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ABSTRACT. In this paper we study the statistics of combinatorial partitions of the inte-
gers, which arise when studying the occupation numbers of loops in the mean field Bose
gas. We review the results of Lewis and collaborators [10] [2] and get some more precise
estimates on the behavior at the critical point (fluctuations of the condensate component,
finite volume corrections to the pressure). We then prove limit shape theorems for the
loops occupation numbers. In particular we prove that in a certain range of the parame-
ters, a finite fraction of the total mass is, in the limit, supported by infinitely long loops.
We also show that this mass is equal to the mass of the condensed state where all particles

have zero momentum.
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1. Introduction

Statistics of combinatorial partitions arises in many areas of science as

number theory, combinatorics, probability and statistical mechanics, as il-

lustrated by Vershik in his 1996 paper on the subject, [14].

of positive integers, N = j1+---+7Jx, k € N, Let (jq,. ..

The problem is about decomposing a positive integer N € N into a sum

terms in the sum and consider two such sequences equivalent if they differ by
a permutation. A partition of N is then the equivalence class of a sequence

whose terms sum up to N. Following Vershik we describe partitions by

1

, Jx) the sequence of
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sequences n = {n;,j € N, }, where n; is the number of elements equal to j

in a sequence representative of the partition, thus Z gn; = N. Statistics

enters once we assign a statistical weight to the partif:ions, the choice of the
weights is determined by the particular applications we have in mind and
the goal is to derive limit theorems and characterize the typical partitions
when N is large.

As in [14] we will consider multiplicative weights, namely we will suppose

that the statistical weight of n is

oo

w(n) = Hw(]’ nj)v n= {njﬂj €Ny} (1.1)

j=1

where w(j, ) : Ny — R,.

In the language of statistical mechanics, the assumption restricts the
analysis to non interacting systems and we will relax it, to study mean
field interactions as well. To make clear the connection with physics, it is
convenient to generalize the above context by considering j as an element of
some countable space J. For instance, a quantum gas of particles in a finite
box with Bose-Einstein statistics, can be represented in terms of occupation
numbers {n;,j € J}, with J the momentum eigenvalues of a single particle,
(which are countably many because particles are in a finite box). In the free
case, the equilibrium distribution of such occupation numbers is determined
by multiplicative weights of the form (1.1), as it will be discussed in the next
section.

Bose condensation is then the phenomenon for which a positive fraction
of the total number of particles occupies the state with zero momentum,
the fraction converging to a deterministic value in the thermodynamic limit.
The other particles are distributed over the remaining momenta and their
random distribution, suitably normalized, also converges to a determinis-

tic curve, in the thermodynamic limit. The fraction with zero momentum,
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thought of as a Dirac delta of positive mass added to the remaining distri-
bution, is referred to as the mass of the condensed gas, while the remaining
mass is that of the gas in its “normal state”. All that happens for suitable
values of temperature and density, the theory is very well known and can
be found in textbooks and review papers (see for instance [6], [15]). The
extension to the mean field case is due to Lewis and collaborators (see for
instance [10]).

Our model is the same free Bose gas discussed so far, but regarded in
terms of “loops” which arise when enforcing the symmetry of the wave
functions under particles permutations (Bose statistics). To make this paper
self contained, in Appendix A, we derive the representation of the canonical
partition function for a Bose gas in the loops language. Thus in our scheme
j € Ny is the “loop length”, representing a cycle with j particles which
describe the permutations among particles when imposing the symmetry of
the wave function, see Ginibre [5] for a detailed analysis of the model also
when inter-particles interactions are present.

Feynman conjectured, [4], that Bose condensation is related to the ap-
pearance of long loops, namely a fraction of the total number of particles
is concentrated on loops whose length diverges when Bose condensation oc-
curs, and this fraction should be exactly the same as the condensed mass
of the gas.

Results of this kind for the free gas, and also in the case when obstacles
are present as well, have been proved by Kac and Luttinger [7], [8], Suto
[13].

