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We address the problem of community detection in networks by introducing a general definition
of Markov stability, based on the difference between the probability fluxes of a Markov chain on the
network at different time scales. The specific implementation of the quality function and the resulting
optimal community structure thus become dependent both on the type of Markov process and on
the specific Markov times considered. For instance, if we use a natural Markov chain dynamics
and discount its stationary distribution — that is, we take as referemnce process the dynamics at
infinite time — we obtain the standard formulation of the Markov stability. Notably, the possibility
to use finite-time transition probabilities to define the reference process naturally allows detecting
communities at different resolutions, without the need to consider a continuous-time Markov chain
in the small time limit. The main advantage of our general formulation of Markov stability based
on dynamical flows is that we work with lumped Markov chains on network partitions, having the
same stationary distribution of the original process. In this way the form of the quality function
becomes invariant under partitioning, leading to a self-consistent definition of community structures

at different aggregation scales.

I. INTRODUCTION

Networks are systems made up of entities (nodes) em-
bedded in a complex pattern of interconnections (links),
which occur in a large variety of contexts — ranging from
socio-economic systems and infrastructures to biological
processes and ecosystems [IH4]. Networks observed in
nature have a recurrent set of characteristics, such as
fat-tail behavior of the degree distribution, small-world
topology, and community structure — the latter referring
to the internal organization of nodes into densely con-
nected groups. Identifying the communities of a network
means uncovering its mesoscopic structure, and is still an
outstanding challenge for network science [5H7].

The first method proposed in the literature to partition
a network in communities is based on the maximization
of a quality function, the modularity, which compares
the actual number of links in the network falling inside
each community to the expectation of such number un-
der a null network model [8]. The modularity function
has been then generalized to various setups, like directed,
weighted or bipartite networks (see e.g. [9] [10]), and still
nowadays represents the benchmark method for commu-
nity detection [6]. However, by relying on a global null
model, the modularity suffers from a resolution limit,
that is, it cannot find communities smaller than a min-
imum size — which depends on the scale of the whole
system [I1]. Multi-resolution versions of the modularity
address this issue using a tunable resolution parameter
[12] [13], whereas, the modularity-density functional em-
ploys a penalty function for splitting partitions [14]. An-
other popular approach to community detection consists
in fitting the network to a stochastic blockmodel, namely
a random graph with built-in communities [15], yet this

approach was recently shown to be equivalent to modu-
larity maximization [16]. Other well known community
detection methods use clique percolation [I7], spectral
graph properties [18], spin glass models [I3] 19, 20] or
combinatorial arguments — notably this latter method,
Surprise [21], 22], is nearly unaffected by the resolution
limit, but has the opposite drawback of overestimating
the number of communities [23].

Another popular branch of community detection meth-
ods is based on random walks [24]. The idea is that
communities correspond to network regions where the
walker’s dynamics spends a relatively long time, be-
cause of the high density of links within communities
and the sparse connections across communities. This
phenomenon leads to the definition of a quality function
known as Markov stability [25]. Notably, Markov stabil-
ity allows interpolating between modularity and spectral
clustering by simply varying the time scale of the dynam-
ics [26]. Indeed, such a time scale effectively acts as a
resolution parameter, with short scales leading to many
small communities and long scales to a few large com-
munities [25] 27]. Using continuous-time random walks
in the small time limit can even overcome the resolu-
tion limit of the modularity [25]. Among related meth-
ods, the Walktrap algorithm has been one of the first to
use random walks for inferring similarities between nodes
whence the network community structure [28]. The pop-
ular Infomap algorithm instead puts the community de-
tection problem in information-theoretical terms [29, B30]:
the functional to be optimized with respect to the net-
work partition is the description length for the moves of a
random walker on the network. Hence the codebook and
the codewords are based on the transition probabilities
and stationary distribution of the random walk. Related



to this, methods based on Boltzmann minimum descrip-
tion length have recently been proposed [3I]. Random
walks have also been used to partition the links (rather
than the nodes) of the network, and thus to uncover com-
munity structures using the concept of the line graph
132 33].

