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Abstract. In this paper we study the statistics of combinatorial partitions of the inte-
gers, which arise when studying the occupation numbers of loops in the mean field Bose
gas. We review the results of Lewis and collaborators [10] [2] and get some more precise
estimates on the behavior at the critical point (fluctuations of the condensate component,
finite volume corrections to the pressure). We then prove limit shape theorems for the
loops occupation numbers. In particular we prove that in a certain range of the parame-
ters, a finite fraction of the total mass is, in the limit, supported by infinitely long loops.
We also show that this mass is equal to the mass of the condensed state where all particles
have zero momentum.

—————————————————————

Keywords: Bose condensation, Mean field, Limit theorems, Combinatorial

partitions.

1. Introduction

Statistics of combinatorial partitions arises in many areas of science as

number theory, combinatorics, probability and statistical mechanics, as il-

lustrated by Vershik in his 1996 paper on the subject, [14].

The problem is about decomposing a positive integer N ∈ N+ into a sum

of positive integers, N = j1+· · ·+jk, k ∈ N+. Let (j1, . . . , jk) the sequence of

terms in the sum and consider two such sequences equivalent if they differ by

a permutation. A partition of N is then the equivalence class of a sequence

whose terms sum up to N . Following Vershik we describe partitions by
1
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sequences n = {nj, j ∈ N+}, where nj is the number of elements equal to j

in a sequence representative of the partition, thus
∑

j

jnj = N . Statistics

enters once we assign a statistical weight to the partitions, the choice of the

weights is determined by the particular applications we have in mind and

the goal is to derive limit theorems and characterize the typical partitions

when N is large.

As in [14] we will consider multiplicative weights, namely we will suppose

that the statistical weight of n is

w(n) =
∞∏

j=1

w(j, nj), n = {nj, j ∈ N+} (1.1)

where w(j, ·) : N+ → R+.

In the language of statistical mechanics, the assumption restricts the

analysis to non interacting systems and we will relax it, to study mean

field interactions as well. To make clear the connection with physics, it is

convenient to generalize the above context by considering j as an element of

some countable space J . For instance, a quantum gas of particles in a finite

box with Bose-Einstein statistics, can be represented in terms of occupation

numbers {nj, j ∈ J}, with J the momentum eigenvalues of a single particle,

(which are countably many because particles are in a finite box). In the free

case, the equilibrium distribution of such occupation numbers is determined

by multiplicative weights of the form (1.1), as it will be discussed in the next

section.

Bose condensation is then the phenomenon for which a positive fraction

of the total number of particles occupies the state with zero momentum,

the fraction converging to a deterministic value in the thermodynamic limit.

The other particles are distributed over the remaining momenta and their

random distribution, suitably normalized, also converges to a determinis-

tic curve, in the thermodynamic limit. The fraction with zero momentum,
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thought of as a Dirac delta of positive mass added to the remaining distri-

bution, is referred to as the mass of the condensed gas, while the remaining

mass is that of the gas in its “normal state”. All that happens for suitable

values of temperature and density, the theory is very well known and can

be found in textbooks and review papers (see for instance [6], [15]). The

extension to the mean field case is due to Lewis and collaborators (see for

instance [10]).

Our model is the same free Bose gas discussed so far, but regarded in

terms of “loops” which arise when enforcing the symmetry of the wave

functions under particles permutations (Bose statistics). To make this paper

self contained, in Appendix A, we derive the representation of the canonical

partition function for a Bose gas in the loops language. Thus in our scheme

j ∈ N+ is the “loop length”, representing a cycle with j particles which

describe the permutations among particles when imposing the symmetry of

the wave function, see Ginibre [5] for a detailed analysis of the model also

when inter-particles interactions are present.

Feynman conjectured, [4], that Bose condensation is related to the ap-

pearance of long loops, namely a fraction of the total number of particles

is concentrated on loops whose length diverges when Bose condensation oc-

curs, and this fraction should be exactly the same as the condensed mass

of the gas.

Results of this kind for the free gas, and also in the case when obstacles

are present as well, have been proved by Kac and Luttinger [7], [8], Suto

[13].

Purpose of our paper is to show that many properties of the free gas are

easily and naturally expressed in terms of the loop representation, which in

some instances could provide an alternative picture of the system with some

advantages over the more usual momentum-occupation representation. We
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will indeed prove very detailed estimates on the statistics of the loops, both

in the free and in the mean field case.

In particular our large deviation estimates can be used to extend our

analysis in the case the Kac potential with γ−1/L ∼ 1. An extension to a

more general class has been obtained in [9].

In Section 2 we present the model. In Section 3 we study the thermody-

namics of the mean field Bose gas, showing that the phase diagram can be

recovered by solving a variational problem in terms of a free energy func-

tional. We also compute the finite volume corrections to the pressure. In

Section 4 we analyze the statistics of the “long loops” whose length goes to

infinity faster than L2, L being the size of the volume. In Section 5 we state

large deviation theorems for the “short loops”. In Section 6, we prove that

the mass density supported by the long loops is equal to the density of the

condensed state, where all particles have zero momentum.

Proofs are given in the appendices.

2. The free and mean field Bose gas

We will consider the weights w(j, n) in (1.1) as dependent on the param-

eters L > 0, β > 0, λ ∈ R and given by the expression

w(j, n) =
1

n!

(Lda(βj, L)

j
eβλj

)n

(2.1)

a(βj, L) =
∑

k∈Zd

e−(kL)2/(2βj)

(2πβj)d/2 (2.2)

The quantity Lda(βj, L) is the partition function at temperature βj of a

free quantum particle of unitary mass in a periodic cubic box of side L,
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namely

Lda(βj, L) =
∑

k∈Zd

e−
1
2βj(2πk/L)2 (2.3)

The elementary equality (2.3) is proved in Lemma A.2.

By the help of the weights (2.1), we construct three probability measures

on NN+, the canonical, the grand-canonical and the mean field measures. The

canonical measure with N ∈ N+ particles is the probability

µN,L(n) = Z−1
N,L1

∑
jnj=Nw(n) (2.4)

the partition function ZN,L being the normalization factor and w(n) is given

by (1.1) with w(j, nj) as in (2.1) with λ = 0. We are not making explicit

the dependence on β, as it will be kept fixed throughout the sequel. As we

will see in Appendix A, ZN,L is equal to the partition function of a Bose gas

in a cubic box of length L with periodic boundary conditions and inverse

temperature β.

The grand canonical probability is

Pλ,L(n) = Ξ−1
λ,Lw(n) (2.5)

where

Ξλ,L = exp
{

Ld
∑

j

eβλj a(βj, L)

j

}
(2.6)

and the definition is well posed if λ < 0. Indeed, the r.h.s. of (2.6) diverges

for λ ≥ 0 because a(βj, L) ≥ 1/Ld, as follows from (2.3).

Finally, the mean field grand canonical probability is

Pmf
λ,L (n) = Ξmf

λ,L

−1
e−β(

∑
jnj)2/(2Ld)w(n) (2.7)

(having put equal to 1 the interaction strength). Due to the presence of the

interaction, which ensures convergence at infinity, the value of the chemical

potential λ is now unrestricted.
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To establish the connection of these measures with the Gibbs measures

of the Bose gas in the momentum representation, we realize the above pro-

cesses in the following way. Let α(βj, p, L) > 0, j ∈ N+, p ∈ Π, Π a

countable set, be such that

Lda(βj, L) =
∑

p∈Π

α(βj, p, L) (2.8)

We then define new weights

w(j, p, n) =
1

n!

(α(βj, p, L)

j
eβλj

)n

(2.9)

and call µ∗N,L(n), P ∗
λ,L(n), Pmf,∗

λ,L (n), n = {nj,p, j ∈ N+, p ∈ Π}, the measures

given as in (2.4)–(2.7) with the new weights w(j, p, n) of (2.9) and replacing∑

j

jnj →
∑

j,p

jnj,p. Calling

nj =
∑

p∈Π

nj,p, np =
∑

j>0

jnj,p (2.10)

a simple combinatorial computation, which is omitted, shows that the laws

of the variables nj under µ∗N,L, P ∗
λ,L and Pmf,∗

λ,L are the same as those under

µN,L, Pλ,L and Pmf
λ,L .

We will see that some proofs become simpler using the representation

(2.10) after a suitable choice of α(βj, p, L). To recover the momentum

representation, we set Π = Zd and

α(βj, p, L) = e−
βj
2 (2πp

L )
2

(2.11)

that satisfies (2.8) (cfr (2.3)). Moreover, the law under µ∗N,L, P ∗
λ,L and Pmf,∗

λ,L

of the variables np defined in (2.10) is the usual free Bose canonical and

grand-canonical and mean field laws of the momentum occupation numbers.

Examining for simplicity only the free Bose grand-canonical measure, the
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probability to have ν ∈ N particles of unitary mass with momentum p is

e−βν[−λ+ 1
2(

2πp
L )

2
]

∑
n≥0

e−βn[−λ+ 1
2(

2πp
L )

2
]

(2.12)

This is equal to P ∗
λ,L({np = ν}), because,

e−βν[−λ+ 1
2(

2πp
L )

2
] =

∑

{nj,p,j>0}:∑j jnj,p=ν

∏
j>0

1

nj,p!

(e−βj[−λ+ 1
2(

2πp
L )

2
]

j

)nj,p

(2.13)

which follows from the combinatorial identity

1 =
∑

{nj ,j>0}:∑j jnj=ν

∏
j>0

1

nj!

(1

j

)nj

(2.14)

In turns this identity could be proved by checking that

1 =
1

ν!

dνf(x)

dxν

∣∣∣
x=0

, f(x) =
∑

{nj ,j>0}

∏
j>0

1

nj!

(xj

j

)nj

(2.15)

3. Thermodynamics of the mean field Bose gas

By replacing the factorials in w(n) with the leading terms of the Stirling

formula, we obtain the following heuristics for the distribution of the loops

occupation numbers at large L,

w(n)e−β(
∑

j jnj)2/(2Ld) ≈ e−βLdFλ(ρ), ρ = {jnj/L
d, j > 0} (3.1)

where Fλ(ρ) : [0, +∞)N+ → R t {+∞}, is defined by the expression

Fλ(ρ) =
1

2

(∑

j

ρj

)2
− λ

∑

j

ρj −
S(ρ)

β
(3.2)
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S(ρ) = −
∞∑

j=1

ρj

j

(
log

ρj

ρ∗j
− 1

)
, ρ∗j =

1

(2πβ)d/2jd/2 (3.3)

Besides the above heuristic derivation, the functional Fλ(ρ) has an im-

portant role in the sequel. Indeed, as suggested by (3.1) and proved in this

paper, in the thermodynamic limit L → ∞, the distribution concentrates

on the minimizers of Fλ, thus reducing the computation of the “macroscopic

observables” to variational problems for the “limit functional” Fλ. In par-

ticular this applies to the thermodynamic potentials. Indeed, interpreting

Fλ(ρ) as the Gibbs thermodynamic potential and applying the correspond-

ing version of the second principle of thermodynamics, we have the following

expression for the equilibrium thermodynamical pressure

π(λ) := − inf
ρ

Fλ(ρ) (3.4)

The validity of such an interpretation is confirmed by equality with the

mean field grand canonical pressure:

π(λ) = lim
L→∞

1

βLd
ln Ξmf

λ,L (3.5)

According to thermodynamics, the free energy functional which corresponds

to the Gibbs potential Fλ(ρ) is Fλ(ρ) + λ{
∑

ρj}; we can then use the latter

to define the equilibrium thermodynamical free energy:

a(u) := inf
ρ:

∑
j ρj=u

{Fλ(ρ) + λu} (3.6)

The validity of (3.6) follows from equality with the mean field canonical

free energy, which can be written, if Zmf
NL,L denotes the mean field canonical

partition function:

a(u) = − lim
L→∞

NL/Ld→u

1

βLd
ln Zmf

NL,L (3.7)
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and thermodynamic consistency follows from checking that a(u) is the Le-

gendre transform of π(λ).

(3.4)–(3.7) show that the thermodynamics of the mean field Bose gas is

the same thermodynamics of the free energy functional Fλ, which can be

quite explicitly computed. All that, including the proofs of (3.4)–(3.7), are

reported in appendix G.

The thermodynamics of the Bose gas (in the free and in the mean field

cases) is very well known and does not need to be discussed again here, but

its features in terms of loops are not so familiar and, on the other hand,

quite interesting and transparent. Recall first that in the free gas there is,

in any dimension d ≥ 3, a Bose condensation characterized by the existence

of a critical density u∗, so that the free energy

a0(u) := a(u)− u2

2
(3.8)

(i.e. the mean field free energy a(u) minus the mean field energy when the

particles density is u) is constant past u∗:

a0(u) = a0(u∗) (3.9)

Such a property is indeed verified by a0(u) as defined by (3.8) with a(u)

as in (3.6), which means, recalling (2.4) and (3.7), that, if u ≥ u∗ and [·]
denotes the integer part,

lim
L→∞

lim
NL=[Ldu]
N∗

L=[Ldu∗]

1

βLd
ln{ZNL,L

ZN∗
L,L
} = 0 (3.10)

(3.10) shows that the ratio ZNL,L/ZN∗
L,L → 1 (in a very weak sense, indeed).

