion formula introduced in Kim and Kunimoto. In
the last section, we apply the method also to the pricing of Forward-Starting
options, to the evaluation of the credit spreads in the Merton structural approach
to credit risk, and we outline a possible application to a stochastic volatility
model.
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1 INTRODUCTION

Since the appearance of the seminal Black and Scholes/Merton option pricing formula, there has been an intensive effort
to incorporate in the market model additional stochastic factors, such as volatility and interest rates, the latter already
discussed by Merton in Reference 1. Over the years, a wide field of research developed, leading to a rich literature on
stochastic volatility models, while fewer papers aimed at the inclusion of a dynamic term structure into the valuation of
derivatives, for example, Reference 2-8.

As shown in the empirical literature (for instance, see Reference 9,10), adding those risk factors to the models brought
a noticeable improvement in the performances of option pricing formulas. Indeed in Reference 11, the author remarked
that even including solely stochastic interest rates in the model does affect the pricing formula, especially for longer-dated
options.
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Including stochastic rates (as any other generalization) implies a higher degree of mathematical complexity. Con-
sequently, the search for efficient pricing techniques to provide accurate evaluations in a short computational time (as
opposed to Monte Carlo methods) became relentless. It is even more important nowadays in modern quantitative finance,
where an enormous amount of data allows considering strategies that call for real-time model calibration. Computational
efficiency has become one of the primary concerns of risk managers, essentially restricting their choice of models to the
affine class (see Reference 7).

Indeed, when one models the interest rates by Gaussian processes, as in the popular Hull-White/Vasicek models, it
is possible to obtain even analytical prices. Those models are surely appropriate when negative rates occur (as in the
current period), but this feature becomes a drawback in periods when rates are usually greater than zero. Perhaps, the
most popular affine model used in the literature to ensure the strict positivity of the interest rate is the Cox-Ingersoll-Ross
(CIR) one under the Feller condition. The popularity comes from the fact that the CIR falls into the so-called affine models
that exploit a very efficient and fast Fourier transform technique to price bonds. Unfortunately, the model affinity is lost
when the interest rate correlates with the risky asset dynamics, and searching for accurate approximations of risk-neutral
pricing formulas becomes very challenging.

Here, we take a market model where the asset price verifies a linear SDE, correlated with a stochastic risk-free rate,
and we present a new and straightforward approximation of the European call option price, based on a moment match-
ing (MM) technique. The problem is a classical one, and the novelty lies in the fact that the proposed method is easy
to implement, and it leads to very accurate approximations. First, by conditioning, we provide a representation formula
for the claim price in terms of the BS formula, then we build a Gaussian approximation of the involved random vari-
ables by matching the first two moments. We also employ a change-of-numeraire technique (introducing the T-forward
measure as in Reference 12) to partially disentangle the contributions due to the underlying and to the interest rate.
Hence, using the properties of the Normal cumulative distribution function (c.d.f.) (see Lemma 1), we can solve the
inner expectation. This procedure leaves to compute a final expectation, expressed only in terms of the interest rate pro-
cess. When applying the method to the affine models, we can exploit the explicit expressions of the bond price in this
framework.

The numerical analysis we run, assuming the interest rate follows a CIR dynamic, shows small relative errors
compared to the benchmark Monte Carlo simulated prices. Besides, the performance we reach is comparable
with that of other efficient methods proposed in the literature, by Grzelak and Oosterlee in Reference 13, and
by Kim and Kunimoto in Reference 6. The same accuracy is transposed to the approximate hedging strategy, as
shown by the difference between the payoff Monte Carlo valuation and the approximate replicating strategy final
value.

In Section 5, we show we may apply this method to other products also. In particular, we use it to approximate the
prices of a Forward-Starting option and a defaultable bond within the Merton structural approach. In the same section,
we also outline a possible way to extend the method to include stochastic volatility. Relying on previous work by Ford
et al.14 we consider a stochastic volatility Heston model with correlated CIR rate, and by applying our method to price
short maturities contracts we reach a good accuracy compared to Monte-Carlo simulations.

Summarizing the paper is organized as follows. In Section 2, we derive the representation formula for the call
option price in a Black and Scholes market with stochastic risk-free short rates, while in Section 3, we describe
the MM method in detail. In Section 4, we focus our analysis on affine models, and we apply our technique
to a CIR interest rate. In the same section, we briefly introduce the other two approximation techniques, the
affine approximation, inspired by Reference 13, and the expansion method proposed in Reference 6, alternative
to prices obtained by Monte Carlo simulations. Hence we run a numerical study comparing those methods with
ours using Monte Carlo evaluation as a benchmark. In the final section, we apply our method to forward-starting
options and defaultable ones in the Merton approach, as well we suggest an extension to stochastic volatility
models.

2 THE PRICE OF A EUROPEAN CALL IN THE BS MODEL WITH
STOCHASTIC RATES

In this section, we are concerned with providing an approximation formula for the pricing of a European call option,
whose payoff is given by the function f (x) = (ex − e𝜅)+ for some 𝜅 ∈ R, when stochastic interest rates come into
play.
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Thus, given a finite time interval [0, T] and a complete probability space (Ω, ,Q), with a filtration {t}{t∈[0,T]}
satisfying the “usual hypotheses" (see Reference 15), the market model is defined by the log-price of a risky asset
and a risk-free interest (Xt, rt), whose joint dynamics for any initial condition (t, x, r) ∈ [0,T] × R × R and ∀s∈ [t, T] is
given by ⎧⎪⎨⎪⎩

Xs = Xt + ∫ s
t (rv − 𝜎2

2
)dv + 𝜎

[
𝜌(B1

s − B1
t ) +

√
1 − 𝜌2(B2

s − B2
t )
]
, Xt = x

rs = rt + ∫ s
t 𝜇(v, rv)dv + ∫ s

t 𝜂(v, rv)dB1
v , rt = r,

(1)

where (B1, B2) is a two-dimensional standard Brownian motion, 𝜌 ∈ (−1, 1), and Q is some risk-neutral probability
selected by the market. Finally, the deterministic functions 𝜇(⋅, ⋅) and 𝜂(⋅, ⋅) are in a class that ensures the existence and
uniqueness of a strong solution of (1) (see e.g., Reference 16).

The pair (Xt, rt) is Markovian, whence the arbitrage-free option price is a deterministic function of the state variables,
given by

u(t, x, r,T; 𝜌) = E

[
e− ∫ T

t rsds(eXT (𝜌) − e𝜅)+|Xt = x, rt = r
]
, (2)

provided that the coefficients 𝜇 and 𝜂 are such that XT and ∫ T
0 |rs|ds are exponentially integrable. Here, we write XT(𝜌),

to stress the dependence of the price on the correlation parameter, and, for shorthand, we denote E(⋅|Xt = x, rt = r) as
E

x,r
t (⋅), E(⋅|rt = r) as Er

t (⋅).
If u(t, x, r,T; 𝜌) is regular enough in t, x, r, the Feynman-Kaĉ formula implies that it is a classical solution of the

following two-dimensional parabolic problem{
𝜕u
𝜕t

+ 𝜌u = 0
u(T, x, r,T; 𝜌) = (ex − e𝜅)+,

(3)

where 𝜌 = 0 +, with

0 ∶=
(
𝜎2

2
𝜕2

𝜕x2 +
(

r − 𝜎2

2

)
𝜕

𝜕x
− r

)
+
(
𝜂2(t, r)

2
𝜕2

𝜕r2 + 𝜇(t, r) 𝜕
𝜕r

)
(4)

 ∶= 𝜌𝜎𝜂(t, r) 𝜕2

𝜕x𝜕r
. (5)

By conditioning internally with respect to 1
T ∨ 𝜎(Xt, rt) = 𝜎({Xt, rt,B1

s ∶ t ≤ s ≤ T}), we have

u(t, x, r,T; 𝜌) = E
x,r
t

[
e− ∫ T

t rsds(eXT (𝜌) − e𝜅)+
]
= E

x,r
t

[
e− ∫ T

t rsds
E

x,r
t
(
(eXT (𝜌) − e𝜅)+|1

T
)]

. (6)

But XT(𝜌)
|||1

T ∼ N(Mt,T ,Σt,T), where

Mt,T = x + ∫
T

t

(
rs −

𝜎2

2

)
ds + 𝜎𝜌(B1

T − B1
t ), and Σ2

t,T = 𝜎(1 − 𝜌2)(T − t).