The plethora of community detection methods give
similar but not identical results, and indeed no algorithm
seems to be optimal for all possible community detection
tasks [34], [35]. This happens because community detec-
tion is an ill-defined problem: there is no universal def-
inition of communities, and thus no clear guidelines on
how to build and assess a community detection method
[6, [7]. For instance, the approaches based on the net-
work topology (modularity and blockmodel) or on link
combinatorics (surprise) use a null network model to as-
sess the statistical significance of a network partition, and
the freedom in choosing the null model introduces a de-
generacy in the definition of the community structure.
Physics-inspired methods suffer from the same pathology,
since changing the definition of the interaction between
nodes and the strength of the noise give different phases,
whereas, methods based on random walks find different
partitions depending on the particular dynamics imple-
mented on the network [36].

Given that the quest for the best method to detect the
“true” communities of any network is possibly vain, here
we follow up on the complementary viewpoint of ran-
dom walks methods that any given dynamical process
on the network induces a different community structure
[26]. We thus consider a general Markov diffusion process
on the network, and derive a general quality function for
the optimization problem using the transition probability
fluxes of the dynamics at different time scales. In this way
we generalize previous definitions of the Markov stabil-
ity, which compare the Markov dynamics at finite times
to a reference process given by its stationary distribu-
tion (i.e., the dynamics at infinite time) [25] 26]. Indeed
by varying the time scales of the Markov dynamics and
of the reference process we can detect communities at
both higher and lower resolutions. Remarkably, our ap-
proach is grounded on the definition of lumped Markov
chains on network partitions [37], whose stationary dis-
tributions follow the same aggregating rules of the dy-
namics. Thanks to this property the form of the quality
function becomes invariant under network partitioning,
leading to a self-consistent definition of communities at
different aggregation scales. This leads not only to an
elegant theoretical formulation of the problem but also
to a convenient recursive algorithm for the optimization
of the quality function.

II. MARKOV CHAIN ON NETWORKS

We start by recalling basic definitions and properties of
Markov chains on networks. We then introduce lumped
Markov chains on network partitions, and illustrate these

concepts in the simple case of the natural Markov chain
(i.e., the random walk).

A network is a set NV of N nodes, whose pattern of
interconnections is described by the adjacency matrix —
with generic element A;; giving the weight of the link
from node i to node j (in the case of binary networks,
A;; = 1if the link ¢ — j exists and 0 otherwise). A
Markov chain on a network is a discrete-time stochas-
tic process that defines a temporal sequence of nodes
(the possible states of the chain), and that satisfies the
Markov property: the probability to be in any state at
a given time step depends only on the state attained at
the previous step. The process is thus described by the
set of probabilities {p;;}: jen of jumping from node i to
node j at a given time step [38].

A Markov chain is ergodic if it is non-periodic and in
the long time regime it visits each node of the network
with a non-zero frequency, which converges to a station-
ary distribution {m;};cns satisfying the eigenvalue rela-
tion m; = 3, \ mipi;. The transition probability from
node ¢ to node j in a finite number n of jumps, pj}, is ob-
tained from the n-th power of the single jump transition
probability matrix. Similarly, the expected proportion
of times that a chain starting from node i visits node j
in the first n jumps is ¢;; = n1 P pi;. Because of
ergodicity, in the long-time limit both these quantities
converge to the stationary frequency of visiting node j
(which is independent on the initial node %):

A piy = i qf; = wig = 75, )
where w;; is the infinite time transition probability. Note
however that the convergence of pj; is exponential with
n, whereas, that of ¢;7 is algebraic in m. Finally, the
stationary probability flux from node i to node j is the
probability that the chain actually jumps from i to j, and
thus is given by the asymptotic joint probability of being
in ¢ and successively jump to j:

Lumped Markov chain on network partitions

A partition of the network nodes into a set of com-
munities {C} induces an aggregated dynamical process,
described by transition probabilities {p¢cc: } between com-
munities, that is a function of the original Markov chain.
Such aggregated process is not necessarily Markovian,
since the new transition probabilities could in principle
depend on the whole sequence of visited nodes. However,
if the original Markov chain is ergodic, it is possible to
define a lumped Markov process by preserving the prob-
ability fluxes between communities [37]:
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This property is called weak lumpability, and translates
into a transition probability from C to C’ of the form

- Z cZ' ¢’ TiPij
Pccr = L Is , (4)
TC

where Tc = . om. The generic diagonal term of
this matrix, pcc, is the persistence probability of com-
munity C [37, B9]. Analogously, we can build the fi-
nite and infinite time transition probabilities of the
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[40].

The natural Markov chain

The natural Markov chain gives the simplest instance
of transition probabilities between nodes in a network:
the probability p;; to jump from node i to one of its
neighbor j is uniform across the neighbors, and zero for
unconnected nodes. If the network is weighted, p;; simply
becomes proportional to A;;. Hence in general p;; =
A;j/d; where d; = Zje/\f A;; denotes the total weight of
outgoing connections for node 1.

In the case of undirected networks (A4;; = Aj; for
each 7,7) with a single connected component, the nat-
ural Markov chain is ergodic and the stationary dis-
tribution has the analytic form m; = d;/(2L), where
2L = ) ;cpndj- Besides, the chain is reversible since
it satisfies the detailed balance: the probability fluxes
between any two nodes are equal, F,(i — j) = mpi; =
mipji = Fp(j — ©). This relation holds simply because
fluxes are proportional to the elements of the adjacency
matrix, F, (¢ = j) ~ A;;.

Due to this property, the lumped process of a natural
Markov chain on a network partition can be mapped to
a new weighted adjacency matrix, whose terms are given
by the sum of elements of the original adjacency matrix
corresponding to nodes in the considered partitions:

D Ay (5)
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III. COMMUNITY DETECTION WITH
LUMPED MARKOV CHAINS

We now use the general dynamical framework of
lumped Markov chain introduced above to define a qual-
ity function for community detection tasks. We start
from two key assumptions on which we base our defini-
tion of communities.

Firstly, as stated above, different Markov dynamics in-
duce different partitions of the network. According to
the principle behind the Markov stability, communities
are regions of the network where the Markov chain re-
mains confined for relatively long time — where “relatively

long” has to be assessed using a reference process. The
most natural choice is to use a reference that brings zero
information both on the details of the network topology
and on the initial state of the dynamics. The infinite time
transition probabilities of eq. satisfy this requirement,
but this is just a possible choice — we can as well use as
reference the Markov dynamics at any finite time.

Secondly, we require that any community has to be
resilient to changes occurring locally elsewhere in the
network, or equivalently that a community is a commu-
nity almost independently on the topological details of
the rest of the network. This assumption allows simpli-
fying the assessment of an individual community using
a lumped Markov chain with two states: the commu-
nity itself and the rest of the network. Notably such
a two-states Markov process can be described using only
the stationary distribution ¢ and persistence probability
pee of the community concerned, since the conservation
of probability fluxes implies that the flux from C to any-
where else is equal to the flux from anywhere else to C
[41].