The closeness to equality before the limit is an indication of validity of the

Bose condensation phenomenon in finite volumes. We have a result (proved

in appendix B) which shows that the infinite volume description is very

accurate:
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Theorem 3.1. Let d ≥ 3 and

u∗ =
∑
j>0

ρ∗j (3.11)

Then, given any density u > u∗ and any two sequences, NL and N ∗
L, such

that NL = [Ldu] and N ∗
L = [Ldu∗], there is a constant c0, only dependent on

d, such that

lim
L→∞

ZNL,L

ZN∗
L,L

= c0 (3.12)

Moreover, there exists another dimension dependent constant c1, such that,

if λ > u∗,

lim
L→∞

Ξmf
λ,Le−

βλ2Ld

2

Ξmf
u∗,Le−

β(u∗)2Ld

2

= c1 (3.13)

Let us now describe the condensation phenomenon in terms of loops,

starting from the analysis of the functional Fλ(ρ). In any dimension d ≥ 3,

there is a critical chemical potential

λ∗ =
∑
j>0

ρ∗j = u∗ (3.14)

and, for λ > λ∗, the inf in (3.4) is not a minimum, but (cfr. appendix G) it

is obtained by any minimizing sequence ρ(n) = {ρ(n)
j , j > 0}, such that, for

any fixed j,

lim
n→∞

ρ
(n)
j = ρ∗j (3.15)

while:

ρ(λ) := lim
n→∞

∑
j>0

ρ
(n)
j =

∑
j>0

ρ∗j + (λ− λ∗) = λ (3.16)

(3.15)- (3.16) show that a fraction λ−λ∗ of the total mass ρ(λ) concentrates

on “infinite loops”. The phenomenon is absent for λ ≤ λ∗, where instead
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the r.h.s. of (3.4) has a unique minimizer ρ(λ) = {ρj(λ), j > 0}, where

ρj(λ) = ρ∗je
βjλ0(λ) (3.17)

and λ0(λ) is strictly positive for λ < λ∗, and = 0 otherwise. Thus the total

mass of the fluid is

ρ(λ) =





∑

j>0

ρj(λ), if λ ≤ λ∗

∑
j>0

ρ∗j + (λ− λ∗), if λ ≥ λ∗
(3.18)

and no mass concentrates on infinite loops for λ ≤ λ∗. Note that, by (3.14),

ρ(λ∗) = λ∗.
The validity of the above interpretation follows from following theorem,

which is a corollary of the large deviation estimates proved in Appendix E.

Theorem 3.2. For any λ, (3.19), (3.20) and (3.21) below hold.

lim
L→∞

Pmf
λ,L

(|jnj

Ld
− ρj(λ)| > δ

)
= 0 , ∀δ > 0 (3.19)

lim
L→∞

Pmf
λ,L

(
|

∑

j≤J(L)

{jnj

Ld
− ρj(λ)}| > δ

)
= 0 , , ∀δ > 0 (3.20)

independently of the choice of J(L), provided J(L) is an increasing function

of L and J(L) ≤ L2.

lim
L→∞

Pmf
λ,L

(
|
∑

j≥1

{jnj

Ld
− ρ(λ)}| > δ

)
= 0 , ∀δ > 0 (3.21)

While the statements relative to global quantities, like pressure, free

energy and total number of particles are known in the literature, the results

on the way the mass distributes among the different loops are new for the
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mean field interaction; Suto, [13], has analogous results in the context of

the canonical free measure.

But all this is not really in the focus of our study, which is rather aimed

at relaxing the assumption of mean field, for instance considering Kac po-

tentials, with the hope that the loops language may provide some simpli-

fication. In this perspective it is important to derive sharp estimates on

the deviations of the densities in (3.19), (3.20) and (3.21), which have been

used in [9] to prove the occurrence of Bose condensation with Kac poten-

tials in suitable scaling limits and to get non trivial estimates for the low

momenta distribution in the condensed region for a class of long but finite

range potential. Results and proofs can be found in Section 5 and Appendix

B.

The rate functions of the large deviations of the above macroscopic quan-

tities are faithfully described by the functional Fλ(ρ), whose suitably con-

strained minima give the correct large deviations rate functions. Thus, like

in the case of the thermodynamical potentials, the analysis of the functional

Fλ(ρ) gives the right answer.

The functional Fλ(ρ) is instead inadequate for studying how the mass of

the condensed fluid (in the Bose condensation regime λ > λ∗) distributes

among the long loops. The issue is discussed in the next section.

4. Distribution of long loops

To study the Bose condensation phenomenon, we restrict to d ≥ 3 and

to λ > λ∗. Then, see (3.18)–(3.21) and (3.14), the total mass (after the

thermodynamic limit) is ρ(λ) = u∗+(λ−λ∗), u∗ is the mass of the “normal
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fluid” and (λ− λ∗) of the condensed one. By (3.20),

lim
L→∞

Pmf
λ,L

(
|
∑

j≤L2

jnj

Ld
− u∗| > δ

)
= 0 , ∀δ > 0 (4.1)

which shows that in finite volumes the mass of the normal fluid is essen-

tially carried by loops with length ≤ L2, while the mass of the condensed

concentrates on loops of length > L2:

lim
L→∞

Pmf
λ,L

(
|
∑

j>L2

jnj

Ld
− (λ− λ∗)| > δ

)
= 0 , ∀δ > 0 (4.2)

Actually most of the mass is on loops whose length is a fraction of the whole

volume:

lim
L→∞

Emf
λ,L

( 1

Ld

δLd∑

j>L2

jnj

)
= δ (4.3)

Furthermore the number X̃L of loops larger than L2 goes like ln L and

becomes deterministic in the limit L → ∞ (i.e. X̃L/ ln L → a > 0), while

the cardinality of the subset of loops larger than δLd, δ > 0, is finite and

has a non trivial (i.e. non deterministic) limit distribution.

We summarize this result in the following Theorem proved in Appendix

F, where we use the following notation:

yδ,L ≡ 1

Ld

∑

j≥δLd

jnj , Xδ,L ≡
∑

j≥δLd

nj , XL ≡ 1

log L

∑

j≥L2

nj (4.4)

jmax := max{j : nj > 0}

Theorem 4.1. Suppose that λ > λ∗ and 0 < δ < λ− λ∗, then

lim
L→∞

Emf
λ,L

(
yδ,L

)
= λ− λ∗ − δ (4.5)

lim
L→∞

{Emf
λ,L

(
y2

δ,L

)− Emf
λ,L

(
yδ,L

)2} =
1

2
δ2 (4.6)
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lim
L→∞

Emf
λ,L

(
Xδ,L

)
= log

λ− λ∗

δ
, lim

L→∞
Emf

λ,L

(
XL

)
= d− 2 (4.7)

lim
L→∞

{√
log L

[
Emf

λ,L

(
X2

L

)− Emf
λ,L

(
XL

)2
]}

= d− 2 (4.8)

limL→∞
{

Emf
λ,L

(
X2

δ,L

)− Emf
λ,L

(
Xδ,L

)2
}

=

= Dδ = log
λ− λ∗

λ− λ∗ − δ

(
1− log

λ− λ∗

δ

)
+

+

∫ λ−λ∗−δ

δ

dx

x

(
1− log

λ− λ∗

λ− λ∗ − x

)
(4.9)

Dδ

log[(λ− λ∗)/δ]
−−→
δ→0 1 (4.10)

Furthermore, for any ξ ∈ (1/2, 1],

lim
L→∞

Pmf
λ,L

(
jmax

Ld
> ξ(λ− λ∗)

)
= − ln ξ (4.11)

Suto, [13], has already a proof of (4.3) in the free canonical case, but he

has not analyzed in detail the statistics of long loops.

5. Small and large deviations

5.1. Small deviations.

Theorem 5.1 (small fluctuations for N). Let

σ2 := lim
L→∞

1

Ld
Emf

λ,L

([ ∑

j>0

j(nj − 〈nj〉)
]2)

, 〈nj〉 := Emf
λ,L(nj) (5.1)

Then, if λ0(λ) is defined as in Appendix G,

σ2 =

[
β +

1{λ<λ∗}∑
j ρ∗jjeλ0(λ)βj

]−1

(5.2)
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for any λ, if d = 3, 4, and for λ 6= λ∗, if d ≥ 5. Moreover, under the same

conditions on λ, the function

=(v) := inf
ρ:

∑
ρj=ρ(λ)+v

Fλ(ρ)− inf
ρ

Fλ(ρ) (5.3)

with ρ(λ) given by (3.18), is twice differentiable in v = 0 and

σ2 =

(
β

[
d2=(v)

dv2

]

v=0

)−1

(5.4)

Proof. The value of σ2 is calculated in Appendix C, Theorem C.2, in

the case λ ≥ λ∗; the case λ < λ∗ could be treated in a similar (simpler)

way. The relation with the free energy functional, equation (5.4), follows

from (I.6) of Appendix I. ¤

Remark: If d = 3 and λ 6= λ∗, equation (5.2) was already obtained by

[2], but the case λ = λ∗ seems new. To check that the expression given

in [2] coincides with (5.2) for λ 6= λ∗, it is sufficient to note that, since

ρ(λ) = λ− λ0(λ) and, in d = 3, ρ∗j = 1
(2πβj)3/2

∑

j

ρ∗jβjeλ0(λ)βj =
β

(2πβ)3/2

∑

j

1

j1/2e
(λ−ρ(λ))βj

≡ β

(2πβ)3/2 g1/2
(
λ− ρ(λ)

)
(5.5)

where g1/2
(
µ) is defined in formulas 17-18 of [2].

We will also study deviations of other macroscopic quantities. In partic-

ular we will consider the following sets:

V1 := Z+ V2 := {`} V3 := {J(L)} V4 := {1, 2, . . . , J(L)} (5.6)

with J(L) as in Theorem 3.2, namely J(L) ∈ N+ is an increasing function

of L, such that lim
L→∞

J(L) = ∞ and lim
L→∞

J(L)/L2 < ∞.
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For k = 1, .., 4, we then define

A(k)
L,δ(v) ≡ A(k)

L,δ :=

{
n :

1

Ld
N (k) ∈

( ∑
j∈Vk

ρj(λ) + v − δ,
∑
j∈Vk

ρj(λ) + v + δ

)}
(5.7)

A
(k)
L (v) ≡ A

(k)
L :=

{
ρ :

∑
j∈Vk

ρj =
∑
j∈Vk

ρj(λ) + v

}
(5.8)

with

N (k) =
∑

j∈Vk

jnj (5.9)

and ρj(λ) as in (3.17).

The small deviations for N (k), k 6= 1, N (k) as in (5.9), are discussed in

Appendix D for λ > λ∗. The relation of the corresponding covariances with

the free energy functional goes along the same lines of Appendix I and we

omit it.

5.2. Large deviations.

In this subsection we will express the rate functions of large deviations

for the quantities (5.7), (5.8) in terms of variational problems for the limit

functional with corresponding constraints.

Theorem 5.2. For any λ, if k = 1, and for any λ 6= λ∗, if k > 1,

lim
δ→0

lim
L→∞




1

βLd
ln Pmf

λ,L

(
A(k)

L,δ

)

− inf
ρ∈A

(k)
L

Fλ(ρ) + inf
ρ

Fλ(ρ)


 = 1 (5.10)

Proof. The proof of this Theorem in the case k = 4 and λ > λ∗ (the

most interesting case) follows from Theorem E.3 in Appendix E and Ap-

pendix H. The other cases can be treated along the same lines. ¤
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Remark: The case λ = λ∗ is more involved, if k > 1, so we did not

study it in detail, but we think that Theorem 5.2 is still valid.

Corollary 5.3 (large deviations for N (1) ≡ N).

lim
δ→0

lim
L→∞

ln P (A(1)
L,δ)

βLd
= −t̄(ρ(λ) + v) +

v2

2
+ ρ(λ)v + π0

λ0(λ+t̄) − π0
λ0(λ) (5.11)

where λ0(λ) is defined in (G.5), π0
λ0

is the pressure of the free system with

chemical potential λ0 (cfr. equation (G.2)) and t̄ is the solution of the

equation t̄ = λ0(λ + t̄)− λ0(λ) + v.

Remark: If λ > λ∗ and λ + v > λ∗, then ρ(λ) = λ, λ0 = 0 and the

expression on the r.h.s. of (5.11) becomes −v2

2 .

Corollary 5.4 (large fluctuations for N (2) and N (3)). If λ ≥ λ∗, −ρ∗` <

v < λ− λ∗ and we define θ := v
ρ∗`

, then

lim
δ→0

lim
L→∞

1

βLd
ln P (A(2)

L,δ) = −1

β

v

`

[
(θ−1 + 1) ln (1 + θ)− 1

]
(5.12)

while, if λ ≥ λ∗ and v > λ− λ∗,

lim
δ→0

lim
L→∞

1

βLd
ln P (A(2)

L,δ) (5.13)

= −1

β

v

`

[
(θ−1 + 1) ln (1 + θ)− 1

]
+

λ2
0

2
− λ0 + π0

λ0
− π0

0

where λ0 = λ0(λ− ρ∗` − v).