Hence we obtain

E
x,r
t
[
(eXT (𝜌) − e𝜅)+|1

T
]
= eMt,T+

1
2
Σ2

t,T
(

Mt,T − 𝜅 + Σ2
t,T

Σt,T

)
− e𝜅

(
Mt,T − 𝜅

Σt,T

)
= ex+∫ T

t (rs−
𝜎2

2
)ds+𝜎𝜌(B1

T−B1
t )+

1
2
𝜎2(1−𝜌2)(T−t) (d1(𝜌)) − e𝜅 (d2(𝜌)),

where we define

d1(𝜌) ≡ d1(x, t,T, 𝜌) =
x − 𝜅 + ∫ T

t rsds + 𝜎𝜌(B1
T − B1

t ) +
𝜎2

2
(T − t) − 𝜎2𝜌2(T − t)

𝜎
√

1 − 𝜌2
√

T − t
(7)

d2(𝜌) ≡ d1(x, t,T, 𝜌) =
x − 𝜅 + ∫ T

t rsds + 𝜎𝜌(B1
T − B1

t ) −
𝜎2

2
(T − t)

𝜎
√

1 − 𝜌2
√

T − t
, (8)
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and  denotes the cumulative distribution function of the standard Gaussian. It is convenient to introduce the following
notations

Λt,T = ∫
T

t
rsds, ΔBi

t,T = Bi
T − Bi

t,

𝛽(𝜏, 𝜌) = 𝜌

(1 − 𝜌2)1∕2
√
𝜏
, 𝛾(𝜏, 𝜌) = 1

𝜎(1 − 𝜌2)1∕2
√
𝜏

𝛼1(x, 𝜏, 𝜌) =
x − 𝜅 + 𝜎2

2
𝜏 − 𝜎2𝜌2𝜏

𝜎(1 − 𝜌2)1∕2
√
𝜏

, 𝛼2(x, 𝜏, 𝜌) =
x − 𝜅 − 𝜎2

2
𝜏

𝜎(1 − 𝜌2)1∕2
√
𝜏
,

so that we may finally write

di(x, t,T, 𝜌) = 𝛼i(x,T − t, 𝜌) + 𝛽(T − t, 𝜌)ΔB1
t,T + 𝛾(T − t, 𝜌)Λt,T , i = 1, 2, (9)

u(t, x, r,T; 𝜌) = ex− 𝜎2𝜌2(T−t)
2 E

x,r
t

[
e𝜎𝜌ΔB1

t,T (d1(𝜌))
]
− e𝜅Ex,r

t
[
e−Λt,T (d2(𝜌))

]
. (10)

In the next section, we introduce the MM approximation procedure.

3 OPTION PRICE APPROXIMATION BY MOMENT MATCHING

The main idea of this section is to replace the random variables di(𝜌), i= 1, 2, defined by (9), with Gaussian random
variables Di(𝜌), matching their first and second moments. We define

Di(𝜌) ∶= 𝛼i(x,T − t, 𝜌) + 𝛽(r,T − t, 𝜌)ΔB1
t,T + 𝛾(T − t, 𝜌)Ex,r

t (Λt,T), i = 1, 2.

We impose

E
x,r
t (Di(𝜌)) = 𝛼i(x,T − t, 𝜌) + 𝛾(T − t, 𝜌)Er

t (Λt,T) = E
x,r
t (di(𝜌)) , (11)

and we fix the new coefficient 𝛽 > 0 such that for i= 1, 2,

varx,r
t (Di(𝜌)) = (T − t)𝛽2(r,T − t, 𝜌) = varx,r

t (di(𝜌))
= 𝛽2(T − t, 𝜌)(T − t) + 𝛾2(T − t, 𝜌)varr

t (Λt,T)
+ 2𝛽(T − t, 𝜌)𝛾(T − t, 𝜌)Er

t (ΔB1
t,TΛt,T), (12)

with

E
r
t (Λt,T) = ∫

T

t
E

r
t (rs)ds =∶ 𝜆(t,T) (13)

varr
t (Λt,T) = E

r
t
[
Λ2

t,T
]
− 𝜆2(t,T) = E

r
t

[(
∫

T

t
rsds

)2
]
− 𝜆2(t,T)

= 2∫
T

t ∫
s

t
E

r
t (rsrv)dsdv − 𝜆2(t,T)

= 2∫
T

t ∫
s

t

[
E

r
t (rs − rv)Er

t (rv) + E
r
t (r

2
v )
]

dsdv − 𝜆2(t,T) (14)

E
r
t (ΔB1

t,TΛt,T) = E
r
t

[
(B1

T − B1
t )∫

T

t
rsds

]
. (15)

In the last passage in the variance computation, we used the independence of the increments of the process r.
The MM method with Gaussian random variables may be motivated by looking at the empirical distributional

properties of the random variables di in some well-known rate models: see as examples Figures (1), (2), and (3).
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F I G U R E 1 The histograms of d1 and d2 for 𝜌 = 0.3, T = 1 (left) and T = 5 (right), in comparison with the standard normal law (in red)
and related qq-plot, CIR dynamic: drt = 𝜅(𝜃 − rt)dt + 𝜂

√
rtdB1

t . [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 2 The histograms of d1 and d2 for 𝜌 = 0.3, T = 1 (left) and T = 5 (right), in comparison with the standard normal law (in red)
and related qq-plot, Exponential Vasicek dynamic: drt = rt(𝜃 − a ln(rt))dt + 𝜂rtdB1

t . [Color figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 3 The histograms of d1 and d2 for 𝜌 = 0.3, T = 1 (left) and T = 5 (right), in comparison with the standard normal law (in red)
and related qq-plot, Dothan dynamic: drt = artdt + 𝜂rtdB1

t . [Color figure can be viewed at wileyonlinelibrary.com]
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We introduce the call price approximation

ũ(t, x, r,T; 𝜌) ∶= exe−
𝜎2𝜌2

2
(T−t)

E
x,r
t

[
e𝜎𝜌ΔB1

t,T (D1(𝜌))
]
− e𝜅Ex,r

t
[
e−Λt,T (D2(𝜌))

]
=∶ exe−

𝜎2𝜌2

2
(T−t) F(𝜌) − e𝜅G(𝜌). (16)

The function F can be evaluated in closed form by the following

Lemma 1. Let p ∈ R and X ∼ N(𝜇, 𝜈2), (𝜇, 𝜈) ∈ R × R+, then

E(epX (X)) = ep𝜇+ (p𝜈)2

2 
(

𝜇 + p𝜈2√
1 + 𝜈2

)
.

Proof. See Reference 17 for p= 0, the general case follows by a “completing the squares" argument. ▪

Since

ΔB1
t,T = [D1(𝜌) − 𝛼1(x,T − t, 𝜌) − 𝛾(T − t, 𝜌)𝜆(t,T)] 𝛽(r,T − t, 𝜌)−1,

applying the above Lemma, we may rewrite F as

F(𝜌) = E
x,r
t

[
e𝜎𝜌(D1(𝜌)−𝛼1(x,T−t,𝜌)−𝛾(T−t,𝜌)𝜆(t,T)𝛽(r,T−t,𝜌)−1 (D1(𝜌))

]
= e−𝜎𝜌[𝛼1(x,T−t,𝜌)+𝛾(T−t,𝜌)𝜆(t,T)]𝛽(r,T−t,𝜌)−1

E
x,r
t

[
e𝜎𝜌D1(𝜌)𝛽(r,T−t,𝜌)−1 (D1(𝜌))

]
= e−

𝜎𝜌

𝛽(r,T−t,𝜌)
[𝛼1(x,T−t,𝜌)+𝛾(T−t,𝜌)𝜆(t,T)]

× e
𝜎𝜌E

x,r
t (D1(𝜌))

𝛽(r,T−t,𝜌)
+

𝜎2𝜌2varx,r
t (D1(𝜌))

2𝛽2(r,T−t,𝜌) 
⎛⎜⎜⎜⎝
E

x,r
t (D1(𝜌)) + 𝜎𝜌varx,r

t (D1(𝜌))𝛽(r,T − t, 𝜌)−1√
1 + varx,r

t (D1(𝜌))

⎞⎟⎟⎟⎠ .
From (11) and (12), we may conclude

F(𝜌) = e
𝜎2𝜌2(T−t)

2 
⎛⎜⎜⎜⎝
𝛼1(x,T − t, 𝜌) + 𝜎𝜌𝛽(r,T − t, 𝜌)(T − t) + 𝛾(T − t, 𝜌)Er

t (Λt,T)√
1 + 𝛽

2(r,T − t, 𝜌)(T − t)

⎞⎟⎟⎟⎠ . (17)

If 𝜆(t,T) = Er
t (Λt,T) and (14), (15) can be computed analytically, then F is totally explicit.