Generalized Markov stability (GMS)

To find a good network partition, we aim at “maximiz-
ing the difference” between the Markov dynamics and the
reference process. We can thus build a quality function
based on the probability flux difference between these
two processes. For simplicity we start by considering the
single jump Markov dynamics, using as reference process
its asymptotic behavior given by the infinite time transi-
tion probabilities. For any two nodes ¢, 7 in the original
Markov chain we define

Dij =Fp(i = j) = Fo,(i = j) = mi(psj —wiz),  (6)

while for two communities C,C’ in the lumped chain

DCC’ = F,;(C — C/) — F@(C — Cl) = 7~Tc (ﬁcc/ — (Dcct)( )

7
meaning that Decr = Y Zicc D ieer Dij. From this defi-
nition we see that the flux difference internal to commu-
nity C, D¢c, satisfies the requirement of depending only
on quantities related to C itself — with respect to the rest
of the network. As global quality function to assess the

quality of a network partition we can thus take the trace

MIE{ey) = #e (Bec — @ee) (8)
C

representing the probability flux that a random walker
remains in a community within one time step, discount-
ing the stationary distribution of the process. More gen-
erally, if we consider transition probabilities of n jumps
against visiting frequencies of m jumps (with n < m) we
can define

Mmleyy = ZWc Pee — Pee) - 9)



This quality function is a generalized Markov stability
(GMS). Indeed for m — oo the reference process is given
by the infinite time transition probability as in eq. ,
which converges to the stationary distribution of the dy-
namics, and in this case M[™><I({C}) coincides with the
traditional definition of Markov stability [25] 26]. Also,
for a natural Markov chain on an undirected network and
n =1, M1>({C}) coincides with the standard modu-
larity [9]. This equivalence holds because the modularity
relies on a null network model (known as the Chung-
Lu configuration model) that constrains node degrees [9],
and the expectations of link probabilities under this null
model coincide with the infinite time transition probabil-
ities of the natural Markov chain.

The Markov stability and its generalized version have
conceptual and practical advantages with respect to mod-
ularity. First of all, the modularity is based on simple link
counts, as well as on a null model for the network topol-
ogy. Typically, null model implementations are limited
to the simple Erdos-Rényi random graph, the configura-
tion model and the (possibly degree-corrected) stochas-
tic blockmodel [I6] — the few cases that have an analytic
formulation. The Markov stability is instead based on
a generic Markov process on the network: besides the
natural Markov chain one is free to consider other dy-
namics, e.g., PageRank [42] or maximal entropic random
walks [43], as well as higher-order Markov models [44].
Moreover, GMS is automatically defined in the case of
directed networks, at stake with modularity [26] [39].

The peculiar advantage of our generalization of Markov
stability is instead the possibility of choosing the refer-
ence process, in particular by setting its time horizon.
This last aspect in particular relates to the resolution
limit of the modularity. According to [5], “the resolution
limit comes from the very definition of modularity, in
particular from its random model. The weak point of the
random model is the implicit assumption that each vertex
can interact with every other vertex, which implies that
each part of the network knows about everything else |[...]
It is certainly more reasonable to assume that each ver-
tex has a limited horizon within the network”. In terms
of Markov stability, this is implemented as in eq. @D by
using a finite time horizon for the reference process. In
this way, the dynamics is compared not to its station-
ary distribution (which is achieved after the walker has
explored the whole network), but to the finite-time fre-
quency of visiting nodes (i.e., what the walker is able to
explore in a finite number of steps). Thus, it is possible
to find smaller communities than with modularity. Note
also that previous attempts [25, [26] to overcome the reso-
lution limit with standard Markov stability are based on
a continuous-time process in the small time limit, rather
than on a different reference process as in eq. @

Finally, the definition of the quality function using
lumped Markov chains is invariant under hierarchical
partitioning of the network. We use this feature when
implementing the numerical search of communities (see
pseudocode using a variant of the Louvain algo-

rithm [45] and a coarse-graining procedure.

Algorithm 1 Louvain-based algorithm

procedure GMS MAXIMIZATION
mput:
{p} + transition probabilities between nodes
{C}: initial partition of single-node communities
list: community membership of each node
repeat
{C} « Moves({C}, {p})

if M({C},{p}) > M({C}, {p}) then

update list according to {C}
{p} + lumped transition probabilities — eq.