Purpose of our paper is to show that many properties of the free gas are
easily and naturally expressed in terms of the loop representation, which in
some instances could provide an alternative picture of the system with some

advantages over the more usual momentum-occupation representation. We
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will indeed prove very detailed estimates on the statistics of the loops, both
in the free and in the mean field case.

In particular our large deviation estimates can be used to extend our
analysis in the case the Kac potential with v~!/L ~ 1. An extension to a
more general class has been obtained in [9].

In Section 2 we present the model. In Section 3 we study the thermody-
namics of the mean field Bose gas, showing that the phase diagram can be
recovered by solving a variational problem in terms of a free energy func-
tional. We also compute the finite volume corrections to the pressure. In
Section 4 we analyze the statistics of the “long loops” whose length goes to
infinity faster than L?, L being the size of the volume. In Section 5 we state
large deviation theorems for the “short loops”. In Section 6, we prove that
the mass density supported by the long loops is equal to the density of the
condensed state, where all particles have zero momentum.

Proofs are given in the appendices.

2. The free and mean field Bose gas

We will consider the weights w(j,n) in (1.1) as dependent on the param-
eters L > 0, > 0, A € R and given by the expression

1 (L%(Bj,L)

w(j,n) = m(femj)n (2.1)

~(kL)?/(26)
. (&
a(Bj, L) =

_ 2.2
=, (2nB))"” 22

The quantity La(8j, L) is the partition function at temperature 3j of a

free quantum particle of unitary mass in a periodic cubic box of side L,
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t

namely
a(Bj. L Z o~ 385 (2mk/ L)’ (2.3)
kezd
The elementary equality (2.3) is proved in Lemma A.2.
By the help of the weights (2.1), we construct three probability measures
on NIE, the canonical, the grand-canonical and the mean field measures. The

canonical measure with N € N, particles is the probability

pn,p(n) = Zy' 15 j—nyw(n) (2.4)

the partition function Zy 1 being the normalization factor and w(n) is given
by (1.1) with w(j,n;) as in (2.1) with A = 0. We are not making explicit
the dependence on (3, as it will be kept fixed throughout the sequel. As we
will see in Appendix A, Zy 1, is equal to the partition function of a Bose gas
in a cubic box of length L with periodic boundary conditions and inverse
temperature 3.

The grand canonical probability is

Py (n) = B, jw(n) (2.5)
where
— 'a(ﬁja L)
S = e {10y )Y 26
AL j ; (2.6)

and the definition is well posed if A < 0. Indeed, the r.h.s. of (2.6) diverges
for A > 0 because a(3j, L) > 1/L4, as follows from (2.3).
Finally, the mean field grand canonical probability is

m —_m f—1 in)2 d
P (n) = 20 e A L ) (2.7)

)

(having put equal to 1 the interaction strength). Due to the presence of the
interaction, which ensures convergence at infinity, the value of the chemical

potential A is now unrestricted.



6 G. BENFATTO, M. CASSANDRO, I. MEROLA, AND E. PRESUTTI

To establish the connection of these measures with the Gibbs measures
of the Bose gas in the momentum representation, we realize the above pro-
cesses in the following way. Let a(87,p,L) > 0, 7 € N, p € II, IT a
countable set, be such that

a(Bj, L) =Y o(Bj,p, L (2.8)

pell

We then define new weights

a(Bj,p, L) VAN
wipm) = o (FEEEZ) (29)
and call py 1 (n), Py (n), P;"g (n), n ={n;,,j € Ny,p € II}, the measures
given as in (2.4)—(2.7) with the new weights w(j, p, n) of (2.9) and replacing

Zjnj — Zj”jm- Calling
J Jip
nj = anvp’ ny = Zjnj,p (2.10)

pell 3>0

a simple combinatorial computation, which is omitted, shows that the laws
of the variables n; under wy ;, Py and P)T [Jf* are the same as those under
pn., P and Py

We will see that some proofs become simpler using the representation
(2.10) after a suitable choice of a(8j,p,L). To recover the momentum

representation, we set II = Z¢ and

a(Bj,p, L) = e 1 (2 (2.11)

that satisfies (2.8) (cfr (2.3)). Moreover, the law under uy ;, Py and P)r\an*
of the variables n, defined in (2.10) is the usual free Bose canonical and
grand-canonical and mean field laws of the momentum occupation numbers.