On the contrary, the function G cannot be evaluated in such a straightforward manner, as it involves a detailed knowl-
edge of the joint distribution ofΛt,T and B1

T − B1
t and not only of their moments and covariance. To represent G, we suggest

employing a change-of-numeraire technique to exploit the bond pricing theory.
Let us define

P(s,T) ∶= E

(
e− ∫ T

s rvdv|s

)
, (18)

the Zero Coupon Bond price. Again, since r. is a Markov process, P(s, T) is a deterministic function of the state variable, say
g(s, rs), where g(t, r) = Er

s

(
e− ∫ T

s rvdv
)

, which we assume to be 1,2([0,T] × R+). For 0≤ t ≤ s≤T, we define the martingale
(we remark it is a true martingale thanks to the exponential integrability of Λt,T)

Lt,s =
E(e− ∫ T

t rvdv|s)
P(t,T)

= e−Λt,s
P(s,T)
P(t,T)

= e−Λt,s
g(s, rs)
g(t, r)

, rt = r. (19)

By applying the Itô formula, we have the dynamic of L
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dLt,s =
e−Λt,s

g(t, r)

[
𝜕g
𝜕t

(s, rs) +
1
2
𝜂2(s, rs)

𝜕2g
𝜕r2 (s, rs) + 𝜇(s, rs)

𝜕g
𝜕r

(s, rs) − rsg(s, rs)
]

ds

+ e−Λt,s

g(t, r)
𝜂(s, rs)

𝜕g
𝜕r

(s, rs)dB1
s

= e−Λt,s

g(t, r)
𝜂(s, rs)

𝜕g
𝜕r

(s, rs)dB1
s = Lt,s

(
𝜂

g
𝜕g
𝜕r

)
(s, rs)dB1

s , Lt,t = 1,

and we may define the T-forward measure  by QT(A) ∶= E0(L0,T1A),∀ A ∈ T , (see Reference 18 for the method and
Reference 19 for a similar application). Under QT , we get

G(𝜌) = E
x,r
t
[
e−Λt,T (D2(𝜌))

]
= P(t,T)EQT

t
[ (D2(𝜌))

]
, (20)

and by the Girsanov theorem, setting

𝜉s ∶= ∫
s

0

𝜂(v, rv)
g(v, rv)

𝜕g
𝜕r

(v, rv)dv,

we have that the process B̃1
s ∶= B1

s − 𝜉s is a QT−Brownian motion.
When choosing an interest rate model that provides an explicit expression of the bond price, E

QT

t
[ (D2(𝜌))

]
remains

the final quantity to compute. Under QT , D2(𝜌) has the following expression

D2(𝜌) = 𝛼2(x,T − t, 𝜌) + (𝜉T − 𝜉t)𝛽(r,T − t, 𝜌) + 𝛽(r,T − t, 𝜌)ΔB̃1
t,T + 𝛾(T − t, 𝜌)𝜆(t,T),

whence its distribution is no longer known. To circumvent this difficulty, we replace D2(𝜌) with the r.v.

D2(𝜌) ∶= 𝛼2(x,T − t, 𝜌) + E
r
t (𝜉T − 𝜉t)𝛽(r,T − t, 𝜌) + 𝛽(r,T − t, 𝜌)ΔB̃1

t,T + 𝛾(T − t, 𝜌)𝜆(t,T),

where we are taking the expectation E
x,r
t (𝜉T − 𝜉t) = Er

t (𝜉T − 𝜉t), under the probability Q. From now on, we denote such
expectation by 𝜖(r, t,T), and we have that D2(𝜌) is a Gaussian r.v., whence we may apply Lemma 1 once again, obtaining

E
QT

t ( (D2(𝜌))) = 
⎛⎜⎜⎜⎝

E
QT

t (D2(𝜌))√
1 + varQT

t (D2(𝜌))

⎞⎟⎟⎟⎠ ,
with

E
QT

t

(
D2(𝜌)

)
= 𝛼2(x,T − t, 𝜌) + 𝜖(r, t,T)𝛽(r,T − t, 𝜌) + 𝛾(T − t, 𝜌)𝜆(t,T),

varQT

t

(
D2(𝜌)

)
= 𝛽

2(r,T − t, 𝜌)(T − t).

Hence we denote by

G(𝜌) ∶= P(t,T)EQT

t

[ (D2(𝜌))
]

the approximation of G(𝜌), and we may define the final approximation of the call option price u(t, x, r,T; 𝜌) as

ū(t, x, r,T; 𝜌) ∶= ex− 1
2
𝜎2𝜌2(T−t)F(𝜌) − e𝜅G(𝜌)

= ex
⎛⎜⎜⎜⎝
𝛼1(x,T − t, 𝜌) + 𝜎𝜌𝛽(r,T − t, 𝜌)(T − t) + 𝛾(T − t, 𝜌)𝜆(t,T)√

1 + 𝛽
2(r,T − t, 𝜌)(T − t)

⎞⎟⎟⎟⎠
− e𝜅P(t,T)

⎛⎜⎜⎜⎝
𝛼2(x,T − t, 𝜌) + 𝜖(r, t,T)𝛽(r,T − t, 𝜌) + 𝛾(T − t, 𝜌)𝜆(t,T)√

1 + 𝛽
2(r,T − t, 𝜌)(T − t)

⎞⎟⎟⎟⎠ . (21)
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We conclude this section with some final remarks. First, we summarize the requirements to make the approximation
(21) explicitly computable and hopefully efficient:

1. the distributions of di(𝜌), i = 1, 2 should be close to a Gaussian distribution;
2. the bond price P(t, T) should be theoretically computable;
3. the quantities Er

t (Λt,T), varr
t (Λt,T) and Er

t (ΔB1
t,TΛt,T) and/or their approximations, should be easy to compute;

4. it should be possible to apply the change of numeraire technique (the Girsanov theorem).

We also observe that one might plug the market bond price for P(t, T) into (19) and use it for calibration purposes.
Eventually, to validate this approximation technique, one has to compare results with Monte Carlo sim-

ulated prices, as well as with other methods present in the literature, as we are going to do in the next
section.

We finally remark that the same methodology may provide an approximation of the hedging strategy. Indeed, given
formula (16), differentiating ū(t, x, r,T; 𝜌) for z= ex, we obtain

𝜕zū(x, r, t,T; 𝜌) = e−
1
2
𝜎2𝜌2(T−t)F(𝜌) + exe−

1
2
𝜎2𝜌2(T−t)

𝜕zF(𝜌) − e𝜅𝜕zG(𝜌), (22)

where

𝜕zF(𝜌) =  ′

⎛⎜⎜⎜⎝
𝛼1(x,T − t, 𝜌) + 𝜎𝜌𝛽(r,T − t, 𝜌)(T − t) + 𝛾(T − t, 𝜌)𝜆(t,T)√

1 + 𝛽
2(r,T − t, 𝜌)(T − t)

⎞⎟⎟⎟⎠
𝜕x𝛼1(x,T − t, 𝜌)

ex
√

1 + 𝛽
2(r,T − t, 𝜌)(T − t)

,

𝜕zG(𝜌) = P(t,T) ′

⎛⎜⎜⎜⎝
𝛼2(x,T − t, 𝜌) + 𝜖(r, t,T)𝛽(r,T − t, 𝜌) + 𝛾(T − t, 𝜌)𝜆(t,T)√

1 + 𝛽
2(r,T − t, 𝜌)(T − t)

⎞⎟⎟⎟⎠ ,
𝜕x𝛼2(x,T − t, 𝜌)

ex
√

1 + 𝛽
2(r,T − t, 𝜌)(T − t)

,

𝜕x𝛼i(x,T − t, 𝜌) = 1
𝜎
√
(1 − 𝜌2)(T − t)

, i = 1, 2.