{C} <+ coarse-grained {C} (one node per community)

end if
until M reaches a maximum
output list
final step:
{p} + transition probabilities between nodes
{C}: partition corresponding to list
{c} « Movas({C}, {p})

end procedure

function MovEes({C}, {p})
(repeat a few times)
for all communities C € {C} do
for all nodes i € C do find C’ # C such that
moving i from C to C' maximally increases M
if such C’ exists then move i from C to C’
end if
end for
end for
end function

Numerical optimization

We first work at the finest level of nodes. We start
with a configuration where each node is considered as
a different community, giving the corresponding initial
value for M[™™] The moves we consider are successive
changes of community for individual nodes. Each move is
accepted if the induced change to M[™™ is positive (such
variation is computed locally because we consider only
moves of single nodes and not of node groups). These
moves are repeated until no further increase of M
can be achieved.

The communities found through this first procedure
are then taken as the meta-nodes of a coarse-grained net-
work, while the Markov process for this new network is
defined using the lumpability condition of eq. . The
local moves described above are then repeated again for
this network until a new maximum of M[™™ is reached.
The corresponding partition is then used to build a more
coarse-grained network, and the whole process is re-
peated until no further moves nor coarse-graining steps
can increase M),

As a final step, we restart the method from the node
level but imposing the community structure just found —
that is, we check whether the move of a single node can



refine the optimal partition. This is for instance the case
in the Karate Club network [46] (see below), in which a
single node switches community because of this last step
and the GMS value rises from 0.4188 to 0.4198.

IV. RESULTS

Resolution of generalized Markov stability

n,m]

We first explore the resolution of M| with respect
to different choices of Markov times n and m. To this
end, we consider a natural Markov chain process on the
standard toy network of maximal modularity [11]: a ring-
like configuration with N cliques of 5 nodes, each clique
being connected to only two other cliques (Figure [1f).
For this graph with N = 30 cliques, standard modu-
larity optimization returns a structure of 15 communi-
ties (each composed by a pair of cliques), whereas, for
N = 120 modularity returns 30 communities (each aggre-
gating four adjacent cliques). Standard Markov stability
Ml for n > 1 instead finds a community structure
that is coarser than what is found by modularity [25].
In particular, since communities are defined as regions of
the network where the walker remains confined within n
jumps, communities become less in number and bigger
in size by increasing the time horizon n of the dynamics
— as shown in panel (a) of Figure I} Notably, if we use
a reference process at finite time, we automatically ob-
tain finer communities than with modularity. Panel (b)
of Figure [1{shows the case of the simple function M7
there is a sharp transition for the number of communities
at a critical value m*, below which the true structure of
N communities (one for each clique) emerges.

The cliques-graphs considered above is a very simple
example, especially because the cliques have the same
size. We thus consider an heterogeneous graph of 40
cliques whose size is exponentially distributed (ranging
from 5 to 100 nodes). Standard modularity maximiza-
tion on a realization of this graph returns 33 communi-
ties, since it tends to group together the small nearest
cliques. Instead M!™ finds the true community struc-
ture as soon as m < 10%. Figure [2] shows a detailed
analysis of this configuration. We consider cliques with
internal connection probability o = 1 on the left and
« = 0.8 on the right. Again the number of detected com-
munities varies as expected with the parameters n and
m that set the resolution of GMS. As in the previous ex-
ample, by increasing n while keeping m fixed the method
finds less communities (it fails to detect the small ones),
hence we confirm that n effectively sets the minimum size
of detected communities. A more interesting picture is
obtained by fixing n while varying m. For a = 1 we see
the same behavior as that of Figure[l} the method finds
the correct number of communities for finite m, whereas,
it starts aggregating the smallest cliques when the time
horizon of the reference process becomes much larger
than the size of the largest clique. Instead for o = 0.8
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FIG. 1. Resolution of generalized Markov stability for a nat-
ural Markov chain on the illustrated network (a ring-like con-
figuration with N = 30 cliques of 5 nodes, each clique being
connected to only two other cliques). Panel (a): number of
communities found by M™>! as a function of n. Panel (b):
number of communities found by MM as a function of m.
In both panels we show the cases N = 30 (red lines) and
N =120 (blue lines).