Examining for simplicity only the free Bose grand-canonical measure, the
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probability to have v € N particles of unitary mass with momentum p is

e-ﬂu[—)ﬂ-% (2%)2]

3 o Bnl=A+3(%2)]

n>0

(2.12)

This is equal to Py ;({n, = v}), because,

eI ()] 2 3 I .1'(6 _A;Q LN)”“’ (2.13)

: : o Wip:
{1,pod>04:225 jnjp=v 5>0

which follows from the combinatorial identity
| = 3 1 ( ) (2.14)
{nj:3>0):%, jny=v >0 s
In turns this identity could be proved by checking that

1d"f(x) » - 11 ( )j (2.15)

1 =
vl dxv j'
{n;,j>0} 3>0

3. Thermodynamics of the mean field Bose gas

By replacing the factorials in w(n) with the leading terms of the Stirling
formula, we obtain the following heuristics for the distribution of the loops

occupation numbers at large L,
w(n)e MR o IEBW (145500 (3.1)

where F)(p) : [0, +00)"+ — R U {+0o0}, is defined by the expression

—%<ij>2—>\2pj—% (3.2)
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—Pj (1 P ) 1
S(E) - Z #(10% p_i o 1)7 Pj = (27T5)d/2jd/2 (3:3)
J

j=1

Besides the above heuristic derivation, the functional F)(p) has an im-
portant role in the sequel. Indeed, as suggested by (3.1) and proved in this
paper, in the thermodynamic limit L — oo, the distribution concentrates
on the minimizers of F), thus reducing the computation of the “macroscopic
observables” to variational problems for the “limit functional” F\. In par-
ticular this applies to the thermodynamic potentials. Indeed, interpreting
F\(p) as the Gibbs thermodynamic potential and applying the correspond-
ing version of the second principle of thermodynamics, we have the following

expression for the equilibrium thermodynamical pressure
m(A) := —inf F)\(p) (3.4)
0 P

The validity of such an interpretation is confirmed by equality with the

mean field grand canonical pressure:

: L
T(A) = ng{)lomln :Aj—i (3.5)

According to thermodynamics, the free energy functional which corresponds
to the Gibbs potential F)\(p) is F\(p) + )\{Z pj}; we can then use the latter
to define the equilibrium thermodynamical free energy:
a(u) := _inf {F\(p) + A\u} (3.6)
P2 Pi=u -
The validity of (3.6) follows from equality with the mean field canonical

free energy, which can be written, if Z;\,nj ; denotes the mean field canonical

partition function:

: 1 m
a(u) =~ lim WanNLf,L (3.7)
NL/Ld—m
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and thermodynamic consistency follows from checking that a(u) is the Le-
gendre transform of 7(\).

(3.4)—(3.7) show that the thermodynamics of the mean field Bose gas is
the same thermodynamics of the free energy functional F), which can be
quite explicitly computed. All that, including the proofs of (3.4)—(3.7), are
reported in appendix G.

The thermodynamics of the Bose gas (in the free and in the mean field
cases) is very well known and does not need to be discussed again here, but
its features in terms of loops are not so familiar and, on the other hand,
quite interesting and transparent. Recall first that in the free gas there is,
in any dimension d > 3, a Bose condensation characterized by the existence

of a critical density u*, so that the free energy
a’(u) == a(u) — — (3.8)

(i.e. the mean field free energy a(u) minus the mean field energy when the

particles density is u) is constant past u*:
a’(u) = a®(u*) (3.9)

Such a property is indeed verified by a"(u) as defined by (3.8) with a(u)
as in (3.6), which means, recalling (2.4) and (3.7), that, if v > «* and [

denotes the integer part,

. . 1 ZN, L
lim lim In L
L—oo  Np=[L%] [BL¢ { ZN: L

Ni=[L4]