If λ > λ∗ and v > 0:

lim
δ→0

lim
L→∞

J(L)

βLd ln J(L)
ln P (A(3)

L,δ) = −vd

2
(5.14)

For λ > λ∗ and v < 0 we get:

lim
δ→0

lim
L→∞

1

βLd
ln P (A(3)

L,δ) = −c(v)d

2
(5.15)

where c(v) > 0 and vanishes as v → 0 (cfr. corollary 5.5)



18 G. BENFATTO, M. CASSANDRO, I. MEROLA, AND E. PRESUTTI

Proof. By Theorem 5.2 and Appendix H

lim
δ→0

lim
L→∞

1

βLd
ln P (A(2)

L,δ) = −t̄(ρ`(λ) + v) + πλ,t̄ − πλ (5.16)

where t̄ is the solution of the equation ρ`(λ)et̄β` = ρ`(λ) + v. The solution

does exist when v > −ρ`(λ) and is given by:

t̄ =
1

β`
ln

(
ρ`(λ) + v

ρ`(λ)

)
(5.17)

When λ > λ∗ and −ρ∗` < v < λ − λ∗, we see that π̃λ,t̄ − πλ = λ2

2 +
1
β

∑
j

(ρ∗j+v1j=`)
j − λ2

2 − 1
β

∑
j

ρ∗j
j = v

β` , so that, defining θ := v
ρ∗`

,

lim
δ→0

lim
L→∞

1

βLd
ln P (A(2)

L,δ) = −1

β

v

`

[
(θ−1 + 1) ln (1 + θ)− 1

]
(5.18)

while, if v > λ−λ∗, we get an extra term coming from the difference π̃λ,t̄−πλ.

(5.14) is a direct consequence of (5.12), obtained in the limit θ →∞. ¤

Notice that, when λ > λ∗, in the limit L →∞, the fluctuation of ρ` has

the law of a free Poisson distribution with parameter ρ∗` .

Corollary 5.5 (large deviations for N (4) ). For λ > λ∗; v > 0:

lim
δ→0

lim
L→∞

J(L)

βLd ln J(L)
ln P (A(4)

L,δ) = −v

(
d

2
− 1

)
(5.19)

For v < 0 and all λ ≥ λ∗, we have instead,

lim sup
L→∞

1

Ld
log Pmf

λ,L

( j(L)∑

j=1

jnj ≤ [u∗ − |v|]Ld
)
≤ −c(v) (5.20)
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where c(v) > 0 and vanishes as v → 0 as

c(v) ∼





v2 d ≥ 5

v2

| log |v|| d = 4

|v|3 d = 3

(5.21)

Proof. See Theorem E.3 and Appendix H ¤

6. Long loops and Bose condensation.

In this section we show that, in the mean field model, the excess density

concentration ρ−ρ∗ on large loops implies the phenomenon of condensation

(i.e. a finite fraction of the number of particles occupies the state of zero

momentum ).

The reduced density matrices (RDM) are the quantum analogue of cor-

relation functions [1] [12] and the Fourier transform of the one point RDM,

in the case of periodic boundary conditions with translational invariant po-

tentials, gives (Onsager Penrose [11]) the average number of particles of

momentum 2πp/L, p ∈ Zd:

ρ̂Λ(p) =

∫

Λ
ρΛ(0, z)ei2πp

L z dz (6.1)

Using the language of loops, in the mean field case, where the interaction

does not depend on the position of the particles, the one point RDM reads

[5]:

ρmf
Λ (x, y) =

∑
j0

Ξ−1
λ,L

∑
n

w(n)e−β
(
P

j j(nj+δj,j0
))2

2Ld eλβj0
∑

k∈Zd

e−
(kL+(x−y))2

2βj0

(2πβj0)d/2 (6.2)
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Theorem 6.1. For d ≥ 3 and any β, when λ is larger than λ∗

lim
L→∞

ρ̂mf
Λ (0)

Ld
= λ− λ∗ (6.3)

Proof From (6.1) and (6.2) we get that:

ρ̂mf
Λ (0) =

∫

Λ
ρmf

Λ (0, z) dz =
∑

j0

Ξ−1
λ,L

∑
n

w(n)e−β
(
P

j j(nj+δj,j0
))2

2Ld eλβ
∑

j j(nj+δj,j0
)

= Emf
λ,L

(∑
j

jnj

Lda(βj, L)

)
(6.4)

The Theorem is proved using (4.5) and (cfr. (D.62))

0 < a(βj, L)− ρj ≤ Cρje
−L2/(2βj)

¤

Appendix A

In this appendix we recall the relation between the usual definition of

the canonical partition function for a free Bose gas and its representation

in the loops language given in (2.4).

The canonical partition function for a system of N identical bosons is

ZN = Tr e−βHN

where HN is the Hamiltonian operator and the trace involves only sym-

metrized states.
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Theorem A.1. Let HN = −
N∑

i=1

∆i be the hamiltonian of N free Bosons

in a cubic box of size L with periodic boundary conditions, then

ZN,L =
∑

ν:|ν|=N

e−β
∑

p(
2πp
L )

2
νp =

∑

n:
∑

jnj=N

∏
j

1

nj!




∑
p e−βj(2πp

L )
2

j




nj

(A.1)

Proof. The Bosons states in the momentum representation can be writ-

ten as |ν >= |νp , p ∈ Zd >, νp being the number of Bosons with momen-

tum equal to k = 2πpL−1. The energy in such a state is equal to
∑

p εpνp,

εp =
(
2πpL−1

)2
, hence the first equality in (A.1).

To prove the second one, let λ < 0 and define:

Z(λ) :=
∑

N

eβλN
∑

ν:|ν|=N

e−β
∑

p εpνp (A.2)

that can be rewritten as:

Z(λ) = exp

{
−

∑
p

ln(1− e−β(εp−λ))

}
= exp

{∑
j

(∑
p

e−β(εp−λ)j

j

)}

=
∑

M

1

M !

[∑

j

(∑
p

e−β(εp−λ)j

j

)]M

=
∑

n

∏
j

[∑
p

e−β(εp−λ)j

j

]nj

1

nj!
(A.3)

=
∑

N

eβλN
∑

n:
∑

j jnj=N

∏

j

[∑
p e−βjεp

j

]nj

1

nj!

Since Z(λ) is analytic in λ for Re λ < 0, (A.1) follows.

¤
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An alternative proof working in the configuration representation can be

obtained as follows.

ZN,L =
1

N !

∑
π

∫
dr1 . . . drN〈rπ1

. . . rπN
|e−βHN |r1 . . . rN〉

where
∑

π is the sum over all permutations of (1, 2, . . . , N). Since any

permutation breaks up into cycles (loops), we have

ZN =
1

N !

∑
n1,n2,...

c(n1, n2, . . . )
∏

j

Znj

where

a) c(n1, n2, . . . ) = N !
∏

j

1

jnj

1

nj!
is the number of ways of having n1 loops

of length 1, n2 of length 2, etc.

b) the sum is over all combinations of permutations s.t.
∑

jnj = N

c) Z(j) =
∑

p

e−βjεp, where −εp are the eigenvalues of the Laplace oper-

ator ∆.

In the case of a free Bose gas in a cubic box of size L with periodic

boundary conditions

ZN,L =
∑

n:
∑

jnj=N

∏

j

1

nj!




∑
p e−βj( 2πp

L )
2

j




nj

thus deriving again the last equality in (A.1).

Finally, to justify equation (2.3), we prove the following lemma.

Lemma A.2. For any L and α > 0

Ld
∑

k∈Zd

e−(kL)2/(2α)

(2πα)d/2 =
∑

k∈Zd

e−
1
2α(2πk/L)2 (A.4)
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Proof. Equation (A.4) follows from the identities

e−(kL)2/(2α) =
1

(2π)d/2

∫

Rd

e−x2/2+iLkx/
√

α dx (A.5)

and
1

(2π)d

∑

k∈Zd

eivk =
∑

k∈Zd

δ(v − 2πk) (A.6)

¤

Appendix B

The canonical partition function (A.1) of the free Bose gas can be written

as

ZN,L =
∑

{nk}
1∑

nk=N e−β
∑

k nkEk =
N∑

M=0

Z̃M,L (B.1)

Z̃M,L =
∑

{nk,k 6=0}
1∑

k 6=0 nk=M e−β
∑

k 6=0 nkEk (B.2)

where the momentum k takes values in the set {2πn/L, n ∈ Zd}, nk ∈ Z
and Ek = k2/2.

In this appendix we study the tail properties of the probability distribu-

tion on N with density

PL(M) =
Z̃M,L

QL
, QL =

∞∑

M=0

Z̃M,L (B.3)

and mean value

< M >L=
∑

k 6=0

1

eβEk − 1
≡ Ldλ∗L (B.4)

We remark that this probability distribution is the canonical distribution

of the total number of particles with k 6= 0 for a free Bose gas. These results
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will be used in the sequel to prove small and large deviation both in the

free and mean field case.

We want to study the asymptotic properties of the probability measure PL

as L →∞. To begin with, note that, if d ≥ 3, limL→∞ λ∗L does exist and

λ∗ = lim
L→∞

λ∗L =

∫

Rd

dk

(2π)d

1

eβEk − 1
(B.5)

Let us define

cL = Ld−2(λ∗ − λ∗L) (B.6)

Lemma B.1. For any d ≥ 3, cL has a limit as L →∞ and

c∗ ≡ lim
L→∞

cL =

∫ ∞

0
dt


1−

∑

n6=0

e−n2/(2βt)

(2πβt)d/2


 (B.7)

Proof. (3.2) and (B.4) imply that

Ldλ∗L =
∑

k 6=0

∞∑
j=1

e−βjEk =
∞∑

j=1

[
Lda(βj, L)− 1

]
(B.8)

while (B.5) implies that

Ldλ∗ = Ld
∞∑

j=1

1

(2πβj)d/2 (B.9)

hence, by using the definition of a(t, L) in (3.2), we get

cL =
1

L2

∞∑
j=1


1−

∑

n 6=0

e−n2/(2βtj)

(2πβtj)d/2


 , tj =

j

L2 (B.10)

The lemma follows from this expression, easily implying the convergence

of the sum over j ≤ L2, and the identity, following from (3.2) (with L = 1),

1−
∑

n 6=0

e−n2/(2t)

(2πt)d/2 =
1

(2πt)d/2 −
∑

n6=0

e−2π2tn2

(B.11)
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which implies immediately the convergence of the sum over j ≥ L2. ¤

Let us now define

yL =
M − Ldλ∗L

hL
, hL =





L2 d = 3

L2√log L d = 4

Ld/2 d ≥ 5

(B.12)

An important role in this appendix has the following Theorem

Theorem B.2. If M is a random variable with probability (B.3), the

distribution function of the random variable yL converges, as L → ∞,

to the distribution function of a random variable y on R with mean 0

and smooth density ρ(y) strictly positive, whose Laplace transform F (σ) =∫
dyρ(y) exp(−σy), σ ∈ C, is given, if d = 3 and <σ > −2π2β, by

F (σ) = exp


∑

n 6=0

G

(
σ

2π2βn2

)
 , G(u) = u− log(1 + u) (B.13)

while, if d ≥ 4 and <σ ∈ R,

F (σ) = e
1
2c0σ

2

, c0 =

{
1

2π2β2 d = 4
1

(2πβ)d/2

∑∞
j=1 j1−d/2 d ≥ 5

(B.14)

Moreover, there exists a constant C, independent of L and M , such that

(1 + y2
L)hLPL(M) ≤ C (B.15)

and, given any y ∈ R, if we choose M = M ∗
L so that y∗L = (M ∗

L −
Ldλ∗L)/hL −−−→L→∞ y, then

hLPL(M ∗
L) −−−→

L→∞ ρ(y) (B.16)

Proof. To begin with, we shall prove that the Laplace transform of

yL, FL(σ) =
∑∞

M=0 PL(M) exp[−σ(M −Ldλ∗L)/hL], is well defined and con-

vergent as L → ∞, if <σ ∈ (σ0,∞), where σ0 = −2π2β, if d = 3, and
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σ0 = −∞, if d ≥ 4; this implies in particular that the characteristic func-

tion fL(t) = FL(−it), t ∈ R, is convergent for any t. By analyzing the

decaying properties in t of fL(t), we shall also prove the bound (B.15), im-

plying that the distribution function of yL is convergent and that its limit is

the distribution function of a probability measure on R; in fact, by a simple

application of dominated convergence Theorem,

∑

0≤M≤hLy+Ldλ∗L

PL(M) =
1

hL

∑

0≤M≤hLy+Ldλ∗L

hLPL(M) −−−→
L→∞

∫ y

−∞
ρ(z)dz

(B.17)

Note that this result follows from the convergence of fL(t) to f(t), without

using the bound (B.15), since PL(M) is a probability measure [3]. We

are stressing here the role of (B.15) only because we shall generalize in

the following the previous argument to some cases where PL(M) is not a

probability measure, even if
∑∞

M=0 PL(M) = 1.