All the quantities appearing in the above formulas have already been obtained during the price computation, making
the classical hedging approach feasible.

4 NUMERICS AND COMPARISON WITH OTHER METHODOLOGIES

In this section, we employ an affine model for the interest rate, which provides an explicit expression for the Zero Coupon
Bond price (18). Our market model is then given by

Xs = Xt + ∫
s

t

(
rv −

𝜎2

2

)
dv + 𝜎

[
𝜌(B1

s − B1
t ) +

√
1 − 𝜌2(B2

s − B2
t )
]
, Xt = x

rs = rt + ∫
s

t
[a(v)rv + b(v)]dv + ∫

s

t
[c(v)rv + d(v)]1∕2dB1

v , rt = r, (23)

where a, b, c, d ∶ [0,T] → R are bounded functions. In this framework, the ZCB price has the following expression as
function of the state variable rt = r

P(t,T) = g(t, r) = A(t,T)e−rB(t,T),
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for suitable deterministic functions A(⋅ , T) and B(⋅ , T). Two very classical models fall into this setting

(Vasicek) a(v) = −𝛾, b(v) = 𝛾𝜃, c(v) = 0, d(v) = 𝜂2

(CIR) a(v) = −𝛾, b(v) = 𝛾𝜃, c(v) = 𝜂2, d(v) = 0,
𝛾, 𝜃, 𝜂 > 0.

In both cases, the functions A(t, T) and B(t, T), characterized as the solution of a Riccati system of ODEs, are known
explicitly,12 the same being true also for their time-dependent extensions (Hull-White/Vasicek, and Hull-White/CIR
models). Unfortunately, when X and r are correlated, the pair might be no longer jointly affine since its diffusion matrix

𝜎(v, x, r)𝜎(v, x, r)T =

(
𝜎2 𝜌𝜎[c(v)r + d(v)]1∕2

𝜌𝜎[c(v)r + d(v)]1∕2 c(v)r + d(v)

)
, (24)

may have non-linear entries in the state variables (this happens for the CIR model), and the above approach does not
apply.

Considering the correlation in the market model (23) is not irrelevant. Indeed, it has a noticeable impact on the term
structure of the implied volatility determined by at-the-money options, strengthening the sensitivity of the model to the
parameters (in particular to the pair r, 𝜃) see Figure (4). Depending on the choice of r and 𝜃, correlated rates may cre-
ate upward or downward sloping term structures, which add more flexibility to the pricing model. This effect grows as
maturity increases: while it is below few basis points within the year, it rises to hundreds of basis points for five years.

In this context, we apply the approximation procedure presented in the previous section. In this case (see e.g.,
Reference 12), setting 𝛿 =

√
𝛾2 + 2𝜂2, we have

A(t,T) = e
2𝛾𝜃
𝜂2 2𝛿e𝛾+𝛿(T−t)

𝛿 − 𝛾 + (𝛿 + 𝛾)e𝛿(T−t) , B(0,T) = 2(e𝛿(T−t) − 1)
𝛿 − 𝛾 + (𝛿 + 𝛾)e𝛿(T−t) ,

and we need to calculate Er
t (Λt,T), varr

t (Λt,T) and Er
t
(
Λt,T(B1

T − B1
t )
)
.

1. Computation of Er
t (Λt,T). It is straightforward to see

E
r
t (Λt,T) = ∫

T

t
E

r
t (rs)ds = ∫

T

t

[
(r − 𝜃)e−𝛾(s−t) + 𝜃

]
ds = 𝜃(T − t) + (r − 𝜃)1 − e−𝛾(T−t)

𝛾
.
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F I G U R E 4 Impact of model correlation on at-the-money implied volatilities. The rate parameters of CIR are r0 = 0.01, 𝛾 = 0.58,
𝜂 = 0.03 and 𝜃 ∈ {0.005, 0.01, 0.03}. The variations with respect to the constant level implied volatility (i.e., the constant rate model) range
from few percentage points up to 20%. [Color figure can be viewed at wileyonlinelibrary.com]
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2. Computation of varr
t (Λt,T). From (14), the problem reduces to computing Er

t (r
2
v ) for v≥ t. By applying the Itô formula

and taking expectations, we arrive at the following equation

E
r
t (r

2
v ) = r2 + ∫

v

t

[
(2𝛾𝜃 + 𝜂2)Er

t (rw) − 2𝛾Er
t (r

2
w)
]

dw

that has explicit solution

E
r
t (r

2
v ) =

[
(r − 𝜃)2 − 𝜂2

𝛾

(
r − 𝜃

2

)]
e−2𝛾(v−t) +

(
2𝜃 + 𝜂2

𝛾

)
(r − 𝜃)e−𝛾(v−t) + 𝜃

(
𝜃 + 𝜂2

2𝛾

)
.

3. Computation of Er
t (ΔB1

t,TΛt,T). First, we use the Ito integration by parts formula to write

E
r
t (ΔB1

t,TΛt,T) = ∫
T

t
E

r
t (ΔB1

t,srs)ds,

then applying the integration by parts again, we have

ΔB1
t,srs = ∫

s

t

[
ΔB1

t,v𝛾(𝜃 − rv) + 𝜂
√

rv

]
dv + 𝜂 ∫

s

t

[
ΔB1

t,v
√

rv + rv

]
dB1

v ,

and taking expectations, one gets the equation

E
r
t (ΔB1

t,srs) = −𝛾 ∫
s

t
E

r
t (ΔB1

t,vrv)dv + 𝜂 ∫
s

t
E

r
t (
√

rv)dv,

with explicit solution

E
r
t (ΔB1

t,srs) = 𝜂 ∫
s

0
e−𝛾(s−v)

E
r
t (
√

rv)dv

⇒ E
r
t (ΔB1

t,sΛt,T) = 𝜂 ∫
T

t ∫
s

t
e−𝛾(s−v)

E
r
t (
√

rv)dvds.

Thus the crucial point is computing Er
t (
√

rv), which is quite delicate (see Reference 20). Indeed, this expectation
is not computable explicitly, and we exploit the approximation proposed by Grzelak and Oosterlee in Reference 14,
where they write it as

E
r
t (
√

rv) ≈ a + be−c(v−t), (25)

for appropriate numerically efficient parameters a, b and c.

Finally, employing the above three points, we may compute 𝛽(r,T − t, 𝜌) from (12), and we may also approximate
Er

t (𝜉T − 𝜉t) as

E
r
t (𝜉T − 𝜉t) = −𝜂 ∫

T

t
B(s,T)Er

t

(√
rs

)
ds ≈ −𝜂 ∫

T

t
B(s,T)(a + be−c(s−t))ds.

For completeness in the next two subsections, we briefly describe the two approximation techniques, in respectively
References 14 and 6, that we are going to use for comparison.

4.1 The Grzelak-Oosterlee (GO) approximation

The GO approximation consists simply of modifying the operator  given in (5), replacing the state variable in the
coefficient with a deterministic function. Namely, the new operator is

GOu(t, x, r) ∶= 𝜌𝜎E(𝜂(t, rt))
𝜕2u
𝜕x𝜕r

(t, x, r).
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In the case of the CIR model, 𝜂 is time-homogeneous, and this operator becomes

GOu(t, x, r) ∶= 𝜌𝜎𝜂E(
√

rt)
𝜕2u
𝜕x𝜕r

(s, x, r) ≈ 𝜌𝜎𝜂(a + be−ct) 𝜕
2u

𝜕x𝜕r
(t, x, r).