cliques are not so strongly connected, and fluctuations
may induce dense regions internal to cliques. Therefore,
we observe a crossover between the region where m is
too small to accommodate for the larger cliques (so that
the number of detected communities grows with m) and
again the regime where m is large enough and the num-
ber of detected communities decreases. These examples
teach us that we cannot expect to achieve the best per-
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FIG. 2. (a,b) Visual representation of communities found by standard modularity Ml on a ring-like configuration with

40 cliques of varying (exponentially distributed) size, each clique being connected to only two other cliques. The internal
connection probability « of the cliques is 1.0 for network (a) and 0.8 for network (b). Each community is represented by a
different color. (c,d,e,f) Number of communities identified by generalized Markov stability MM a5 a function of parameters
n and m (the time scale of the dynamics and of the reference process) for the same network configuration of panels (a,b). We
show GMS implementations using the natural Markov chain (in blue) and PageRank with u/N = 0.15 (in red). See below for
further details on this alternative dynamics.

formance at infinite m, because in this case the method neither in general at small m for which the horizon of the
will discard important local information on the network, random walker is simply too limited.



GMS for different random processes

MMl of eq. is defined for a generic Markov pro-
cess on the network — the only requirement being the
existence of the stationary distribution and of its finite-
time version. The induced community structure can thus
strongly depend on which process is implemented. Be-
yond the natural Markov chain, we considered two other
processes.

The first one is PageRank [42] (see also [39] 47]), which
complements the natural Markov chain with a telepor-
tation term allowing for jumps between any two nodes:
pij = (1 —p)A;;/d; + p/N. In general, teleportation
increases the probability to jump outside a community,
hence the number of identified communities decreases
with the teleportation rate p. Additionally, PageRank
leads to similar results to that if a natural Markov chain
with longer time horizon, and at the same time is less
sensitive to topological fluctuations (see Figure [2| e,f).
Notably, the teleportation rate p makes the chain er-
godic even if the network has disconnected components
or if it is directed and has transient parts (that the walker
cannot access after leaving them).

The second Markov process we consider is the mazimal
entropy random walk (MERW) [43] [48], also known as
the Ruelle-Bowen process in discrete time [26]. MERW
transition probabilities are such that all trajectories of
given length and given endpoints are equiprobable, and
take the form p;; = (Ai;/A)/(¢;/vi) — where X is the
largest eigenvalue of the adjacency matrix and ; is the i-
th component of the normalized eigenvector associated to
A. MERW has strong localization property, imprisoning
the walkers in entropic wells [43].

To visually grasp the effect of using a particular
Markov dynamics, we show in Figure (3| the communi-
ties detected by M using natural Markov chain,
PageRank and MERW, on the illustrative example of the
Dolphins network [49] — the network of “swimming to-
gether” relations among a group of dolphins. For this net-
work we do not have information on any reference com-
munity structure, hence we cannot assess which Markov
dynamics performs best. However, despite the identified
partitions vary with the Markov process, notably some
communities seems more persistent with respect to the
specific dynamics employed (in this case, the top left part
of the network). Thus comparing the results of multiple
dynamics can increase our confidence level on the de-
tected network partition.

GMS versus metadata partitions in real networks

We now put GMS to the test of real and synthetic
networks that represent the traditional benchmarks for
community detection methods. These networks posses
node metadata information that allows defining reference
partitions to be used for comparison (see however [35] [50]
about the problems of associating metadata groups with
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FIG. 3. Communities of the Dolphins network found by

M 1) with natural Markov chain (a), PageRank with u/N =
0.006 (b) and MERW (c).

topological communities).