Finally, by analyzing the properties of the limiting measure Laplace

transform, we shall prove that this measure has a smooth and strictly pos-

itive density.

By a straightforward calculation, one can see that

log FL(σ) =
Ldλ∗L
hL

σ −
∑

k 6=0

log
1− e−βEk−σ/hL

1− e−βEk
=

=
∑

k 6=0

[
σ

hL

1

eβEk − 1
− log

(
1 +

1− e−σ/hL

eβEk − 1

)]
= (B.18)

=
∑

k 6=0

1

eβEk − 1

[
σ

hL
− (1− e−σ/hL)

]
+

∑

n6=0

G

(
1− e−σ/hL

e2π2βn2/L2 − 1

)

where G(u) = u− log(1 + u).

Let us consider first the case d = 3. Then hL = L2, so that FL(σ) is well

defined for <σ > σ0 ≡ −2π2β; hence we shall fix σ so that this condition is

satisfied. Then the first term in the third line of (B.18) goes to 0 as L →∞,
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since it is bounded by CL−1, where C (here and in the following) denotes a

suitable positive constant, depending on σ but independent of L. Note that

un,L ≡ 1− e−σ/hL

e2π2βn2/L2 − 1
−−−→
L→∞ u∗n ≡

σ

2π2βn2 (B.19)

and that |un,L|, |u∗n| ≤ Cn−2 and |un,L − u∗n| ≤ C/L2. On the other hand,

<un,L and <u∗n are larger of some constant u0 > −1, for any n; since G′(u) =

u/(1 + u), it immediately follows that

|G(un,L)−G(u∗n)| ≤ C|un,L − u∗n|n−2 ≤ Cn−7/2|un,L − u∗n|1/4 ≤
≤ C|n|−7/2L−1/2 (B.20)

It follows that log FL(σ) and FL(σ) are convergent for L →∞ and that, if

F (σ) = limL→∞ FL(σ),

Π(σ) ≡ log F (σ) =
∑

n6=0

G

(
σ

2π2βn2

)
(B.21)

It is not hard to show that Π(σ) is differentiable and that

Π′(σ) =
∑

n 6=0

σ

2π2βn2(σ + 2π2βn2)
(B.22)

implying that, if x ∈ R,

lim
x→+∞

Π′(x) = +∞ , lim
x→σ+

0

Π′(x) = −∞ (B.23)

Let us now call P (dy) the probability measure such that

F (σ) = eΠ(σ) =

∫
P (dy) e−σy (B.24)

The property (B.23) easily implies that the support of P (dx) is the full real

line. Moreover, the characteristic function f(t) of P (dx) is given by the

equation

f(t) = eΠ(−it) =
∏

n6=0

e−itan−2

1− itan−2 , a = (2π2β)−1 (B.25)
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By using the bound log(1 + x) ≥ 2x/3, valid for 0 ≤ x ≤ 1/2, we get, if

|t| ≥ 1,

|f(t)| ≤
∏

n 6=0

(1 + t2a2|n|−4)−1/2 ≤

≤
∏

|n|≤(
√

2a|t|)1/2

(3/2)−1/2
∏

|n|>(
√

2a|t|)1/2

e−t2a2|n|−4/3 ≤ e−C|t|3/2

(B.26)

This bound and the support properties of P (dy) imply that P (dy) = ρ(y)dy,

with ρ(y) a strictly positive smooth function on R.

In order to complete the proof of the Theorem in the case d = 3, we still

have to prove the strong convergence property (B.16), together with the uni-

form bound (B.15) on hLPL(M). Note that the definition of characteristic

function implies that

hLPL(M) =
1

2π

∫ +πhL

−πhL

dt e−ityLfL(t) (B.27)

By using (B.18), we see that

fL(t) = FL(−it) =
∏

n 6=0

evn,L

1 + un,L
(B.28)

where un,L is given by (B.19) with σ = −it and

vn,L =
−it

L2(e2π2βn2/L2 − 1)
(B.29)

It follows that |fL(t)| ≤ ∏
n 6=0 |1+un,L|−1. Moreover, by using (B.19), we see

that, if |t| ≤ πL2/2 and |n|2 ≤ |t|, |1 + un,L| ≥ 1 + δ, with a suitable δ > 0.

Hence, if |t| ≤ πL2/2, |fL(t)| ≤ ∏
0<|n|≤|t|1/2(1 + δ)−1 ≤ exp(−C|t|−3/2). If

πL2/2 ≤ |t| ≤ πL2, the same result is obtained, by observing that in this

case, if |n| ≤ L, |1+un,L| ≥ 1+1/(e2π2β−1), so that |fL(t)| ≤ exp(−CL3) ≤
exp(−C|t|−3/2). Hence, we can show that, uniformly in L,

|fL(t)| ≤ exp(−C|t|3/2) , |t| ≤ πhL (B.30)
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which implies, together with (B.27), that hLPL(M) ≤ C, with C inde-

pendent of L and M . Moreover, by the dominated Lebesgue convergence

Theorem, we get, for any y ∈ R,

yL −−−→L→∞ y ⇒ hLPL(M) −−−→
L→∞

1

2π

∫ +∞

−∞
eityf(t) = ρ(y) (B.31)

In order to complete the proof of (B.15), we use the identity

(−iyL)2hLPL(M) =
1

2π

∫ +πhL

−πhL

e−ityLf ′′L(t) (B.32)

Since f ′′L(t) = fL(t)[Π′
L(−it)2 + Π′′

L(−it)], where ΠL(−it) = log FL(−it),

and, as one can check easily by proceeding as in the analysis given before

of log FL(σ), uniformly in L,

|Π′
L(−it)| ≤ C|t| , |ΠL(−it)| ≤ C (B.33)

the bound (B.15) immediately follows from the bound (B.30).

Let us now suppose that d = 4. Then hL = L2√log L, so that, given any

x < 0, FL(σ) is well defined for <σ > x, if L > exp(−x/(2π2β). Moreover,

as in the case d = 3, the first term in the third line of (B.18) goes to 0 as

L →∞, since it is bounded by C(log L)−1/2.

If we define un,L as in (B.19), |un,L| ≤ C(n2√log L)−1, with C only

depending on σ if L is large enough. Hence, if G̃(u) = u− log(1+u)−u2/2,

∣∣∣∣∣∣
∑

n 6=0

G̃(un,L)

∣∣∣∣∣∣
≤ C

(log L)3/2

∑

n 6=0

1

|n|6 −−−→L→∞ 0 (B.34)
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Note also that L−4 ∑
|n|≥L[exp(an2/L2) − 1]−2 is bounded for L → ∞, for

any a > 0, and that

1

log L

∑

0<|n|≤L

[
1

(an2)2 −
1

L4(ean2/L2 − 1)2

]
≤

C

L2 log L

∑

0<|n|≤L

1

|n|4 −−−→L→∞ 0 (B.35)

so that (log L)−1L−4 ∑
n 6=0[exp(an2/L2)−1]−2 is convergent for L →∞ and

c0 = lim
L→∞

1

log L

∑

n 6=0

1

L4(ean2/L2 − 1)2 = lim
L→∞

1

log L

∑

0<|n|≤L

1

a2|n|4 =

=
1

a2 lim
L→∞

1

log L

∫

1≤|x|≤L

d4x

|x|4 =
2π2

a2 (B.36)

Bu using (B.18) and (B.36) with a = 2π2β, it is now easy to prove that

log FL(σ) is convergent for L →∞ and that

Π(σ) = lim
L→∞

log FL(σ) = (B.37)

=
1

2
σ2 lim

L→∞
1

L4 log L

∑

n 6=0

1

(e2π2βn2/L2 − 1)2 =
1

2

2

(2πβ)2σ
2

It follows immediately, if we define P (dy) as in the case d = 3, that P (dy) is a

Gaussian probability measure with density ρ(y) = (2πc0)
−1/2 exp[−y2/(2c0)],

with c0 = 2/(2πβ)2. The proof of (B.15) and (B.16) in the case d = 3 can

be easily extended to this case; we omit the details.

Let us finally consider the case d ≥ 5. Then hL = Ld/2 and we can

proceed as in the previous case, the only relevant difference being that now

Π(σ) gets a contribution also from the first term in the third line of (B.18).



FINAL VERSION - 11 OTTOBRE 2004 ORE 12.04 31

We find that Π(σ) = 1
2c0σ

2, with

c0 = lim
L→∞

1

Ld

∑

n 6=0

[
1

e2π2βn2/L2 − 1
+

1

(e2π2βn2/L2 − 1)2

]
= (B.38)

∫
ddk

(2π)d

e−βEk

(1− e−βEk)2 =
∑

j1,j2≥0

∫
ddk

(2π)d
e−βEk(j1+j2+1) =

∑

j≥1

j

(2πβj)d/2

The proof of (B.15) and (B.16) in the case d = 3 can be easily extended

also to this case, so completing the proof of the Theorem. ¤

Appendix C. Proof of Theorem 3.1

Note that the mean field grand canonical partition function can be writ-

ten as

Ξmf
λ,L = e

1
2βλ2Ld

∞∑

N=0

e−
β
2 Ld( N

Ld−λ)2ZN,L (C.1)

and that

PL(M ≤ N) = PL

(
yL ≤ Ld

hL
(λ− λ∗) +

Ld/2

hL
xN +

L2

hL
cL

)
(C.2)

xN = Ld/2(
N

Ld
− λ)

Let us now define

Γλ,L ≡
Ξmf

λ,L

e
1
2βλ2Ld

QLLd/2
=

1

Ld/2

∞∑

N=0

e−
β
2 Ld( N

Ld−λ)2PL(M ≤ N) (C.3)

Theorem 3.1 follows from the following Lemma.



32 G. BENFATTO, M. CASSANDRO, I. MEROLA, AND E. PRESUTTI

Lemma C.1. If λ ≥ λ∗, the quantity Γλ,L has a limit as L → ∞. If

λ > λ∗, we have, for any d ≥ 3,

lim
L→∞

Γλ,L =

√
2π

β
(C.4)

while, if λ = λ∗, we have

0 < lim
L→∞

Γλ,L =





√
2π
β

∫ c∗

−∞ dyρ(y) d = 3√
π
2β d = 4

∫ +∞
−∞ dxe−βx2/2

∫ x

−∞ dyρ(y) d ≥ 5

(C.5)

where ρ(y) is the density probability defined in Theorem B.2.

Moreover, if NL = [uLd] ([·] denotes the integer part), u > λ∗, and

N ∗
L = [λ∗Ld], then

lim
L→∞

ZNL,L

ZN∗
L,L

=

{
1/P (y ≤ c∗) d = 3

2 d ≥ 4
(C.6)

Proof. By theorem B.2, PL(yL ≤ ȳ) −−−→
L→∞

∫ ȳ

0 dyρ(y), for any fixed

ȳ, ρ(y) being a strictly positive function depending on the dimension d.

Hence, by using (C.2) and Lemma B.1, we can easily show that, if λ > λ∗

and xN −−−→
L→∞ x,

PL(M ≤ N) −−−→
L→∞ 1 , ∀x (C.7)

while, if λ = λ∗ and xN −−−→
L→∞ x,

PL(M ≤ N) −−−→
L→∞





P (y ≤ c∗) d = 3

P (y ≤ 0) = 1/2 d = 4

P (y ≤ x) d ≥ 5

(C.8)

Then (C.4) and (C.5) follow from (C.3) and a simple application of the

dominated Lebesgue convergence theorem. The proof of (C.6) is a simple
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consequence of (C.2), (C.8) and the equation, valid if NL = [uLd], u > λ∗,
and N ∗

L = [λ∗Ld],

lim
L→∞

ZNL,L

ZN∗
L,L

= lim
L→∞

PL(M ≤ NL)

PL(M ≤ N ∗
L)

= lim
L→∞

PL(yL ≤ Ld

hL
(u− λ∗))

PL(yL ≤ cLL2/hL)
(C.9)

¤

By similar arguments, one can prove the following Theorem (see also [2]

for the case λ > λ∗).

Theorem C.2. If λ > λ∗, the distribution of the random variable xN

converges, as L →∞, to a Gaussian distribution with density exp(−βx2/2);

the same result is true if λ = λ∗ and d = 3, 4. However, if d > 4, the

limiting distribution is still well defined, but it is not Gaussian anymore;

it is proportional to e−βx2/2
∫ x

−∞ dyρ(y), ρ(y) being the density probability

defined in Theorem B.2.