V=0 (3.10)

(3.10) shows that the ratio Zy, 1/Zn: 1 — 1 (in a very weak sense, indeed).
The closeness to equality before the limit is an indication of validity of the
Bose condensation phenomenon in finite volumes. We have a result (proved
in appendix B) which shows that the infinite volume description is very

accurate:
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Theorem 3.1. Let d > 3 and

5>0
Then, giwen any density u > u* and any two sequences, Np and N;, such

that N = [L%) and N} = [L%*], there is a constant cy, only dependent on

d, such that
ZN,L
lim —== =c¢ 3.12
L—oo ZN;L 0 ( )
Moreover, there exists another dimension dependent constant ci, such that,

if A > u’,

2rd
Llim T A (3.13)
—u*,L ?

Let us now describe the condensation phenomenon in terms of loops,
starting from the analysis of the functional F)(p). In any dimension d > 3,

there is a critical chemical potential
=> p=u' (3.14)
7>0

and, for A > \*, the inf in (3.4) is not a minimum but (cfr. appendix G) it

is obtained by any minimizing sequence p = {p] ,7 > 0}, such that, for
any fixed 7,

lim ,05 " = = p; (3.15)
while:

:JL%OZP§ = P+ (A=A) =) (3.16)

>0 >0
(3.15)- (3.16) show that a fraction A—\* of the total mass p(\) concentrates

on “infinite loops”. The phenomenon is absent for A < \*, where instead
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the r.h.s. of (3.4) has a unique minimizer p(A) = {p;(A),j > 0}, where
pi(A) = pleP™ (3.17)

and A\g(A) is strictly positive for A < A*, and = 0 otherwise. Thus the total
mass of the fluid is

,
> iV, it A<\
p(N) =4 - (3.18)
Do (A=A, dfA= N
L 7>0

and no mass concentrates on infinite loops for A < A*. Note that, by (3.14),
p(A7) = A",
The validity of the above interpretation follows from following theorem,

which is a corollary of the large deviation estimates proved in Appendix E.

Theorem 3.2. For any A, (3.19), (3.20) and (3.21) below hold.

Tim P/(ng(\j;j—pj()\)|>5):() L V6 >0 (3.19)
o m Jn;
ggloPA’g( zj:{ J }\>5)_0 L, We>0 (3.20)
]<

independently of the choice of J(L), provided J(L) is an increasing function
of L and J(L) < L.

Jim P;”Lf( Z{ﬂ — (N} > 5) R ) (3.21)

ji>1

While the statements relative to global quantities, like pressure, free
energy and total number of particles are known in the literature, the results

on the way the mass distributes among the different loops are new for the
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mean field interaction; Suto, [13], has analogous results in the context of
the canonical free measure.

But all this is not really in the focus of our study, which is rather aimed
at relaxing the assumption of mean field, for instance considering Kac po-
tentials, with the hope that the loops language may provide some simpli-
fication. In this perspective it is important to derive sharp estimates on
the deviations of the densities in (3.19), (3.20) and (3.21), which have been
used in [9] to prove the occurrence of Bose condensation with Kac poten-
tials in suitable scaling limits and to get non trivial estimates for the low
momenta distribution in the condensed region for a class of long but finite
range potential. Results and proofs can be found in Section 5 and Appendix
B.

The rate functions of the large deviations of the above macroscopic quan-
tities are faithfully described by the functional F)(p), whose suitably con-
strained minima give the correct large deviations rate functions. Thus, like
in the case of the thermodynamical potentials, the analysis of the functional
Fy(p) gives the right answer.

The functional F)(p) is instead inadequate for studying how the mass of
the condensed fluid (in the Bose condensation regime A > A\*) distributes

among the long loops. The issue is discussed in the next section.