We start by briefly describing the datasets we
use (that we downloaded from http://www-personal.
umich.edu/~mejn/netdata/)). A full description can be
found in the cited references, as well as in [50)].

e football is the network of American football
games between Division TA colleges during season
Fall 2000 [§]. Links exist if two teams played any
game, and there are 12 groups of teams (confer-
ences) for scheduling intra-group games.

e karate is the friendship network of Zachary’s
karate club [46] that has two natural communities,
corresponding to the split of the club in two fac-
tions after a dispute between the coach and the
treasurer.

e polblogs is the network of (undirected) hyper-
links between weblogs on US politics after the 2004
elections [5I]. Groups are “liberal” or “conserva-
tive” as assigned by either blog directories or self-
evaluation.
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FIG. 4. NMI scores between structural communities found by various methods and metadata groups, for the five networks we
consider (scores are clustered by datasets on the horizontal axis). The figure is realized following Figure 5 of [50]. The methods
used are as follows: Louvain Modularity; GMS with natural Markov chain n = 1 m = oo (nMC); GMS with natural Markov
chain and parameters n and m yielding the highest NMI for that network (nMC max); GMS with PageRank (u/N = 0.15)

n=1m = co; GMS with MERW n =1 m = oo; Infomap.

e polbooks is the network of books about US politics
from 2004 election, taken from Amazon.com [53].
Links represent co-purchasing of books. Groups are
based on political alignment: “liberal”, “neutral”,
or “conservative”, according to human evaluation.

e Finally, 1fr is an artificial network with built-
in topological communities, generated through the
state-of-the-art LFR benchmark [54] (parameters
N = 1000, 40 small communities 0f size ranging
between 10 and 50, and mixing parameter %) The
1fr generator code is available at https://sites.
google.com/view/santofortunato/softwarel

We use the Normalized Mutual Information (NMI) [55]
to measure the similarity between the network partition
induced by a community detection method and the meta-
data communities of the network. A comparative assess-
ment of how well different methods perform according
to this metric is reported in Figure ] In particular we
show the resulting NMI obtained by implementing four
different dynamics on GMS: standard natural Markov
chain (n = 1, m = oo, labeled nMC); natural Markov
chain with parameters n and m yielding the highest NMI
for that network (nMC max); standard PageRank with
u/N =015 (n =1, m = 00); MERW (n =1, m = o).
We add to the comparison the two state-of-the-art Lou-
vain [45] and Infomap [29] algorithms (for the perfor-
mance of other methods, we remand the reader to Figure

5 of [50]).

The detailed performance of GMS for varying n and m
in shown in Figure[§|separately for each of the considered
networks. In the case of karate, GMS needs n > 1 (but
finite) and m = oo to retrieve a partition corresponding
to the two metadata groups. This is an expected outcome
because the network is sparse and the two groups are big
(compared to the whole network), therefore the random
walker cannot fully explore them within just a few steps
n. At the same time, m must be large because each com-
munity needs to be assessed against the whole network.
As side remark, MERW outperforms the other dynam-
ics on most time scales. This happens because MERW
is strongly localized on hubs, which in the karate net-
work are the coach and the treasurer who are the central
members of each group. Moving further, in 1fr we see on
one hand that nMC and PageRank return the metadata
groups of the network even at small reference horizon
m, because each group is dense but small compared to
the network size, and thus does not need to be assessed
against the whole network to be retrieved. On the other
hand, by increasing n the NMI decreases because the ran-
dom walker is more likely to travel within groups and thus
GMS ends up aggregating the smallest communities. A
similar behavior is observed in football: a good quality
of the partition is obtained at small horizons m, whereas,
by increasing n the walker is less likely to stay confined
in a group. Finally, at stake with the previous two net-
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works, the polblogs and polbooks are sparse and their
metadata groups are few (two for polblogs and three
for polbooks) but large. Therefore, similarly to karate,
these groups are better retrieved at moderately large val-
ues of n for which the walker can fully explore each com-
munity, and at the same the reference walker must have
explored the whole network (m large).