Once this replacement has taken place, the modified PDE presents only linear coefficients (in the state variables), and one
can employ Fourier transform methods to compute the solution. We shall denote this approximation by uGO(t, x, r,T; 𝜌).

The discounted transform, for 𝜁 ∈ C, (see Reference 7) for the affine approximation is

𝜙(𝜁, t, x, r,T) ∶= E
x,r
t

(
e− ∫ T

t rsdse𝜁XT

)
= eA(𝜁,t,T)+B(𝜁,t,T)x+C(𝜁,t,T)r ,

where the functions A, B, C satisfy a system of solvable ODE’s, and they are

B(𝜁, t,T) = 𝜁,

C(𝜁, t,T) = 1 − e−d(T−t)

𝜂2(1 − ge−d(T−t))
, d =

√
𝛾2 + 2𝜂2(1 − 𝜁), g = 𝛾 − d

𝛾 + d
,

A(𝜁, t,T) = −𝜎2

2
(T − t)𝜁(1 + 𝜁) + 𝛾 − d

𝜂 ∫
T

t

[
𝛾𝜃

𝜂
+ 𝜌𝜎𝜁(a + be−cs)

]
1 − e−d(T−s)

1 − ge−d(T−s)
ds.

Finally, by Lévy inversion formula as in Reference 7, or Fourier inversion as in Reference 21, one gets an integral
representation for the price function: in our implementation, we use the Fourier inversion

uGO(t, x, r,T; 𝜌) = e𝜈𝛾
𝜋 ∫

+∞

0

(

e−i𝜁𝛾

𝜈2 − 𝜈 − 𝜁2 + i𝜁(1 − 2𝜈)
𝜙(t, 𝜁 , x, r,T)

)
d𝜁, (26)

where 𝜈 < 0 is a dumping factor, and (z) is the real part for z ∈ C.

4.2 The Kim–Kunimoto (KK) approximation

Kim and Kunimoto, in Reference 6, consider a Taylor expansion of the process rs in powers of 𝜂 around 𝜂 = 0. When
looking at the first-order polynomial, they obtain

rs = 𝜃 + (r − 𝜃)e−𝛾(s−t) + 𝜂 ∫
s

t
e−𝛾(s−v)

√
𝜃 + (r − 𝜃)e−𝛾(v−t)(𝜌dB1

v +
√

1 − 𝜌2dB2
v) + o(𝜂). (27)

Denoting by 𝜑(t, s) = 𝜃 + (r − 𝜃)e−𝛾(s−t), and inserting the approximation (27) in the evaluation formula for the call
option, after some manipulations, one can approximate the option price as

uKK(t, x, r,T; 𝜌) = ex (d1) − e𝜅−∫ T
t 𝜑(t,s)ds (d2)

+ 𝜂C1

[
d2ex ′(d1) − d1e𝜅−∫ T

t 𝜑(t,s)ds ′(d2)
]

(28)

where

C1 = − 𝜌

𝜎(T − t)

2
√
𝜃

[
(1 + 2e𝛾(T−t))

√
r − 3𝛾K

]
+
[
r − 𝜃(1 + 2e𝛾(T−t))

]
𝜆K

2e𝛾(T−t)𝛾2
√
𝜃

,

d1 =
x − 𝜅 + 𝜃(T − t) + (r − 𝜃)(1 − e−𝛾(T−t))∕𝛾 + 𝜎2(T − t)∕2√

𝜎2(T − t)
, d2 = d1 − 𝜎

√
(T − t),

being 𝛾K = e𝛾(T−t)∕2
√

r − 𝜃(1 − e𝛾(T−t)), and 𝜆K = log
(

(
√

r+
√
𝜃)2

r−𝜃(1−2e𝛾(T−t))+2𝛾K

√
𝜃)

)
.
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T A B L E 1 Results of the approximations for the parameters 𝛾 = 0.6, 𝜃 = 0.02, 𝜂 = 0.1, r0 = 0.001, and 𝜎L. The time to maturity is T = 1
and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference between the
MC price and the related approximation.

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

Prices

MC 8.1543 8.1799 8.2055 8.2314 8.2574 8.2832 8.3085

(0.0225) (0.0137) (0.0064) (0.0003) (0.0069) (0.0142) (0.0230)

GO 8.1192 8.1568 8.1943 8.2315 8.2686 8.3055 8.3423

KK 8.1361 8.1677 8.1993 8.2309 8.2625 8.2941 8.3258

MM 8.146 8.1745 8.2029 8.2313 8.2595 8.2877 8.3157

Errors

GO 0.0351 0.0231 0.0113 −0.0001 −0.0113 −0.0223 −0.0338

KK 0.0182 0.0121 0.0062 0.0005 −0.0052 −0.0109 −0.0172

MM 0.0083 0.0053 0.0026 0.0001 −0.0022 −0.0045 −0.0072

Rel. Err.

GO 0.0043 0.0028 0.0013 1.4e-05 0.0014 0.0027 0.0041

KK 0.0022 0.0015 0.0008 5.9e-05 0.0006 0.0013 0.0021

MM 0.0010 0.00065 0.0003 1.7e-05 0.0003 0.0005 0.0009

4.3 Numerical results

We ran all the numerical experiments for t = 0, comparing the results of the different approximations with the benchmark
Monte Carlo method, applied to the price (10). Thus we had to simulate only the interest rate process to get samples
from d1(𝜌) and d2(𝜌), which was done by Euler discretization with a full truncation algorithm (see Reference 22). In
our numerical experiments, we generated M = 106 sample paths with a time step discretization equal to 10−3 for all the
maturities. We implemented the algorithms in MatLab (R2019b) on an Intel Core i7 2.40GHZ with 8GB RAM, by using
the available building-in functions, in particular for the computation of all the integrals involved. The average time to
compute one price was (in secs) 32.1 (MC), 0.055 (GO), 0.005 (KK) and 0.009 (MM).

We chose different sets of parameters (𝜅, 𝜃, 𝜂) and volatility scenarios: a low volatility 𝜎L = 0.2 and a high volatil-
ity 𝜎H = 0.4, and for each set, we varied the correlation 𝜌, the rate volatility 𝜂 and the maturity of the contract T, for
at-the-money options at level 100. Tables 1, 2, 3, 4, 5, 6, 7 and 8 summarize the numerical results. At least in the CIR
model, these show that the MM method produces the best approximations in most scenarios when compared with the
benchmark Monte Carlo evaluation.

4.3.1 𝚫-Hedging

We verified the quality of the Delta approximation (22) by implementing the classical Δ-hedging strategy over a set of
simulated sample paths, according to the market model (23) with CIR rates. We ran the computations for an at-the-money
call with 1000 scenarios for three different levels of correlation with daily rebalancing, and we report them in Figure 5.
For values of 𝜌 = −0.3, 0, 0.3, the mean absolute hedging errors (the absolute difference between the replicating portfolio
final value and the observed call payoff) was respectively 0.0572 (standard deviation 0.3621), 0.0720 (st. dev. 0.3653), and
0.0776 (st. dev. 0.3605). The obtained results are comparable with the mean absolute hedging error, equal to 0.0140 (st.
dev. 0.3874), made in the Black-Scholes framework with risk-free rate r0, using the analytical values of the price and theΔ.

5 FURTHER APPLICATIONS

Once established the performance of our method in the case of a call option, we present three other feasible applications
that could be useful for operative desks.
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T A B L E 2 Results of the approximations for the parameters 𝛾 = 0.6, 𝜃 = 0.02, 𝜂 = 0.1, r0 = 0.001, and 𝜎L. The time to maturity is
T = 5 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

Prices

MC 19.8443 20.1287 20.4125 20.6936 20.9705 21.2425 21.5086

(0.0595) (0.0351) (0.0153) (0.0026) (0.0202) (0.0404) (0.0649)

GO 19.6375 19.9974 20.3492 20.6936 21.0308 21.3614 21.6856

KK 19.7487 20.0582 20.3678 20.6773 20.9869 21.2964 21.606

MM 19.7747 20.085 20.3892 20.6875 20.981 21.269 21.5522

Errors

GO 0.2067 0.1313 0.0632 5.2e-07 −0.0603 −0.1189 −0.1769

KK 0.0956 0.0705 0.0447 0.0162 −0.0164 −0.0540 −0.0973

MM 0.0695 0.0436 0.0232 0.0061 −0.0104 −0.0265 −0.0435

Rel. Err.