Appendix D. Distribution of “short loops”

In this appendix we will restrict to d ≥ 3 and λ ≥ λ∗ and study the

distribution of the variables

yA,L =

∑
j∈A jnj − LdρA,L

hA,L
, ρA,L =

∑

j∈A

ρj,L (D.1)

where A is a finite subset of N+, LDρj,L is the mean value of jnj with respect

to the mean field measure and hA,L is a suitable scaling factor. The main

results are stated in Theorems D.4 and D.5 below, the main ingredient in

the proofs is the reduction to the analysis of the probability distribution

PL(M) defined in Appendix B.
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We start by deriving the following expression for ρj,L:

ρj,L = a(βj, L) αj,L (D.2)

where

αj,L =
1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2PL(M ≤ N − j) (D.3)

with xN as in (C.2).

Proof of (D.2) - Let w0(j, nj) be as in (2.1) with λ = 0, then:

ρj∗,L =
e

βλ2

2 Ld

Ξmf
λ,L

∑

N

e−β
x2
N
2

∑

n:
∑

j jnj=N

∏
j

w0(j, nj)
j∗nj∗

Ld

=
e

βλ2

2 Ld

Ξmf
λ,L

a(βj∗, L)
∑

N

e−β
x2
N
2 ZN−j∗,L (D.4)

By (B.1) and (B.3) we get:

ρj∗,L =
e

βλ2

2 Ld

Ξmf
λ,L

a(βj∗, L)QL

∑

N

e−β
x2
N
2 PL(M < N − j∗) (D.5)

hence (D.2) follows by (C.3). ¤

Lemma D.1. For any λ ≥ λ∗, there is a constant C, independent of L

and j, such that, if hL is defined as in (B.12),

0 < 1− αj,L ≤ C
j

hL
(D.6)

Moreover, if λ = λ∗,

lim
L→∞

hL

j
(1− αj,L) =





ρ(c∗)∫ c∗
−∞ dyρ(y)

d = 3

2ρ(0) d = 4
∫ +∞
−∞ dxe−βx2/2ρ(x)∫ +∞

−∞ dxe−βx2/2
∫ x

−∞ dyρ(y)
d ≥ 5

(D.7)

where ρ(y) is defined as in Lemma C.1.
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Proof. Note that

1− αj,L =
1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2PL(N − j < M ≤ N) (D.8)

By using the claim in Lemma C.1 that hLPL(M) is bounded uniformly in

L and M , we get

PL(N − j < M ≤ N) =
1

hL

N∑

M=N−j+1

hLPL(M) ≤ C
j

hL
(D.9)

which immediately implies (D.6), by using Lemma C.1. On the other hand,

if λ = λ∗ and M = N − r, r ≥ 1, the corresponding yL variable is equal, see

(C.2), to (Ld/2xN + L2cL − r)/hL, so that, by using (B.16),

hLPL(M = N − r) −−−→
L→∞





ρ(c∗) d = 3

ρ(0) d = 4

ρ(x) d ≥ 5

(D.10)

(D.7) then follows from Lemma C.1 and dominated convergence Theorem.

¤

If λ > λ∗, hLPL(M = N−r) goes to 0 as L →∞, so we expect the bound

(D.6) can be improved. This is especially true if j is taken as a diverging

function of L; in particular, if j > (λ−λ∗)Ld, it is easy to see that αj,L → 0

as L →∞. In order to get good bounds in all these cases, we shall use the

following large deviation bound for the probability measure PL(M).

Lemma D.2. Let 0 < u1 < u2; then there exist L̄(u1), such that the

probabilities

S+
L (u1, u2) ≡ PL(Ldλ∗L + Ldu1 ≤ M ≤ Ldλ∗L + Ldu2) (D.11)

S−L (u1, u2) ≡ PL(Ldλ∗L − Ldu2 ≤ M ≤ Ldλ∗L − Ldu1) (D.12)
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satisfy, for L ≥ L̄(u1), the following bounds.

e−a1u2L
d−2(1+δL) ≤ S+

L (u1, u2) ≤ e−a1u1L
d−2(1−δL) , ∀u1 > 0 (D.13)

e−f(u2)(Ld/hL)2(1+δL) ≤ S−L (u1, u2) ≤ e−f(u1)(Ld/hL)2(1−δL) , u2 < λ∗ (D.14)

where δL is a function which goes to 0 as L →∞, a1 is a positive constant,

depending on d, and f(u) is a positive function of order u2 for u → 0 (equal

indeed to a2u
2 for d = 2, 3).

Proof. By (C.2), we can write

S+
L (u1, u2) =

∫ u2L
d/hL

u1Ld/hL

PL(dy) = eΠL(t)
∫ u2L

d/hL

u1Ld/hL

etyPt,L(dy) (D.15)

where ΠL(t) = log FL(t), FL(t) is the Laplace transform of PL(dy) given by

(B.18), t is any real number such that FL(t) is well defined and Pt,L(dy) is

the probability measure

Pt,L(dy) =
e−tyPL(dy)

FL(t)
(D.16)

By looking at (B.18), we see that FL(t) is defined for t > t∗L, where t∗L is the

value of t such that the argument un,L of the function G(u) = u− log(1+u)

is equal to −1 if |n| = 1, that is t∗L = −ahL/L2. We choose t so that

−Π′
L(t) =

∫
dy y Pt,L(dy) = v

Ld

hL
, v =

u1 + u2

2
(D.17)

By using (B.18), this condition can be written

1

hL

∑

n 6=0

(e−t/hL − 1)ean2/L2

(ean2/L2 − e−t/hL)(ean2/L2 − 1)
= v

Ld

hL
, a = 2π2β (D.18)

By proceeding as in the proof of Theorem B.2, it is easy to see that the

sum in the l.h.s. is bounded by C|t|, if we extract from it the terms with
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|n| = 1; hence we get

cL − d
t

h2
L

1

a/L2 + t/hL

L2

a
(1 + δ1,L) = v

Ld

hL
(D.19)

with δ1,L → 0 and cL → c as L →∞. It follows that

t
Ld

hL
= −aLd−2(1 + δ2,L) (D.20)

with δ2,L → 0 as L →∞. It is easy to see that, for such a value of t, ΠL(t)

diverges as C log L for d = 3, 4 and as Ld−4 for d ≥ 5, so that we can write

S+
L (u1, u2) = e−avLd−2(1+δL)

∫ u2L
d/hL

u1Ld/hL

et(y−vLd/hL)Pt,L(dy) (D.21)

with δL → 0 as L → ∞. The upper bound in (D.13) easily follows from

this equation. In order to prove the lower bound we have also to show that

∫ u2L
d/hL

u1Ld/hL

Pt,L(dy) ≥ 1− δL (D.22)

with δL → 0. This result can be deduced as the other ones from the proper-

ties of the Laplace transform of the measure Pt,L(dy); we omit the details.

Let us now consider the upper bound of (D.14). We proceed as before,

by writing

S−L (u1, u2) = eΠL(t)−tΠ′L(t)
∫ −u1L

d/hL

−u2Ld/hL

et(y+u1L
d/hL)Pt,L(dy) ≤

≤ eΠL(t)−tΠ′L(t) (D.23)

where t is chosen so that Π′
L(t) = u1L

d/hL. It is easy to see that Π′
L(t) is

a monotone function and that limt→∞Π′
L(t) = λ∗LLd/hL, so that t is well

defined for L large enough, if u1 < λ∗. It turns out that limL→∞ t(hL/Ld) =

f0(u) > 0, with f0(u) of order u for u → 0 (and equal to cdu for d = 3, 4,
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for some cd > 0). Moreover

ΠL(t)− tΠ′
L(t) = −

∫ t

0
ds

∫ s

0
duΠ′′

L(u) , C/2 < Π′′
L(u) ≤ C (D.24)

and one can prove that limL→∞Π′′
l (u) = Cd > 0, uniformly for 0 ≤ u ≤ t;

this allows us to get the upper bound in (D.14). The lower bound is obtained

in a similar way, by choosing t so that Π′
L(t) = u2L

d/hL and by proving

that
∫ −u1L

d/hL

−u2Ld/hL
Pt,L(dy) → 1/2 for L →∞. ¤

We can now prove the following bounds on the factors αj,L.

Lemma D.3. Given d ≥ 3, λ > λ∗ and a sequence jL such that

lim
L→∞

jL/Ld = γ < (λ− λ∗) (D.25)

there exists L̄ such that, if L ≥ L̄ and j ≤ jL,

1− αj,L ≤ Ce−a3(λ−λ∗−γ)Ld−2

(D.26)

where C and a3 are constants independent of L and of j.

Moreover, if λ ≥ λ∗ and γ > λ − λ∗, there exist C, a4 and L̄ such that,

if L ≥ L̄ and j ≥ jL,

αj,L ≤ Ce−a4[γ−[λ−λ∗)]Ld−1

(D.27)

Proof. Note that

PL(N − j < M ≤ N) ≤

≤ PL

(
yL ≥ (λ− λ∗)Ld + cLL2 + xNLd/2 − j

hL

)
(D.28)

Hence, if j ≤ jL, with jL/Ld → γ as L → ∞, and |xN | ≤ L(d−1)/2, so that

|xN |Ld/2/hL ≤ L−1/2Ld/hL,

PL(N − j < M ≤ N) ≤ PL

(
yL ≥ (λ− λ∗ − γ − δL)Ld

hL

)
(D.29)
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with δL → 0 as L →∞. On the other hand

1

Ld/2

∞∑

N=0

e−
β
2 x2

N1|xN |≥L(d−1)/2 ≤ Ce−
β
4 Ld−1

(D.30)

The bound (D.26) then easily follows from (D.8) and Lemma D.2 since the

upper bound in (D.13) is independent of the u2 value (equal to +∞ in this

case).

The bound (D.27) is proved in a similar way, by using the upper bound

in (D.14) and the remark that Ld−1 ≤ (Ld/hL)2. ¤

We have now all the technical ingredients to study the Laplace transform

FA,L(σ) of the probability distribution of the random variables yA,L defined

in (D.1). We have

FA,L(σ) =
e
σ

LdρA,L
hA,L

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2 1

QL

∑

{nj≥0,j≥1}
1∑

jnj=N ·

·
∏

j /∈A

w(j, nj)
∏

j∈A

w(j, nj)e
−σ

jnj
hA,L (D.31)

By using (2.14) and the identity

w(j, n)e
−σ

jnj
hA,L = (D.32)

=
∑

{n′,n′′≥0}
1n′+n′′=n

1

n′!

[
Lda(βj, L)e

−σ j
hA,L − 1

j

]n′

1

n′′!

(
1

j

)n′′

we see that

FA,L(σ) = GA,L(σ)
1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2PA,L,σ(M ≤ N) (D.33)
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where

PA,L,σ(M) = Q−1
A,L,σ

∑

{nj≥0,j≥1}
1∑

jnj=M ·

·
∏

j /∈A

w̃(j, nj)
∏

j∈A

w̃(j, nj, σ) (D.34)

QA,L,σ =
∑

{nj≥0,j≥1}

∏

j /∈A

w̃(j, nj)
∏

j∈A

w̃(j, nj, σ) (D.35)

w̃(j, n, σ) =
1

n!

[
Lda(βj, L)e

−σ j
hA,L − 1

j

]n

(D.36)

GA,L(σ) = e
σ

LdρA,L
hA,L

QA,L,σ

QL
(D.37)

Note that PA,L,σ(M) in general is not a probability distribution for any value

of σ (this is clear only for σ real and negative). Moreover, in all the choices

of the set A we shall consider, PA,L,σ(M) is absolutely summable over M

and its sum is equal to 1 (which is formally true by definition). Hence,

we can consider it as a finite complex measure on R (with support on a

lattice set) and we shall study its convergence, as L → ∞, to a measure

with smooth density.

A few simple calculations show that

log QA,L,σ =
∑

j∈A

Lda(βj, L)e
−σ j

hA,L − 1

j
+

∑

j /∈A

Lda(βj, L)− 1

j
(D.38)

so that

log GA,L(σ) = σ
LdρA,L

hA,L
+

∑

j∈A

Lda(βj, L)

j

(
e
−σ j

hA,L − 1
)

=

= σ r∗A,L +
∑

j∈A

Lda(βj, L)

j

(
e
−σ j

hA,L − 1 + σ
j

hA,L

)
(D.39)
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where

r∗A,L =
Ld

hA,L

∑

j∈A

a(βj, L)(αj,L − 1) (D.40)

It will also useful to consider the random variable

yA,L,σ =
M −M ∗

A,L,σ

hL
(D.41)

where M is a random variable with measure PA,L,σ(M) and hL is defined as

in (B.12).