Summarizing, we have found that there is no recipe
that performs best in all situations. The optimal perfor-
mance of GMS as a function of the parameters n and m
however provides information on what are the features of
the communities that exist in a network. For instance,
1fr and football are both characterized by many small
and dense metadata groups, hence GMS work well with
small scales of the dynamics (n) and of the reference pro-
cess (m). polblogs and polbooks on the contrary have
a few large and sparse groups, which are retrieved with
wider dynamical horizon n. karate belongs to this latter
case, but the presence of the two hubs and the consequent
degree heterogeneity enhance the performance of MERW.

Alternative reference process

GMS can be as well defined with a reference process
measuring the visiting frequencies within m jumps (that
is, the ¢™ matrix) instead of setting a fixed horizon at a
temporal scale m (represented by p™). This leads to a
reformulation of eq. @ as

M mICY) =3 T (e — dce) - (10)
C

In this alternative formulation, the reference process con-
tains the contribution of short walks that carry informa-
tion on the local properties of the network. As explained
above, using ¢ instead of p leads to a slower convergence
for m — oo, however the two approaches are qualitatively
similar — especially for small values of m (see Figure |5)).

Directed networks

As a final remark, we stress that the definition of gen-
eralized Markov stability does not depend on the spe-
cific network features. Therefore, GMS can be directly
implemented on directed networks, provided the consid-
ered Markov chain is ergodic (an easy solution for this
is the teleportation term of PageRank). Indeed, the case
n = 1 and m = oo for simple random walks on directed
networks has been studied in [39] as a generalization of
standard modularity.

CONCLUSIONS

In this work we reformulated the use of ergodic Markov
chains applied to the problem of community detection in
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networks. Specifically, we defined a lumped Markov pro-
cess between communities, whose transition probability
fluxes are built by aggregating the probability fluxes at
the level of nodes. This aggregated process is then used to
define a quality function to evaluate a network partition,
by requiring the probability fluxes internal to communi-
ties (i.e., the persistence probabilities) to be maximally
larger than those of a reference case. This results in a
generalized version of the Markov stability (GMS).

We remark that the whole theoretical construction of
GMS derives from two simple requests: 1) the existence
of the reference process, used to assess the persistence
probabilities of the dynamics, and 2) the resilience of
communities to changes occurring elsewhere in the net-
work, so that the search of communities can be decom-
posed into multiple two-states problems (for each com-
munity, the assessment of the community itself against
the rest of the network).

GMS can be implemented with any ergodic Markov dy-
namics on the network. Additionally, being based on the
concept of lumped Markov chains, the GMS quality func-
tion is invariant under network partitioning. This means
that we can aggregate and disaggregate both nodes and
node groups without losing information on the structure
and dynamics of the network. This feature is at the ba-
sis of the algorithm we developed to optimize the quality
function.

Concerning the implementation of GMS, when the ref-
erence process corresponds to a dynamics in which all the
information on initial conditions and nodes correlations
is lost, as in the case of the infinite time transition proba-
bility, we obtain the standard formulation of the Markov
stability. However considering a reference process with
a finite time horizon allows finding communities of vary-
ing size — thus overcoming in a natural way the resolution
limit typical of the modularity and other approaches. In-
deed the time scales of the Markov dynamics and of the
reference process effectively set the resolution level of the
method. Communities obtained at different resolutions
are in general not hierarchical, as in [12]. However, opti-
mizing the GMS quality function with respect to n and
m means identifying the size window and other features
of the network communities. For a given network struc-
ture, the optimal combination of dynamical process, res-
olution value n and (finite) horizon m [I1I] can be found
a-posteriori.

At last we remark that the framework we developed
is general and can possibly be applied to other kinds of
networks (e.g., bipartite graphs) or to detect overlap-
ping communities. Another interesting research direc-
tion would be to compare Markov processes of different
nature within the quality function.
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