4. Distribution of long loops

To study the Bose condensation phenomenon, we restrict to d > 3 and
to A > A*. Then, see (3.18)—(3.21) and (3.14), the total mass (after the
thermodynamic limit) is p(A) = u* + (A —\*), u* is the mass of the “normal
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fluid” and (A — A*) of the condensed one. By (3.20),

nggop;fg(\_ %—u*\>(5>:0 L Y5> 0 (4.1)
J<L?

which shows that in finite volumes the mass of the normal fluid is essen-

tially carried by loops with length < L2, while the mass of the condensed

concentrates on loops of length > L?:
Lnf;opfj,f(\z%—(A—A*)ba):o L V>0 (4.2)

j>L2

Actually most of the mass is on loops whose length is a fraction of the whole

volume:
1 SLY
) mf ) o
(S ) = s
j>L2

Furthermore the number X, of loops larger than L? goes like In L and
becomes deterministic in the limit L — oo (i.e. X;/InL — a > 0), while
the cardinality of the subset of loops larger than L% § > 0, is finite and
has a non trivial (i.e. non deterministic) limit distribution.

We summarize this result in the following Theorem proved in Appendix

F, where we use the following notation:

1 _ B 1
y(ng: ﬁ Z ]nj y X(;’L = Z nj y XL = IOgL an (44)

j>8L4 j>6L4 j>L2
Jmax ‘= max{j : n; > 0}
Theorem 4.1. Suppose that A > X" and 0 < 0 < X — X\*, then

lim BV (ysr) =A=' =6 (4.5)

lim {EY'] (s51) = BxE (sr) '} = 507 (4.6)

L—oo
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A=A

lim Y7 (X5.) = log = . Jim EVI(X1) =d—2 (4.7)
Tim {Viog L | B} (X3) = B (X0)* |} =d—2 (4.8)

limy_o {EQ{ (X2,) — B (X5,L)2} _

:D(g:log)\_—)\é(l—logA_A )—I—

A— A — o
S )
o 7 7 10
Furthermore, for any & € (1/2,1],
lim P <jzlj;< > &N — A*)) — —1In¢ (4.11)

Suto, [13], has already a proof of (4.3) in the free canonical case, but he

has not analyzed in detail the statistics of long loops.

5. Small and large deviations

5.1. Small deviations.

Theorem 5.1 (small fluctuations for N). Let
. 1 ., . 2 m
0% = lim EEAf([ZJ(”j —(m)])s () = EXL(ny) (5.1)

Then, if A\g(\) is defined as in Appendiz G,

1
1inary
ﬁ T Z] p;fje)\o()‘)ﬁj (52)
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for any X\, if d = 3,4, and for A # \*, if d > 5. Moreover, under the same

conditions on X, the function

() = inf F)\(p) — inf F)\(p) (5.3)
P2 pi=pN)+v P -

with p(\) given by (3.18), is twice differentiable in v = 0 and
S (v) !
2 5.4
- (5] 60

PROOF. The value of 02 is calculated in Appendix C, Theorem C.2, in

the case A > \*; the case A < A* could be treated in a similar (simpler)
way. The relation with the free energy functional, equation (5.4), follows
from (1.6) of Appendix I. O

Remark: If d = 3 and A # \*, equation (5.2) was already obtained by
[2], but the case A\ = A\* seems new. To check that the expression given
in [2] coincides with (5.2) for A # A*, it is sufficient to note that, since

p(A) =X = X(N) and, in d =3, p} = G
caiog P L oo
ijﬂ]e = 372 Z 12°
; (2m0)3% =
_ 5
= g g12(A = p(N)) (5.5)

where g /5() is defined in formulas 17-18 of [2].

We will also study deviations of other macroscopic quantities. In partic-

ular we will consider the following sets:
Vi=7Z" Vo:={t} Vz:={J(L)} Vi:={1,2,...,J(L)} (5.6)

with J(L) as in Theorem 3.2, namely J(L) € N* is an increasing function
of L, such that I}im J(L) = oo and Llim J(L)/L* < oo.
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For k =1, ..,4, we then define

AP (v) = AL = {@ : %N(’“) 8 ( > o) +v =6 pi(N) +v+ 5) } (5.7)

JEVE JEVE

AP () = AP = {g: Yooi=d pN)+ } (5.8)

JEVE 7€V

with

N® =" jn; (5.9)

JEVE

and p;(A) as in (3.17).