The mean value of M is given by

M ∗
A,L,σ ≡

∞∑

M=0

MPA,L,σ(M) =
∑

j∈A

(
Lda(βj, L)e

−σ j
hA,L − 1

)

+
∑

j /∈A

(
Lda(βj, L)− 1

)
(D.42)

By using (B.8) and (B.4), we see that

M ∗
A,L,σ = Ldλ∗L + Ld

∑

j∈A

a(βj, L)
(
e
−σ j

hA,L − 1
)

(D.43)

so that

PA,L,σ(M ≤ N) = (D.44)

PA,L,σ

(
yA,L,σ ≤ Ld(λ− λ∗) + Ld/2xN + L2cL

hL
+ y∗A,L,σ

)

y∗A,L,σ =
Ld

hL

∑

j∈A

a(βj, L)
(
1− e

−σ j
hA,L

)
(D.45)

As in the proof of Theorem B.2, the limiting distribution of yA,L,σ will be

obtained by studying the Laplace transform HA,L,σ(w) of its measure. We
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have

log HA,L,σ(w) =
∞∑

j=1

Lda(βj, L)− 1

j

(
e
−w j

hL − 1 + w
j

hL

)
+

+ log RA,L,σ(w) (D.46)

log RA,L,σ(w) =
∑

j∈A

Lda(βj, L)

j

(
e
−σ j

hA,L − 1
)(

e
−w j

hL − 1 + w
j

hL

)
(D.47)

If we define fA,L,σ(t) = HA,L,σ(−it), we have also

hLPA,L,σ(M) =
1

2π

∫ +πhL

−πhL

e−ityA,L,σfA,L,σ(t) (D.48)

Moreover, if σ = 0, the function HA,L,σ(w) has to coincide (as one could

check by using the identity (A.4) and some easy algebra) with the function

FL(w) defined in (B.18). It follows that

log HA,L,σ(w) = log FL(w) + log RA,L,σ(w)

fA,L,σ(t) = fL(t)RA,L,σ(−it) (D.49)

We shall consider some special cases for the set A. First of all, we consider

the simplest one, that is the case where A contains only one element; we

prove the following Theorem.

Theorem D.4. If A = {j} and hA,L = Ld/2, then, if d ≥ 3 and λ ≥ λ∗,

ρ{j},L −−−→L→∞ ρj ≡ (2πβj)−d/2 (D.50)

Moreover, if d ≥ 3 and λ > λ∗ or d = 3, 4 and λ = λ∗, the probability

distribution of yA,L converges, as L → ∞, to a Gaussian distribution with

variance jρj. Finally, if d ≥ 5 and λ = λ∗, the limiting distribution is still
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well defined, but its Laplace transform is given by

lim
L→∞

log F{j},L(σ) = −σr∗jρj +
1

2
σ2jρj + (D.51)

+ log

{∫ +∞
−∞ dxe−βx2/2

∫ x+σjρj

−∞ dyρ(y)∫ +∞
−∞ dxe−βx2/2

∫ x

−∞ dyρ(y)

}

where

r∗ =

∫ +∞
−∞ dxe−βx2/2ρ(x)∫ +∞

−∞ dxe−βx2/2
∫ x

−∞ dyρ(y)
(D.52)

Proof. By using the definition of a(βj, L) in (2.2), we see that, for any

j,

a(βj, L) −−−→
L→∞ (2πβj)−d/2 = ρj (D.53)

Moreover, by Lemma D.1 and (D.2), ∀λ ≥ λ∗,

lim
L→∞

αj,L = 1 ⇒ lim
L→∞

ρj,L = ρj (D.54)

Let us now observe that, by (D.47), for any fixed σ and w,

| log R{j},L,σ(w)| ≤ C
Ld

Ld/2h2
L

j2−d/2 −−−→
L→∞ 0 (D.55)

Moreover, if we put w = −it, t ∈ R, for any fixed σ, we have

| log R{j},L,σ(−it)| ≤ C|t| Ld

Ld/2hL
j1−d/2 ≤ C|t| (D.56)

Hence we see, by using (D.49) and the bound (B.30), that |fA,L,σ(t)| ≤
exp(−C|t|3/2). It is easy to prove that this bound is valid also for f ′′A,L,σ(t),

which implies that the measure P{j},L,σ(M) satisfies the analogous of (B.15)

and (B.16) (we omit the details); and that P{j},L,σ(y ≤ ȳ) converges to

P (y ≤ ȳ) for any ȳ, if P (dy) is the limiting probability measure of Theorem

B.2. On the other hand, we have, see (D.45),

y∗{j},L,σ −−−→L→∞

{
0 d = 3, 4

σjρj d ≥ 5
(D.57)
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Note also that, by Lemmas D.1 and D.3, see (D.40)

r∗{j},L −−−→L→∞





0 d = 3, 4 , λ ≥ λ∗

0 d ≥ 5 , λ > λ∗

−r∗jρj d ≥ 5 , λ = λ∗
(D.58)

If d = 3 or d = 4, it follows, by using (D.33) and (D.39), that, for any

λ ≥ λ∗,

lim
L→∞

log F{j},L(σ) = lim
L→∞

log G{j},L(σ) =
1

2
σ2jρj (D.59)

The same result is true, if d ≥ 5 and λ > λ∗. However, if d ≥ 5 and λ = λ∗,
we get (D.51).

The fact that the Laplace transform converges for any σ implies that

also the characteristic function is convergent. As it is well known [3], this is

sufficient to prove the convergence of the probability distribution of yA,L. ¤

We now consider a more interesting choice of the set A.

Theorem D.5. Let A = {1 ≤ j ≤ jL}, with jL a monotone diverging

function of L such that jL ≤ L2. Then, if d ≥ 3 and λ ≥ λ∗,

ρA,L −−−→L→∞

∞∑
j=1

ρj = λ∗ (D.60)

Moreover, if jL/L2 −−−→
L→∞ 0 and λ > λ∗, the probability distribution of yA,L

converges, as L →∞, to a Gaussian distribution, provided we take

hA,L =





L2(jL/L2)1/4 d = 3

L2√log jL d = 4

Ld/2 d ≥ 5

(D.61)

The same result is true, if λ = λ∗, provided d = 3 or d = 4 and limL→∞√
log jL/ log L = 0; in the other cases the limiting distribution is still well

defined but it is not gaussian.
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Proof. By using (2.2), it is easy to prove that, if j ≤ L2, there is a

constant C, independent of j and L, such that

a(βj, L) ≤ Cρj , 0 < a(βj, L)− ρj ≤ Cρje
−L2/(2βj) (D.62)

Hence, since 0 ≤ αj,L ≤ 1,

0 ≤
∑
j≤jL

(ρj,L − ρjαj,L) ≤ C
∑

j≤L2

j−d/2e−L2/(2βj) ≤ CL2−d −−−→
L→∞ 0 (D.63)

On the other hand, by (D.6),

0 ≤
∑
j≤jL

ρj(1− αj,L) ≤ C

hL

∑

j≤L2

j−d/2+1 −−−→
L→∞ 0 (D.64)

(D.60) is an easy consequence of the last two bounds.

In order to study the limiting distribution of yA,L, we proceed as in the

proof of Theorem D.4. First of all we observe that, by (D.47), if hA,L is

chosen as in (D.61), for any fixed σ and w,

| log RA,L,σ(w)| ≤ C
Ld

hA,Lh2
L

jL∑

j=1

j2−d/2 −−−→
L→∞ 0 (D.65)

Moreover, if we put w = −it, t ∈ R, for any fixed σ, we have

| log R{j},L,σ(−it)| ≤ C|t| Ld

hA,LhL

jL∑
j=1

j1−d/2 ≤ C|t| (D.66)

Once again, by proceeding as in the proof of Theorem D.4, one can prove

that the measure PA,L,σ(M) satisfies the analogous of (B.15) and (B.16); we

omit the details. This implies the convergence of PA,L,σ(y ≤ ȳ) to P (y ≤ ȳ)

for any ȳ, if P (dy) is the limiting probability measure of Theorem B.2. On

the other hand, we have, see (D.45),

y∗A,L,σ −−−→L→∞





0 d = 3

σ (2π2β)−2 limL→∞
√

log jL/ log L d = 4

σ
∑∞

j=1 jρj d ≥ 5

(D.67)
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Let us now suppose that λ > λ∗. Then, by using (D.26), we can easily

show that, for any d ≥ 3, r∗A,L, (see (D.40)) goes to 0 as L →∞. It is also

very easy to show that the factor which multiplies GA,L(σ) in the r.h.s. of

(D.33) goes to 1 as L →∞. Hence, by using (D.39), we get

lim
L→∞

log FA,L(σ) = lim
L→∞

log GA,L(σ) = (D.68)

lim
L→∞

jL∑
j=1

Lda(βj, L)

j

(
e
−σ j

hA,L − 1 + σ
j

hA,L

)

If we insert the value of hA,L given in (D.61) in the r.h.s. of this equation, we

can see that only the terms of order σ2 survive in the limit L →∞. More-

over, the fact that the Laplace transform converges for any σ implies that

also the characteristic function is convergent. Therefore the limiting distri-

bution of yA,L is well defined and is gaussian; we can also easily calculate

its variance.

If λ = λ∗, we get a different result for d ≥ 4, because we can see, by

using Lemma D.1, that

r∗A,L −−−→L→∞





0 d = 3

−2ρ0(2π
2β)−2 limL→∞

√
log jL/ log L d = 4

−r∗
∑∞

j=1 jρj d ≥ 5

(D.69)

Moreover, the factor which multiplies GA,L(σ) in the r.h.s. of (D.33) is

still convergent, but it goes to 1 as L → ∞ only for d = 3 and for

d = 4, if limL→∞
√

log jL/ log L = 0. It follows that the limiting distri-

bution of yA,L is still well defined and its Laplace transform can be explic-

itly calculated; however, it is gaussian only for d = 3 and for d = 4, if

limL→∞
√

log jL/ log L = 0. ¤
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Appendix E. Large deviations for “short loops”

In this appendix we consider d ≥ 3 and λ > λ∗; our main result is stated

in Theorem E.3

Given any finite subset A of N+, we define

SA,L(v, δ) ≡ Pmf
λ,L [Ld(ρA,L + v − δ) ≤

∑

j∈A

jnj ≤ Ld(ρA,L + v + δ)] (E.1)

with ρA,L defined as in (D.1). We want to show that, if A = {j} or A =

{j ≤ jL}, with jL a monotone diverging function of L, such that jL ≤ L2, we

can evaluate the behavior for L →∞ of the r.h.s. of (E.1) by substituting

the measure Pmf
λ,L with the measure, independent of λ (recall that λ > λ∗ in

this section)

PA,L(nj, j ∈ A) = Z−1
A,L

∏

j∈A

w(j, nj) (E.2)

We shall consider in detail only the case A = {j ≤ jL}; the other case can

be treated in a similar (simpler) way.

Let us define ΠA,L(t) = log FA,L(thA,L) and

Π̃A,L(t) = log GA,L(thA,L)− thA,Lr∗A,L =

=
∑

j∈A

Lda(βj, L)

j

(
e−tj − 1 + tj

)
(E.3)

where FA,L(σ) and GA,L(σ) are defined as in (D.33) and r∗A,L is defined as

in (D.40). Choose t ≡ tL(v) so that

−Π̃′
A,L(t) = vLd (E.4)

Lemma E.1. Let A = {1 ≤ j ≤ jL}, with jL a monotone diverging

function of L such that jL ≤ L2. Then the equation (E.4) has a solution for

any v > −λ∗. Moreover, if 0 > v > −λ∗, tL(v) has a finite positive limit
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t(v) for L →∞, such that, for v → 0 and suitable constants cd

t(v) ∼





c3v
2 d = 3

c4v/ log(1/v) d = 4

cdv d ≥ 5

(E.5)

while, if v > 0, tL(v) < 0 and

lim
L→∞

jL|tL(v)|
log(vj

d/2−1
L )

= 1 (E.6)

Proof. By using (D.39), we see that equation (E.4) can be written as

HL(t) ≡
jL∑

j=1

a(βj, L)(e−tj − 1) = v (E.7)

Note that the sign of t is the opposite of the sign of v. Let us consider

first the case v < 0. In this case t > 0 and HL(t) → −∑
j≤jL

a(βj, L), as

t → +∞; since limL→∞
∑

j≤jL
a(βj, L) = λ∗, equation (E.7) has a unique

solution tL(v) only if v > −λ∗. It is an easy exercise to show that tL(v)

converges, as L →∞, to a limit t(v), verifying (E.5).

If v > 0, there is a unique negative solution tL(v) of (E.7) for any v, since

HL(t) → +∞ as t → −∞, and it is easy to see that limL→∞ tL(v) = 0. A

more careful analysis shows that equation (E.6) is verified. ¤

Lemma E.2. Let A = {1 ≤ j ≤ jL}, with jL a monotone diverging

function of L such that jL ≤ L2. Then, if t is defined as in (E.4), there

exists η > 0 such that, for L large enough,

FA,L(thA,L) = GA,L(thA,L)[1 + δL(t)] , |δL(t)| ≤ e−Lη

(E.8)

Π′
A,L(t) = Π̃′

A,L(t) + δL(t) , |δL(t)| ≤ e−Lη

(E.9)
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Proof. By using (D.33), we see that (E.8) is satisfied, if we define

δL(t) = δL,1 + δL,2(t) (E.10)

δL,1 =
1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2 − 1 (E.11)

δL,2(t) = − 1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2PA,L,t(M > N) (E.12)

where PA,L,t(M) is the measure defined in (D.34), with σ = thA,L, t being

the solution of (E.7). By using (C.3), we see that

δL,1 =
1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2PL(M > N) (E.13)

where PL(M) is the probability measure defined in (B.3). By using (C.4)

and the large deviation estimates of Lemma D.2, it is easy to prove that

|δL,1| ≤ exp(−Lη), with 0 < η < d− 2.