GO 0.0104 0.0065 0.0031 2.5e-08 0.0029 0.0056 0.0082

KK 0.0048 0.0035 0.0022 0.0008 0.0008 0.0025 0.0045

MM 0.0035 0.0022 0.0011 0.0003 0.0005 0.0012 0.0020

T A B L E 3 Results of the approximations for the parameters 𝛾 = 0.6, 𝜃 = 0.02, 𝜂 = 0.1, r0 = 0.001, and 𝜎H . The time to maturity is
T = 1 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

Prices

MC 16.0337 16.0533 16.073 16.0933 16.1141 16.1351 16.156

(0.0504) (0.0301) (0.0139) (0.0002) (0.0144) (0.0306) (0.0509)

GO 15.9831 16.0199 16.0567 16.0934 16.1300 16.1665 16.2030

KK 15.9997 16.0309 16.062 16.0932 16.1243 16.1555 16.1866

MM 16.0094 16.0374 16.0654 16.0933 16.1211 16.1489 16.1767

Errors

GO 0.0506 0.0333 0.0162 −0.0001 −0.0159 −0.0314 −0.0469

KK 0.0339 0.0224 0.0109 0.0001 −0.0102 −0.0203 −0.0306

MM 0.0242 0.0159 0.0076 1.8e-05 −0.0071 −0.0138 −0.0207

Rel. Err.

GO 0.0032 0.0021 0.0010 7.0e-06 0.0010 0.0019 0.0029

KK 0.0021 0.0013 0.0007 6.9e-06 0.0006 0.0012 0.0019

MM 0.0015 0.0009 0.0005 1.1e-06 0.0004 0.0009 0.0013

5.1 The pricing of forward-starting options

Forward-starting options are financial contracts characterized by the payoff

(eXT − 𝛼eXs )+,
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T A B L E 4 Results of the approximations for the parameters 𝛾 = 0.6, 𝜃 = 0.02, 𝜂 = 0.1, r0 = 0.001, and 𝜎H . The time to maturity is
T = 5 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

Prices

MC 36.1379 36.3566 36.5912 36.8358 37.0875 37.3439 37.6015

(0.0405) (0.0102) (0.0141) (0.0008) (0.0163) (0.0324) (0.0571)

GO 35.8574 36.1877 36.5138 36.8358 37.154 37.4683 37.7789

KK 35.9641 36.2539 36.5437 36.8335 37.1233 37.4132 37.703

MM 35.9876 36.2725 36.5543 36.8329 37.1089 37.3819 37.6520

Errors

GO 0.2805 0.1690 0.0774 2.2e-06 −0.0664 −0.1244 −0.1773

KK 0.1739 0.1028 0.04748 0.0023 −0.0358 −0.0693 −0.1014

MM 0.1504 0.0842 0.0368 0.0029 −0.0214 −0.0379 −0.0504

Rel. Err.

GO 0.0078 0.0045 0.0021 6.1e-08 0.0018 0.0033 0.0047

KK 0.0048 0.0028 0.0013 6.2e-05 0.0010 0.0018 0.0027

MM 0.0041 0.0023 0.0010 7.8e-05 0.0006 0.0010 0.0013

T A B L E 5 Results of the approximations for the parameters 𝛾 = 0.58, 𝜃 = 0.0345, 𝜌 = 0.2, r0 = 0.01, and 𝜎L. The time to maturity
is T = 1 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝜼 0.005 0.02 0.04 0.06 0.09 0.12 0.15

Prices

MC 8.7198 8.7257 8.7337 8.7418 8.754 8.7662 8.7782

(0.0043) (0.0045) (0.0044) (0.0045) (0.0046) (0.0047) (0.0046)

GO 8.7130 8.7195 8.7283 8.7372 8.7504 8.7635 8.7763

KK 8.7187 8.7246 8.7323 8.7401 8.7518 8.7634 8.7751

MM 8.7187 8.7246 8.7324 8.7404 8.7523 8.7641 8.7756

Errors

GO 0.0068 0.0062 0.0054 0.0046 0.0036 0.0027 0.0019

KK 0.0011 0.0012 0.0014 0.0017 0.0022 0.0027 0.0031

MM 0.0011 0.0012 0.0013 0.0014 0.0017 0.0021 0.0026

Rel. Err.

GO 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002

KK 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004

MM 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003

where 𝛼 ∈ [0, 1] is a pre-specified percentage. The intermediate time s is contractually fixed, and it is known as strike
determination time, so they are path-dependent options. Forward-starting contracts are the fundamental components of
the so-called cliquet options, which are equivalent to a series of forward-starting at-the-money options, activated over
a series of future dates. They mainly serve as protection against downside risk, though preserving an upside potential,
furthermore they are also used as employee stock options. As financial contracts that incorporate the forward-starting
feature, they get stipulated with long-dated maturities, and therefore they are sensitive to the interest rate fluctuations
during their lifetime. In an affine setting, one can consider their pricing even under stochastic volatility but keeping the
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T A B L E 6 Results of the approximations for the parameters 𝛾 = 0.58, 𝜃 = 0.0345, 𝜌 = 0.2, r0 = 0.01, and 𝜎L. The time to maturity
is T = 5 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝜼 0.001 0.02 0.04 0.06 0.08 0.1 0.12

Prices

MC 23.5335 23.5767 23.6354 23.6949 23.7837 23.8699 23.9509

(0.0125) (0.0131) (0.0139) (0.0147) (0.0159) (0.0171) (0.0183)

GO 23.5221 23.5694 23.6337 23.6986 23.7955 23.8894 23.9770

KK 23.5284 23.5707 23.6270 23.6834 23.7679 23.8524 23.9370

MM 23.5289 23.5731 23.6331 23.6935 23.7828 23.8672 23.9423

Errors

GO 0.0113 0.0072 0.0017 −0.0037 −0.0118 −0.0195 −0.0261

KK 0.0050 0.0060 0.0084 0.0115 0.0158 0.0175 0.0139

MM 0.0046 0.0035 0.0023 0.0014 0.0010 0.0027 0.0086

Rel. Err.

GO 0.0005 0.0003 0.0001 0.0002 0.0005 0.0008 0.0011

KK 0.0002 0.0003 0.0004 0.0005 0.0007 0.0007 0.0006

MM 0.0002 0.0002 0.0001 0.0001 4.0e-05 0.0001 0.0004

T A B L E 7 Results of the approximations for the parameters 𝛾 = 0.58, 𝜃 = 0.0345, 𝜌 = 0.2, r0 = 0.01, and 𝜎H . The time to maturity
is T = 1 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝜼 0.001 0.02 0.04 0.06 0.09 0.12 0.15

Prices

MC 16.5324 16.5381 16.5459 16.5536 16.5652 16.5765 16.5874

(0.0095) (0.0095) (0.0096) (0.0097) (0.0098) (0.0100) (0.0101)

GO 16.5238 16.5301 16.5386 16.5471 16.5596 16.5718 16.5833

KK 16.5302 16.536 16.5436 16.5513 16.5628 16.5743 16.5859

MM 16.5303 16.5362 16.544 16.5519 16.5636 16.575 16.586

Errors

GO 0.0086 0.0080 0.0072 0.0065 0.0055 0.0047 0.0041

KK 0.0021 0.0022 0.0022 0.0023 0.0023 0.0021 0.0016

MM 0.0021 0.0020 0.0019 0.0017 0.0016 0.0015 0.0014

Rel. Err.