The small deviations for N®) &k = 1, N®) as in (5.9), are discussed in
Appendix D for A > A\*. The relation of the corresponding covariances with
the free energy functional goes along the same lines of Appendix I and we

omit it.

5.2. Large deviations.
In this subsection we will express the rate functions of large deviations
for the quantities (5.7), (5.8) in terms of variational problems for the limit

functional with corresponding constraints.

Theorem 5.2. For any A, if k =1, and for any X # X\*, if k > 1,

1
mf (k)
lim i s O <AL’5> 1 5.10
500 Loee | — inf F\(p) +inf F\(p) | (5.10)
BGA(Lk) o P -

PROOF. The proof of this Theorem in the case k = 4 and A > \* (the
most interesting case) follows from Theorem E.3 in Appendix E and Ap-

pendix H. The other cases can be treated along the same lines. [



FINAL VERSION - 11 OTTOBRE 2004 ORE 12.04 17

Remark: The case A = \* is more involved, if £ > 1, so we did not
study it in detail, but we think that Theorem 5.2 is still valid.

Corollary 5.3 (large deviations for N = N).
In P(A! 2;) v?

lim lim —t(p(A\) +v) + 5+ p(AN)v + W())\O()\_’_f) — W?\O(/\) (5.11)

0—0 L—o0 5Ld B
where A\o(A) is defined in (G.5), 7r/\ is the pressure of the free system with
chemical potential Ny (cfr. equation (G.2)) and t is the solution of the

equation t = A\g(A + 1) — Ao(A) + 0.

Remark: If A > A\ and A+ v > A", then p(A\) = A, Ay = 0 and the

expression on the r.h.s. of (5.11) becomes —%2.

Corollary 5.4 (large fluctuations for N and N®). If A > \*, —p} <
v < A— X\ and we define 6 := P_Z" then

) . 1 2)y lv 1
}S%ngxgo 5L In P(A};) = 57 (7' +1)In(1+06)—1] (5.12)
while, if X > X and v > X\ — X\,
1 @)
}S%ngglomlnP(A Ls) (5.13)
1o A3
:—Bz[(e + )1H(1+8)—1]+3_>\0+7T)\0—7T8
where g = X\o(A — p; — v).
If A\ > X andv > 0:
J(L) (3) o Ud
i lim ) P ML) = 5 (5.14)
For A > X" and v < 0 we get:
. 1 @, clv)d
}Slir(l)Lh_}rglo 5L In P(A}5) = 5 (5.15)

where c¢(v) > 0 and vanishes as v — 0 (cfr. corollary 5.5)
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PrROOF. By Theorem 5.2 and Appendix H

. 1 9 _
%1_1’)% ngglo 5L In P(AE—J%) = —t(pe(N) +v) + Ty — Ty (5.16)

where £ is the solution of the equation py(\)e"* = py(\) + v. The solution
does exist when v > —py(\) and is given by:

-1 . pe(A) +v
) e

When A > A, and —p; < v < A — A, we see that my; — m\ = %2+

1 (i+vlm) a2 P; - N
szﬂf — % — 5227 = 5 S0 that, defining 6 := b

o lim ey _1Vrga _
gﬂggmlnpmm)_ 56[(9 +1)In(1+6) — 1] (5.18)

while, if v > A—A*, we get an extra term coming from the difference 7y ;—,.

(5.14) is a direct consequence of (5.12), obtained in the limit § — oco. O

Notice that, when A > \*, in the limit L — oo, the fluctuation of p; has

the law of a free Poisson distribution with parameter pj.