In order to prove a similar bound for δL,2(t), we need a large deviation

estimate for the measure PA,L,t(M). Let us consider first the case v > 0,

that is t < 0, when PA,L,t(M) is a probability measure. In this case, if

λ− λ∗− v > 0 and |xN | ≤ Ld/4, by using (D.43) and (E.7), we see that, for

L large enough

PA,L,t(M > N) = PA,L,t(M −M ∗
A,L,t > Ld(λ− λ∗ − v) +

+Ld/2xN + L2cL + hA,Lr∗A,L) ≤ PA,L,t(M −M ∗
A,L,t > Ldε) (E.14)

if 0 < ε < λ− λ∗ − v, so that, for L large enough,

|δL,2(t)| ≤ 2e−βLd/2/2 + 2PA,L,t(M −M ∗
A,L,t > Ldε) (E.15)

Let us consider the Laplace transform HL,t(w) of the random variable

y = M −M ∗
A,L,t; it is related to the analogous function HA,L,σ(w) defined in

(D.46) by the relation

HL,t(w) = HA,L,thA,L
(whL) (E.16)
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By proceeding as in the proof of Lemma D.2, we can write

PA,L,t(M −M ∗
A,L,t > Ldε) = eΠL,t(w)

∫ +∞

εLd

ewyPL,t,w(dy) (E.17)

where ΠL,t(w) = log HL,t(w) and PL,t,w(dy) = e−wyPL,t(dy)/HL,t(w). We

now fix w so that −Π′
L,t(w) = εLd; it is to see that this condition can be

written as

εLd = Ld

jL∑
j=1

a(βj, L)(e−tj − 1)(1− e−wj) +

+
∞∑

j=1

(Lda(βj, L)− 1)(1− e−wj) (E.18)

Since t < 0, the solution of this equation has to be negative and one can

show that ΠL,t(w) + wεLd = ΠL,t(w) − wΠ′
L,t(w) is negative and of order

Ld−2. It follows that

PA,L,t(M −M ∗
A,L,t > Ldε) ≤ eΠL,t(w)−wΠ′L,t(w) ≤ e−cLd−2

(E.19)

for some c > 0.

The case v < 0, that is t > 0, is a bit more involved, since in this case

PA,L,t(M) is not necessarily a probability measure. However, it is easy to

prove, by using (D.34), that
∞∑

M=0

|PA,L,t(M)| ≤ e2 log jL (E.20)

so that, instead of the bound (E.15), we have

|δL,2(t)| ≤ 2e−βLd/2/2+2 log jl + 2|PA,L,t(M −M ∗
A,L,t > Ldε)| (E.21)

Moreover, since it is still true that ΠL,t(w) − wΠ′
L,t(w) is negative and of

order Ld−2, instead of bound (E.19), we get

|PA,L,t(M −M ∗
A,L,t > Ldε)| ≤ e−cLd−2

∞∑

M=0

|PL,t,w(M)| (E.22)
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which is a negligible difference, since |w|L2 ≤ c, so that, as one can easily

check,
∞∑

M=0

|PL,t,w(M)| ≤ e2ecjL/L2
log jL (E.23)

We still have to prove (E.9). By putting σ = thA,L in (D.33) and by

doing the derivative with respect to t, we get

d

dt
FA,L(thA,L) = LdρA,LFA,L(thA,L)−

−GA,L(thA,L)

jL∑
j=1

Lda(βj, L)e−tj[1 + δL,2,k(t) + δL,1] (E.24)

where δL,1 is defined as in (E.11) and

δL,2,k(t) = − 1

Γλ,L

1

Ld/2

∑

N≥0

e−βx2
N/2PA,L,t(M > N − k) (E.25)

Since k ≤ jL ≤ L2, we can find as before that |δL,2,k(t)| ≤ e−Lη

. On the

other hand
∑

j≤jL
Lda(βj, L)e−tj is always of order Ld. It follows that

Π′
A,L(t) =

d
dtFA,L(thA,L)

FA,L(thA,L)
= LdρA,L −

jL∑

j=1

Lda(βj, L)e−tj + O(e−Lη

)

= Π̃′
A,L(t) + O(e−Lη

) (E.26)

¤

Theorem E.3. If A(4)
L,δ(v) is defined as in (5.7) and 0 < v < λ−λ∗, then

v − δ ≤ − lim
L→∞

1

Ld

jL

log(vj
d/2−1
L )

log Pmf
λ,L

(
A(4)

L,δ

)
≤ u + δ (E.27)

while, if −λ∗ < v < 0, there are positive functions td(v) and ad(v), depend-

ing on d, such that

ad(v)− td(v)δ ≤ − lim
L→∞

1

Ld
log Pmf

λ,L

(
A(4)

L,δ

)
≤ ad(v) + td(v)δ (E.28)
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Moreover, the two bounds above do not change if we substitute Pmf
λ,L

(
A(4)

L,δ

)

with Π̃A,L(tL(v))− tΠ̃′
A,L(tL(v)), tL(v) being the solution of (E.4).

Proof. By (E.1) Pmf
λ,L

(
A(4)

L,δ

)
= SA,L(v, δ). By proceeding as in the proof

of Lemma D.2, we can write

SA,L(v, δ) = eΠA,L(t)−tΠ′A,L(t)
∫ (v+δ)Ld

(v−δ)Ld

et(y−vLd)PA,L,t(dy) (E.29)

where t is chosen so that vLd = −Π′
A,L(t). By using Lemma E.2, we see

that ΠA,L(t) and its derivative can be substituted with Π̃A,L(t) and Π̃′
A,L(t),

and that t can be taken as the solution of (E.4), without changing the

asymptotic behavior of SA,L(v, δ),

Let us consider first the case 0 < v < λ− λ∗. It is easy to check that, in

this case, Π̃A,L(t) is negligible, for L →∞, with respect to |t|vLd, so that we

get immediately, by using also (E.6), the lower bound in (E.27). In order to

prove the upper bound, we need also a lower bound on
∫ (v+δ)Ld

(v−δ)Ld PA,L,t(dy),

which can be obtained by studying the Laplace transform of PA,L,t(dy); this

analysis shows that
∫ (v+δ)Ld

(v−δ)Ld PA,L,t(dy) → 1 as L →∞.

If −λ∗ < v < 0, as shown in Lemma E.1, the solution of (E.4) converges,

as L → ∞, to the function t(v) defined in (E.5). Moreover, it is easy to

check that, up to negligible corrections, for any fixed t,

lim
L→∞

L−d[ΠA,L(t)− tΠ′
A,L(t)] = −ad(v) (E.30)

where ad(v) is a positive function equal to

ad(v) =
∞∑

j=1

1

(2πβj)d/2

(
1− e−tj

j
− te−tj

)
(E.31)

Since it is still true that
∫ (v+δ)Ld

(v−δ)Ld PA,L,t(dy) → 1 as L → ∞, we get the

bound (E.28). ¤
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Appendix F. Proof of Theorem 4.1

By (D.2):

Emf
λ,L(yδ,L) =

1

Ld

∑

j≥δLd

Lda(βj, L)αj,L

Emf
λ,L(Xδ,L) =

∑

j≥δLd

Lda(βj, L)

j
αj,L (F.1)

Emf
λ,L(XL) =

∑

j≥L2

Lda(βj, L)

j
αj,L

On the other hand, by (2.3),

|Lda(βj, L)− 1| ≤ C exp(−Cj/L2) , ∀j ≥ L2 (F.2)

which allows us to prove very easily the limits in (4.5) and (4.7), by using

Lemma D.3.

The arguments given at the beginning of section D can be used to prove

also that

Emf
λ,L(nj1nj2) =

Lda(βj1, L)

j1

Lda(βj2, L)

j2
αj1+j2,L , if j1 6= j2 (F.3)

Emf
λ,L(n2

j) = Emf
λ,L(nj(nj − 1)) + Emf

λ,L(nj) = (F.4)

=

(
Lda(βj, L)

j

)2

α2j,L +
Lda(βj, L)

j
αj,L

It follows that

Emf
λ,L(y2

δ,L)− Emf
λ,L(yδ,L)2 = (F.5)

∑

j1,j2≥δLd

a(βj1, L)a(βj2, L)(αj1+j2,L − αj1,Lαj2,L) +
∑

j≥δLd

ja(βj, L)αj,L
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The limit (4.6) follows through some simple calculations from this identity,

the bound (F.2) and Lemma D.3. In a similar way, one can prove also (4.8),

(4.9) and (4.10).

We still have to prove (4.11). The previous arguments imply that, if

ξ ∈ (1/2, 1] and j > ξ(λ− λ∗)Ld, then

lim
L→∞

Pmf
λ,L (nj = 1) = lim

L→∞
Emf

λ,L (nj) (F.6)

and

lim
L→∞

Pmf
λ,L

(
Xξ(λ−λ∗) ≥ 1

)
= lim

L→∞

∑

j>ξ(λ−λ∗)Ld

Pmf
λ,L (nj = 1) = − log ξ (F.7)

Appendix G. The limit functional

Theorem G.1. There is a non decreasing, negative, continuous function

λ0(λ) on R, strictly negative in d ≤ 2, such that

π(λ) := − inf
ρ

Fλ(ρ) =
[λ− λ0(λ)]2

2
+ π0

λ0(λ) (G.1)

π0
λ0(λ) = β−1

∑
j

ρ∗j
j

eλ0(λ)βj (G.2)

Moreover, ρ(λ) := λ − λ0(λ), is a positive, strictly increasing, continuous

function of λ with range the whole (0,∞) and

inf
ρ

Fλ(ρ) = inf
ρ:

∑
j ρj=ρ(λ)

Fλ(ρ) (G.3)
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Remark 1. In [10] it is proved that the gran canonical mean field,

thermodynamical pressure coincides with π(λ), namely

π(λ) = lim
L→∞

1

Ld
Ξmf

λ,L (G.4)

thus proving our claim in the text that the computation of the pressure

using the limit functional gives the correct result.

Remark 2. The proof of Theorem G.1 identifies the function λ0(λ) as

follows. There exists a dimension dependent constant λ∗, equal to +∞ in

d ≤ 2 and < ∞ in d ≥ 3 such that for λ ≤ λ∗ (by which we will mean, here

and in the sequel, any λ in d ≤ 2 and λ ≤ λ∗ in d ≥ 3) there is a unique

solution λ0 of

λ− λ0 =
∑

j

ρ∗je
λ0βj (G.5)

This solution, which depends on λ, coincides with the function λ0(λ) of

Theorem G.1 for λ ≤ λ∗, while the latter is identically 0 for λ > λ∗.
We will also prove that the inf in (G.1) is a minimum when λ ≤ λ∗, and,

in such a case, the minimizer is unique and given by

ρj = ρ∗je
λ0βj (G.6)

in agreement with (G.3), because
∑

j

ρ∗je
λ0βj = ρ(λ) by (G.5).

The r.h.s. of (G.6) is the equilibrium density of j loops in the free, gran

canonical ensemble with chemical potential λ0, so that λ0 has the meaning

of an effective chemical potential.

If d ≥ 3 and λ > λ∗, the inf in (G.1) is not attained and there is a finite

fraction of the density which “concentrates on infinitely long loops”.

By (G.3), ρ(λ) can be interpreted as the equilibrium density when the

chemical potential is λ; since the range of ρ(λ) is the whole (0,∞), there is

no “forbidden interval” for the equilibrium density, namely there is no first
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order phase transition in our system. This is due to the assumption that

the interaction energy u2/2, u =
∑

j ρj, is convex.

:=m(0)λ∗

αα

m(α)m(α)

λ− α

Figure 1. The two graphs, on the left and right, refer respectively to d ≤ 2

and d ≥ 3.

Proof of Theorem G.1 - Call m(α) =
∑

j

ρ∗je
βαj, α < 0 in d ≤ 2 and

α ≤ 0 in d ≥ 3. The graph of m(α) is as in Fig. 1, having put λ∗ = m(0)

in d ≥ 3. Existence and uniqueness of the solution λ0 of (G.5) for λ ≤ λ∗

follow from monotonicity of m(·). Graphically λ0 is the α-coordinate of the

intersection point in Fig. 1

Let us next prove (G.1)-(G.2) when λ ≤ λ∗. With λ0 as in (G.5) we

write

Fλ(ρ) =
[ρ2

2
− (λ− λ0)ρ

]
+

[
− λ0ρ− β−1S(ρ)

]
, ρ =

∑
j

ρj (G.7)

Then

Fλ(ρ) ≥ inf
ρ

{ρ2

2
− (λ− λ0)ρ

}
+ inf

ρ

{− λ0ρ− β−1S(ρ)
}

(G.8)
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We have

inf
ρ

{− λ0ρ− β−1S(ρ)
}

= −π0
λ0

(G.9)

with a unique minimizer given by (G.6). On the other hand

inf
ρ

{ρ2

2
− (λ− λ0)ρ

}
= −(λ− λ0)

2

2
(G.10)

with minimizer any ρ such that
∑

j

ρj = λ− λ0. By (G.5), the previous

minimizer ρ, given by (G.6), satisfies such a condition, hence (G.1) and

(G.3).