GO 0.0005 0.0005 0.0004 0.0004 0.0003 0.0003 0.0002

KK 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 9.5e-05

MM 0.0001 0.0001 0.0001 0.0001 9.0e-05 8.9e-05 8.6e-05

processes’ reciprocal independence to preserve the affine property. The novelty we introduce here is the computation of
an approximated price under correlation with the interest rate. To this aim, we notice that the Markov property still holds,
and the risk-neutral price of a forward- starting option is

cFS(t, x, r,T; 𝜌) = E
x,r
t

[
e− ∫ T

t rvdv(eXT − 𝛼eXs )+
]
, t < s < T. (29)
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T A B L E 8 Results of the approximations for the parameters 𝛾 = 0.58, 𝜃 = 0.0345, 𝜌 = 0.2, r0 = 0.01, and 𝜎H . The time to maturity
is T = 5 and K = 100. In parenthesis the confidence interval of the Monte Carlo (MC) estimates. The error is defined as the difference
between the MC price and the related approximation.

𝜼 0.001 0.02 0.04 0.06 0.08 0.1 0.12

Prices

MC 38.945 38.9857 39.0397 39.0931 39.1707 39.2439 39.3112

(0.0257) (0.0262) (0.0267) (0.0272) (0.0278) (0.0283) (0.0289)

GO 38.9249 38.9694 39.0283 39.0863 39.1702 39.2486 39.3192

KK 38.9377 38.9782 39.0323 39.0863 39.1673 39.2484 39.3294

MM 38.9382 38.9802 39.0356 39.0901 39.1682 39.2397 39.3016

Errors

GO 0.0201 0.0163 0.0114 0.0067 0.0005 −0.0047 −0.0080

KK 0.0073 0.0074 0.0074 0.0068 0.0033 −0.0045 −0.0182

MM 0.0068 0.0055 0.0041 0.0030 0.0025 0.0043 0.0097

Rel. Err.

GO 0.0005 0.0004 0.0003 0.0002 1.2e-05 0.0001 0.0002

KK 0.0002 0.0002 0.0002 0.0002 8.5e-05 0.0001 0.0005

MM 0.0002 0.0001 0.0001 7.7e-05 6.5e-05 0.0001 0.0002

By conditioning internally w.r.t. s, we get

cFS(t, x, r,T; 𝜌) = E
x,r
t

[
e− ∫ s

t rvdv
E

(
e− ∫ T

s rvdv(eXT − 𝛼eXs )+|s

)]
.

The inner conditional expectation is the price u(s,Xs, rs,T; 𝜌), at time s, of a call option with fixed log-strike 𝜅 = log(𝛼) + Xs
hence we may write

cFS(t, x, r,T; 𝜌) = E
x,r
t

[
e− ∫ s

t rvdvu(s,Xs, rs,T; 𝜌)
]
, (30)

where, from (10), we have

u(s,Xs, rs,T; 𝜌) = eXs−
𝜎2𝜌2

2
(T−s)

E
rs
s

[
e𝜎𝜌ΔB1

s,T (d1(𝜌))
]
− 𝛼eXsE

rs
s
[
e−Λs,T (d2(𝜌))

]
, (31)

with di(𝜌) = 𝛼i(T − s, 𝜌) + 𝛽(T − s, 𝜌)ΔB1
s,T + 𝛾(T − s, 𝜌)Λs,T , for i= 1, 2, and 𝛼i(T − s, 𝜌) independent of the underlying

value Xs.
By using the same technique which leads to the MM approximation (21), we obtain

ū(s,Xs, rs,T; 𝜌) = eXs

{ (1(𝜌)) − 𝛼g(s, rs)
(2(𝜌)

)}
,

with

1(𝜌) =
𝛼1(T − s, 𝜌) + 𝜎𝜌𝛽(r,T − s, 𝜌)(T − s) + 𝛾(T − s, 𝜌)Er

t (Λs,T)√
1 + 𝛽

2(r,T − s, 𝜌)(T − s)

2(𝜌) =
𝛼2(T − s, 𝜌) + 𝜖(r, s,T)𝛽(r,T − s, 𝜌) + 𝛾(T − s, 𝜌)Er

t (Λs,T)√
1 + 𝛽

2(rs,T − s, 𝜌)(T − s)
,

to replace u. By inserting ū in (30), we have the following approximation:
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F I G U R E 5 Simulation results for the Δ-hedging strategy. Red dots are the values at maturity of the replicating portfolios, built by using
the approximate Δ, compared to the realized call payoffs. The call option has strike K = 100 and maturity T = 3 months. The CIR parameters
are r0 = 0.01, 𝜃 = 0.0345, 𝛾 = 0.58 and 𝜂 = 0.06. The underlying value at time t = 0 is ex = 100 with 𝜎 = 0.2. [Color figure can be viewed at
wileyonlinelibrary.com]

cFS(t, x, r,T; 𝜌) = E
x,r
t

[
e− ∫ s

t rvdveXs

{ (1(𝜌)) − 𝛼g(s, rs)
(2(𝜌)

)}]
= ex (1(𝜌)) − 𝛼E

x,r
t

[
e− ∫ s

t rvdveXs g(s, rs)
] (2(𝜌)

)
.

It remains to compute Et

[
e− ∫ s

t rvdveXs g(s, rs)
]
. By using the affine property for g(s, rs), we conclude

Et

[
e− ∫ s

t rvdveXs g(s, rs)
]
= Et

[
e− ∫ s

t rsdveXs eA(s,T)+B(s,T)rs

]
= eXt−𝜎2∕2(s−t)+A(s,T)

Et

[
e𝜎

√
1−𝜌2(B2

s−B2
t )
]

Et

[
e𝜎𝜌(B1

s−B1
t )+B(s,T)rs

]
= eXt+A(s,T)

Et

[
eB(s,T)rs e𝜎𝜌(B1

s−B1
t )−𝜎

2𝜌2(s−t)∕2
]
.

To evaluate the last expectation, we use a further change-of-numeraire by taking a new measure QΓ(A) = E(ΓT1A)
with Γs = e−𝜎2𝜌2s∕2+𝜎𝜌B1

s . Consequently

Et

(
e− ∫ s

t rvdveXs g(s, rs)
)
= eXt+A(s,T)

E
QΓ

t
(
eB(s,T)rs

)
.

Girsanov theorem implies that W1
t = B1

t − 𝜎𝜌t is a QΓ-Brownian motion, and the rate’s dynamic becomes

drs = [𝛾(𝜃 − rs) + 𝜎𝜂𝜌
√

rs]ds + 𝜂
√

rsdW1
s ,

which is no more a CIR process. As a final step, we approximate rs under QΓ by

dr̃s = 𝛾(𝜃 − r̃s)ds + 𝜂
√

r̃sdW1
s ,

where 𝜃 = 𝜃 + 𝜎𝜂𝜌
√

r0∕𝛾 . Since the conditional density r̃u|r̃t is known, we can evaluate

H(𝜌) = E
QΓ

t
(
eB(s,T)r̃s

)

http://wileyonlinelibrary.com
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in closed form. We arrive at the final handy formula, approximating the value of a forward-starting call option

c̃FS(x, r, t,T; 𝜌) = ex
[ (1(𝜌)) − 𝛼eA(s,T)H(𝜌) (2(𝜌)

)]
. (32)

The approximation (32) proved to be very effective when compared with the Monte Carlo evaluation, as outlined in
Table 9.

T A B L E 9 Results of the MM approximations of the Forward Starting option price for the rate parameters 𝛾 = 0.58, 𝜃 = 0.0345,
𝜂 = 0.1, r0 = 0.001 and the two price volatility scenarios, 𝜎L, 𝜎H . The time to maturity is T = 1, the determination time is u= 0.25 and 𝛼 = 1.
The error is defined as the difference between the MC price and the related approximation.