Corollary 5.5 (large deviations for N ). For A > X\*; v > 0:

lim lim M%LJ)(L) In P(A) = —v (g - 1> (5.19)
For v <0 and all A > X", we have instead,
1 j(L)
lianj)gp Ta log Pfg(Zjnj < [u* — ]v\]Ld> < —c(v) (5.20)

j=1
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where c(v) > 0 and vanishes as v — 0 as

e

v? d>5
02
c(v) v~ —— d=4 (5.21)
| log [v]|
\ |v]? d=3
PRrROOF. See Theorem E.3 and Appendix H ]

6. Long loops and Bose condensation.

In this section we show that, in the mean field model, the excess density
concentration p — p* on large loops implies the phenomenon of condensation
(i.e. a finite fraction of the number of particles occupies the state of zero
momentum ).

The reduced density matrices (RDM) are the quantum analogue of cor-
relation functions [1] [12] and the Fourier transform of the one point RDM,
in the case of periodic boundary conditions with translational invariant po-
tentials, gives (Onsager Penrose [11]) the average number of particles of

momentum 27p/L, p € Z%:

- 27p

pa(p) = /A oa(0,2)6 d 6.1)

Using the language of loops, in the mean field case, where the interaction
does not depend on the position of the particles, the one point RDM reads
[5]:

P _ (Lt (z—y))>
C ji(ni+d5 4o )2 20830

mf — —=-1 B MBI €
e = D2 S uwe om0

Jo kezd
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Theorem 6.1. For d > 3 and any 3, when X\ is larger than \*

Amf O
lim pAﬂS ) o

(6.3)

L—oo

Proof From (6.1) and (6.2) we get that:

5 P 48 50>

e (0) = /A o9 (0, 2) dx — Z =5 Y wlae
Jn;
=B\ D i 6.4
M (Z Lia(3) L)) (64
The Theorem is proved using (4.5) and (cfr. (D.62))

0 < a(Bj, L) — p; < Cpje t/209)

Appendix A

In this appendix we recall the relation between the usual definition of
the canonical partition function for a free Bose gas and its representation
in the loops language given in (2.4).

The canonical partition function for a system of N identical bosons is
ZN =Tr 6_ﬁHN

where Hpy is the Hamiltonian operator and the trace involves only sym-

metrized states.
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N

Theorem A.1. Let Hy = — Z A; be the hamiltonian of N free Bosons
i=1
i a cubic box of size L with periodic boundary conditions, then

e () \
= Y o 3 T 2p¢ (A1)

vily|=N ) jny=N J

PRrROOF. The Bosons states in the momentum representation can be writ-
ten as v >= |v, ,p € Z¢ >, v, being the number of Bosons with momen-
tum equal to k = 2rpL~!. The energy in such a state is equal to Zp €pVp;

= (27rpL_1)2, hence the first equality in (A.1).

To prove the second one, let A < 0 and define:

EPILAD Uit (A-2)
vi|y|=N

that can be rewritten as:

e~ (ep—A)J
Z(\) = exp { Zln(l — emel’A))} = exp {Z (Z %) }

(=)

eﬁep)_ 1

Y a
N Zp e Piep " 1
— %:eﬂk Z H ; ] n_y'

ny i jn;=N j L

Since Z(\) is analytic in A for Re A < 0, (A.1) follows.
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An alternative proof working in the configuration representation can be

obtained as follows.

1 p—
ZNL = ﬁZ/dTl---d””N<T7r1---7'7rN|€ FEN |9y ey

where »__is the sum over all permutations of (1,2,...,N). Since any

permutation breaks up into cycles (loops), we have

ZN:% Z nl,ng,.. HZ”J

n1,n2,..
where 1
a) c¢(ny,ng,...) = N! H —— is the number of ways of having n; loops
"
j
of length 1, ns of length 2, etc.
b) the sum is over all combinations of permutations s.t. Y jn; = N

c) Z(j) = Z e P%  where —e, are the eigenvalues of the Laplace oper-

p
ator A.