Suppose next that d ≥ 3 and λ > λ∗. Then

Fλ(ρ) ≥ inf
ρ

{ρ2

2
− λρ

}
+ inf

ρ

{− β−1S(ρ)
} ≥ −λ2

2
− π0

0 (G.11)

where the minimizers of the first inf are those ρ such that
∑

j

ρj = λ, while

the minimizer of the second inf is unique and given by {ρ∗j}. We thus need

to show that there is a sequence ρ(n) such that
∑

j

ρ
(n)
j = λ and

lim
n→∞

S(ρ(n)) = S(ρ∗) (G.12)

Let a := λ − ρ∗ be the excess mass, λ being the mass ρ which minimizes

ρ2/2− λρ and ρ∗ =
∑

j

ρ∗j . Set

ρ(n)
j

=





ρ∗j if j 6= n

ρ∗j + a if j = n
(G.13)

Then

S(ρ(n)) = S(ρ∗) +
(ρ∗n

n
+ (

ρ∗n
n

+
a

n
)(log(

ρ∗n + a

ρ∗n
)− 1)

)
(G.14)

with the last bracket vanishing as n →∞.



58 G. BENFATTO, M. CASSANDRO, I. MEROLA, AND E. PRESUTTI

(G.1), (G.2) and (G.3) are therefore proved. We will next show that ρ(λ)

is continuous, strictly increasing, and with range (0,∞). Let λ < λ∗ and λ′0
the derivative of λ0 w.r.t. λ. Then

dρ(λ)

dλ
= 1− λ′0 (G.15)

and, by differentiating (G.5),

λ′0
(
β

∑
j

jρ∗je
λ0βj + 1

)
= 1 (G.16)

Hence λ0(·) is a non decreasing function, as claimed in Theorem G.1; more-

over, since λ′0 < 1,
dρ(λ)

dλ
> 0, for λ < λ∗. For λ > λ∗, ρ(λ) = λ and since

lim
λ↗λ∗

ρ(λ) = λ∗, because λ∗ = m(0) and

lim
α↗0

∑
j

ρ∗je
αβj =

∑
j

ρ∗j = m(0), d ≥ 3 (G.17)

we conclude that ρ(λ) is continuous and strictly increasing.

Obviously, lim
λ→∞

ρ(λ) = lim
λ→∞

λ = ∞. It remains to prove that lim
λ→−∞

ρ(λ) = 0.

By monotonicity, the limit exists. Since ρ(·) > 0, λ − λ0(λ) > 0, so that

lim
λ→−∞

λ0(λ) = −∞. Then

lim
λ→−∞

∑
j

ρ∗je
λ0(λ)βj = lim

α→−∞

∑
j

ρ∗je
αβj = 0 (G.18)

Theorem G.1 is proved. ¤

Remark. The construction of the minimizing sequence ρ(n) in the case

λ > λ∗ shows that the excess mass λ − λ∗ concentrates in the limit on

infinitely long loops.
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Let

a(u) := inf∑
j ρj=u

(
Fλ(ρ) + λu

)
(G.19)

observing that the r.h.s. does not depend on λ. Obviously

a(u) ≥ sup
λ

{
λu + inf

ρ
Fλ(ρ)

}
(G.20)

We will prove that equality actually holds, namely

a(u) = sup
λ

{
λu + inf

ρ
Fλ(ρ)

}
(G.21)

which then shows that

a(u) = sup
λ

{
λu− π(λ)

}
(G.22)

namely that a(u) is the Legendre transform of π(λ). In [10] an equivalence

of ensembles theorem is proved, namely that

− lim
L→∞

NL=[Ldu]

1

Ld
ln Zmf

NL,L = sup
λ

{
λu− π(λ)

}
(G.23)

which, together with (G.22) shows that

inf∑
j ρj=u

(
Fλ(ρ) + λu

)
= − lim

L→∞
NL=[Ldu]

1

Ld
ln Zmf

NL,L (G.24)

as claimed in the text.

Proof of (G.21) - By (G.3) the inf of Fλ(ρ) is achieved on the set

{ρ :
∑

j

ρj = λ− λ0}. Call α the value of λ such that

ρ(α) = α− λ0(α) = u (G.25)
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(existence and uniqueness follow from Theorem G.1). Then

sup
λ

{
λu + inf

ρ
Fλ(ρ)

}
≥ {αu + inf

ρ
Fα(ρ)}

= {αu + inf
ρ:

∑
j ρj=ρ(α)=u

Fα(ρ)} = a(u) (G.26)

which, together with (G.20), proves (G.21). ¤

By general thermodynamic relations, and making explicit now the de-

pendence on β, the entropy σ(β, u) and the internal energy, e(β, u), are

σ(β, u) = β2∂a(β, u)

∂β
, a(β, u) = e(β, u)− σ(β, u)

β
(G.27)

In our model e(β, u) =
u2

2
+ k(β, u), with k(β, u) the kinetic part of the in-

ternal energy. By direct inspection, σ(β, u) and k(β, u) as functions of the

particles density u, become constant for u ≥ u∗. This is the Bose condensa-

tion phenomenon, which is interpreted by saying that the fluid added when

increasing the density past u∗ does not carry entropy nor momentum.

Appendix H

Let λ := {λj, j > 0} be the sequence defined by

λj :=





λ + λ′ j ∈ Vk,

λ otherwise.
(H.1)
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and

Fλ(ρ) :=
1

2

(∑
j>0

ρj

)2

−
(∑

j>0

λjρj

)
− 1

β
S(ρ) (H.2)

πλ := − inf
ρ

Fλ(ρ) , ρ(k)(λ) :=
∑

j∈VK

ρj(λ) (H.3)

Then

inf
ρ:

∑
j∈Vk

ρj=ρ(k)(λ)+v
Fλ(ρ) =

= inf
ρ:

∑
j∈Vk

ρj=ρ(k)(λ)+v


Fλ(ρ)− λ′


∑

j∈Vk

ρj − (ρ(k)(λ) + v)







= inf
ρ:

∑
j∈Vk

ρj=ρ(k)(λ)+v
Fλ(ρ) + λ′(ρ(k)(λ) + v)

≥ −πλ + λ′(ρ(k)(λ) + v) (H.4)

The equality in line (H.4) holds if λ′ is chosen in such a way that the

minimizer sequence ρ
n
(λ, λ′) satisfies the constraint

∑
j∈Vk

ρj = ρ(k)(λ) + v.

The case Vk = N+ follows directly from the arguments used in the ap-

pendix G, by changing the chemical potential from λ → λ + λ′, where λ′

is:

λ′ = ρ(λ) + v − λ + λ̃0 (H.5)

with λ̃0 ≡ λ̃0(λ, v) = 0 when ρ(λ) + v ≥ λ∗, while otherwise is the unique

solution of the equation:
∑

j

eρ∗j λ̃0βj = ρ(λ) + v (H.6)

The minimizer sequence {ρ(n)
j }j∈N+ is then given by:

ρ
(n)
j = ρ∗je

βjλ̃0 + 1{j=n}[λ + λ′ − λ∗]+ (H.7)
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where we have indicated by [·]+ the positive part. In particular, if λ > λ∗,
v > −(λ− λ∗), then λ′ = v.

For k = 2, 3, 4, we set λ̃0(λ, v) as the solution of the equation

∑

j /∈Vk

ρ∗je
λ̃0βj = λ− λ̃0 − ρ(k)(λ)− v (H.8)

when this solution exists, otherwise we take λ̃0 = 0. Then λ′ is given by the

unique solution of the equation:

∑

j∈Vk

ρ∗je
(λ̃0+λ′)βj = ρ(k)(λ) + v (H.9)

whose existence and uniqueness follows (for any given value of λ̃0) by mono-

tonicity arguments, since Vk is bounded for k > 1.

Then the minimizer sequence {ρ(n)
j }j∈N+, n > max Vk, is given by:

ρ
(n)
j = ρ∗je

βj(λ̃0+λ′)1j∈Vk
+

(
ρ∗je

βjλ̃0 + 1{j=n}[λ− λ∗/∈ − ρ(k)(λ)− v]+

)
1j /∈Vk

(H.10)

where λ∗/∈ :=
∑

j /∈Vk
ρ∗j . Notice that, when the positive part is null, {ρ(n)

j }
does not depends on n and it is actually a minimum.

In the case k 6= 1, λ > λ∗ (⇒ ρk(λ) = λ∗∈) and v < λ− λ∗:

πλ =
λ2

2
+

1

β

∑

j∈VK

ρ∗j
j

eλ′βj +
1

β

∑

j /∈VK

ρ∗j
j

(H.11)

where λ′ is the unique solution of
∑

j∈Vk
ρ∗j

(
eλ′βj − 1

)
= v

Collecting equations (G.1) and (H.4), we get:

inf
ρ:

∑
j∈Vk

ρj=ρ(k)(λ)+v
Fλ(ρ)− inf

ρ
Fλ(ρ) = −πλ + λ′(ρ(k)(λ) + v) + π(λ) (H.12)
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To prove Theorem 5.2, one has to show (see proof of Theorem E.3 for

notation) that

lim
L→∞

log SA,L(v, δ)

[ΠA,L(t)− tΠ′
A,L(t)]

= lim
L→∞




1

βLd
ln Pmf

λ,L

(
A(k)

L,δ

)

− inf
ρ∈A

(k)
L

Fλ(ρ) + inf
ρ

Fλ(ρ)


 (H.13)

For example, if λ > λ∗, v < λ− λ∗ and k 6= 1, one has

inf
ρ:

∑
j∈Vk

ρj=ρ(k)(λ)+v
Fλ(ρ)− inf

ρ
Fλ(ρ) =

= −1

β

∑

j∈Vk

ρ∗j
j

(
eλ′βj − 1

)
+ λ′(ρ(k)(λ) + v) (H.14)

Hence, by using (E.3), (E.4), (E.8) and (E.9), it is easy to check that the

two limits are equal in the case k = 4. The other cases can be treated in a

similar way.

Appendix I

If k = 1, by the analysis in Appendix H, substituting the value of λ′ as

a function of λ and λ̃0 in (H.4), we get:

inf
ρ:

∑
j ρj=ρ(λ)+v

Fλ(ρ) =
1

2
(ρ + v)2 − (λ− λ̃0)(ρ(λ) + v)− 1

β

∑
j

ρ∗j
j

eβjλ̃0 (I.1)

If λ 6= λ∗, this expression is twice differentiable and we get:

d2=(v)

dv2

∣∣∣∣
v=0

= 1 + 1{λ<λ∗}

[
2
dλ̃0

dv
+

d2λ̃0

dv2 (ρ(λ) + v)− d2λ̃0

dv2

∑
j

ρ∗je
λ̃0βj

−
(

dλ̃0

dv

)2 ∑

j

ρ∗jβjeλ̃0βj




v=0

(I.2)
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On the other hand, if λ < λ∗ and v is small enough, λ̃0 satisfies the equation

ρ(λ) + v =
∑

j ρ∗je
λ̃0βj, so that:

dλ̃0

dv

∑
j

ρ∗jβjeλ̃0βj = 1 (I.3)

and we get

d2=(v)

dv2

∣∣∣∣
v=0

= 1 + 1{λ<λ∗}


2

dλ̃0

dv
+

(
dλ̃0

dv

)2 ∑
j

ρ∗jβjeλ̃0βj




v=0

= 1 + 1{λ<λ∗}
1∑

j ρ∗jβjeλ0βj
(I.4)

where we used also the fact that, if v = 0, λ̃0 = λ0, λ0 being defined as in

(G.5).

If λ = λ∗, the right and left limit of the derivative of λ̃0 in v = 0 do exist

and are given by:



lim
v→0+

dλ̃0(λ
∗, v)

dv
= 0

lim
v→0−

dλ̃0(λ
∗, v)

dv
= lim

v→0−

[
1∑

j ρ∗jβjeλ̃0(λ∗,v)βj

]
=

1∑
j ρ∗jβj

(I.5)

so that, if d ≤ 4, the second derivative of =(v) in v = 0 does exist and is

given by

d2=(v)

dv2

∣∣∣∣
v=0

=

[
1 +

1{λ<λ∗}
β

∑
j ρ∗jjeλ0(λ)βj

]−1

(I.6)

It follows that, if d = 3, 4, d2=(v)/dv2 is given by equation (I.6) for any λ,

while, if d > 4, the same result is true, but only for λ 6= λ∗.



FINAL VERSION - 11 OTTOBRE 2004 ORE 12.04 65

References

[1] C. Block: in Studies in Statistical Mechanics, J. De Boer and G.E. Uhlenbeck eds. VOl. III, North-
Holland, Amsterdam (1965)
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