𝝈L

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

MC Prices 7.4795 7.4920 7.5064 7.5216 7.5366 7.5510 7.5652

95% c.i. (0.0072) (0.0072) (0.0071) (0.0073) (0.0072) (0.0073) (0.0073)

MM Prices 7.4771 7.4918 7.5065 7.5211 7.5358 7.5504 7.5649

err. (0.0023) (0.0002) (−0.0001) (0.0004) (0.0008) (0.0006) (0.0002)

rel err. (3.1e-04) (2.8e-05) (−8.7e-06) (5.5e-05) (1.0e-04) (8.2e-05) (3.1e-05)

𝝈H

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

MC Prices 14.2742 14.2856 14.3012 14.3183 14.3352 14.3501 14.3648

95% c.i. (0.0160) (0.0161) (0.0161) (0.0159) (0.0160) (0.0161) (0.0162)

MM Prices 14.2670 14.2856 14.3010 14.3170 14.3328 14.3486 14.3644

err. (0.0049) (0.0004) (0.0001) (0.0015) (0.0025) (0.0015) (0.0004)

rel. err. (3.4e-04) (2.8e-05) (1.0e-05) (1.0e-04) (1.7e-04) (1.0e-04) (2.6e-05)

T A B L E 10 Results of the MM approximation of the call price in the stochastic volatility Heston model with CIR rates. The volatility
parameters are 𝛾v = 0.5, 𝜃v = 0.04, 𝜂v = 0.1 and 𝜈 = −0.34, and y= 0.034; the rate parameters are 𝛾 = 0.6, 𝜃 = 0.02, 𝜂 = 0.1, and r = 0.01.
The call has strike price K = 105 and S0 = 100. The error is defined as the difference between the MC price and the related approximation.

T = 0.1

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

MC Prices 0.6714 0.6727 0.6741 0.6754 0.6768 0.6783 0.6798

95% c.i. (0.0037) (0.0037) (0.0038) (0.0037) (0.0038) (0.0038) (0.0039)

MM Prices 0.6710 0.6724 0.6737 0.6751 0.6765 0.6778 0.6792

err. (3.9e-04) (3.3e-04) (3.1e-04) (3.2e-04) (3.7e-04) (4.6e-04) (5.8e-04)

rel err. (5.8e-04) (4.9e-04) (4.6e-04) (4.7e-04) (5.5e-04) (6.7e-04) (8.5e-04)

T = 0.25

𝝆 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.9

MC Prices 1.8146 1.8209 1.8273 1.8338 1.8406 1.8474 1.8544

95% c.i. (0.0075) (0.0076) (0.0075) (0.0077) (0.0076) (0.0077) (0.0078)

MM Prices 1.8111 1.8176 1.8241 1.8307 1.8372 1.8437 1.8502

err. (0.0035) (0.0032) (0.0031) (0.0031) (0.0034) (0.0038) (0.0043)

rel. err. (0.0019) (0.0018) (0.0017) (0.0017) (0.0018) (0.0020) (0.0023)
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5.2 The pricing of defaultable bonds in the structural approach

Merton structural approach to the price D(t, T) of a defaultable bond issued by a firm leads to the following formula

D(t,T) = ex − u(t, x, r,T; 𝜌), (33)

where the process {Xs}, Xt = x is the logarithm of the firm value and u, given by (10), is the price of a European call written
on the firm value with strike-price equal to the bond value, that is, e𝜅 = D(T,T) ∶= K.

In the Merton model, default can take place only at maturity, and the option represents the shareholders’ equity value
of the firm. Shimko et al. in Reference 4, sect. 3, gave an explicit formula for D(t, T) when the interest rate follows a Vasicek
dynamic. A direct consequence of our results is to provide a way to evaluate (33) in an approximate efficient manner,
when the interest rate follows a CIR dynamic. Hence the approximated value is

D(t,T) ∶= ex − ū(t, x, r,T; 𝜌) = D(t,T) = ex(1 − e−
1
2
𝜎2𝜌2(T−t)F(𝜌)) − KG(𝜌), (34)

with ū given by (21), and G(𝜌) ∶= P(t,T)EQT

t

[ (
D2(𝜌)

)]
. From this last formula, we deduce an efficient estimate Δ of

the credit spread which is

Δ = − 1
T − t

log

(
D(t,T)

K

)
+ 1

T − t
log(P(t,T)) = 1

T − t
log

(
KP(t,T)
D(t,T)

)
,

where P(t, T) is the price of a default-free zero-coupon bond with the same maturity (Figure 6).

5.3 Towards stochastic volatility models

As a final application, we discuss the extension of our approximation technique to market models that include stochastic
volatility. In particular, we consider a stochastic volatility Heston model with correlated CIR rates

⎧⎪⎨⎪⎩
Xs = Xt + ∫ s

t (rv −
Yv
2
)dv + ∫ s

t

√
Yv

[
𝜌dB1

s + 𝜈dB2
s +

√
1 − 𝜌2 − 𝜈2dB3

s

]
, Xt = x

Ys = Yt + ∫ s
t 𝛾v(𝜃v − Yv)dv + ∫ s

t 𝜂v
√

YvdB2
v , Yt = y,

rs = rt + ∫ s
t 𝛾(𝜃 − rv)dv + ∫ s

t 𝜂
√

rvdB1
v , rt = r,

(35)

where (B1, B2, B3) is a standard three-dimensional Brownian motion and 𝜌2 + 𝜈2 ≤ 1. We assume that the parameters
satisfy the Feller condition for both r and Y . Model (35) was considered in Reference 14. The system is still Markovian,
therefore the price of a call option is given by

F I G U R E 6 Credit spread in the
CIR rate model. On the left plot, the CIR
parameters are r0 = 0.05 and 𝜃 = 0.001
with F = 93; on the right r0 = 0.03,
𝜃 = 0.05 and F = 95. The other
parameters are 𝛾 = 0.58 and 𝜂 = 0.06.
The underlying value at time t = 0 is
ex = 100 with 𝜎 = 0.1. [Color figure can
be viewed at wileyonlinelibrary.com]
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u(t, x, y, r,T; 𝜌, 𝜈) = E

[
e− ∫ T

t rsds(eXT (𝜌,𝜈) − e𝜅)+|Xt = x,Yt = y, rt = r
]
. (36)

To apply our technique, we consider the implied volatility approximation developed in Reference 13 that we present
here for t = 0 without loss of generalization.

If we denote by cBS(x, 𝜅,T, 𝜎) the Black and Scholes price of a call option with strike price e𝜅 , maturity T, and volatility
𝜎, by definition of implied volatility, we have

cHes(x, 𝜅,T) = cBS(x, 𝜅,T, 𝜎Hes(x − 𝜅,T)),

where cHes is given by (36) for 𝛾 = 𝜂 = 0. In Reference 13, the authors provide an asymptotic small-time expansion for the
implied volatility of the Heston model

𝜎2
Hes(m,T) = 𝜎2

0(m,T) + a1(m,T) + o(T), ∀m ∈ R ⧵ {0}, (37)

where m = x − 𝜅, and the first two terms 𝜎0(m,T), a1(m, T) are explicit (see Reference 13, Corollary 4.3), giving numerical
evidence of the accuracy of the formula induced by the approximate implied volatility defined as

𝜎̂Hes(m,T) =
√

𝜎2
0(m,T) + a1(m,T).

We exploit this approach by replacing the dynamic (35) with the market model (1) where we take 𝜎 = 𝜎̂Hes(x − 𝜅,T), so
that we may consider the following approximation for the call price under the Heston stochastic volatility model

u(0, x, y, r,T; 𝜌, 𝜈) ≈ ū(0, x, r,T, 𝜎̂Hes(x − 𝜅,T); 𝜌). (38)

where we highlighted the dependence on the volatility 𝜎. We remark that the price’s dependence on the correlation 𝜈 gets
embedded into 𝜎̂Hes.

We checked the numerical performance of this approach for short maturities, as required by the expansion. In Table
(10), we report the results for two different scenarios when comparing the prices computed according to formula (38)
with Monte Carlo prices obtained by simulating the system (35) with M = 1000, 000 sample paths generated by the Euler
discretization with a full truncation algorithm. At least for those choices of parameters, we achieve a high degree of
efficiency, as the relative errors show. We finally notice that large-time asymptotic could be used as well (see Reference
23) for large maturities.

A full treatment of stochastic volatility/interest rate models via MM, if possible, would require careful handling of the
singularities introduced in the pricing formulas by the stochastic volatility and of the system correlations. It is a complex
task that we hope to address in future work.
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