In the case of a free Bose gas in a cubic box of size L with periodic

boundary conditions

1 Ze SCE\ "
ZNL = Z an ;

n:y jnj=N j

thus deriving again the last equality in (A.1).
Finally, to justify equation (2.3), we prove the following lemma.
Lemma A.2. For any L and a > 0

—(kL)?/(2a)
€ _ —La(2rk/L)?
(2ma)? ety (A.4)
kezd
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PRrOOF. Equation (A.4) follows from the identities

1 .
e—(kL)Q/(Qa) _ /Rd 6—x2/2+szx/\/a dr (A5)

and

! ek = Z d(v — 27k) (A.6)

Appendix B

The canonical partition function (A.1) of the free Bose gas can be written

as

N
ZN7L = Z 127&&:]\7 6_6zﬁnﬁEE = Z ZM,L (B.l)
{ru} M=0

Inp= Y Ly mear e Ewmnibe (B.2)
{ny,k#0}
where the momentum k takes values in the set {27n/L,n € Z%}, n, € Z
and B = k*/2.
In this appendix we study the tail properties of the probability distribu-
tion on N with density

Z <
Py (M) =22 Qp= Z M.L (B.3)
Qr —
and mean value
1 *
E#0

We remark that this probability distribution is the canonical distribution

of the total number of particles with k # 0 for a free Bose gas. These results
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will be used in the sequel to prove small and large deviation both in the

free and mean field case.

We want to study the asymptotic properties of the probability measure Py,
as L — oo. To begin with, note that, if d > 3, limy_., A7 does exist and

. ) . dk 1
A= nggo AL = /Rd (2m)d ePPe — 1 (B:5)
Let us define
cp = LI72 (N = X)) (B.6)

Lemma B.1. For any d > 3, ¢y has a limit as L — oo and

| 0 ; e’/ (25t) B
=1 = t]1— —— 7
C L1—>IEO CL /0 nz#o (27T/6t)d/2 ( )
PROOF. (3.2) and (B.4) imply that
LN, =) ) e PP =3 " [L%(pj, L) — 1] (B.8)
kA0 j=1 j=1
while (B.5) implies that
- 1
LN =1y ———— (B.9)
Nd/2
— (2n )
hence, by using the definition of a(¢, L) in (3.2), we get
1 & e~ 12/ (25t;) j
I |\ S| T B

The lemma follows from this expression, easily implying the convergence
of the sum over j < L? and the identity, following from (3.2) (with L = 1),

. Z o1/ (2t) _ 1 Z 22’ (B.11)
(2mt)¥2  (2mt)i2

n#0 n#0
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which implies immediately the convergence of the sum over j > L2. 0

Let us now define

M — L4x; L d=3
yL = h—L , hp=4¢ L*VlogL d=4 (B.12)
- a2 d>5

An important role in this appendix has the following Theorem

Theorem B.2. If M is a random variable with probability (B.3), the
distribution function of the random wvariable y; converges, as L — o0,
to the distribution function of a random wvariable y on R with mean 0
and smooth density p(y) strictly positive, whose Laplace transform F(o) =
[ dyp(y) exp(—cy), o € C, is given, if d = 3 and Ro > —27%3, by

F(o) =exp %G <2772—[3n_2) , Glu)=u—-log(l1+wu) (B.13)

while, if d > 4 and Ro € R,

| _
F(o) = e»™” Co{wg2 o

@ )T d 25

(B.14)

Moreover, there exists a constant C', independent of L and M, such that
(1+yp)hPL(M) < C (B.15)

and, giwven any y € R, if we choose M = M} so that y; = (M} —
LX:) /by =y, then

hpPL(Mp) +—= p(y) (B.16)

PRrROOF. To begin with, we shall prove that the Laplace transform of

yr, Fr(o) =Y %_o Po(M) exp|—c(M — LIX;)/hy], is well defined and con-

vergent as L — oo, if Ro € (0g,0), where og = —27%3, if d = 3, and
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o9 = —o0, if d > 4; this implies in particular that the characteristic func-
tion fr(t) = Fr(—it), t € R, is convergent for any t. By analyzing the
decaying properties in ¢ of f1(t), we shall also prove the bound (B.15), im-
plying that the distribution function of y;, is convergent and that its limit is
the distribution function of a probability measure on R; in fact, by a simple

application of dominated convergence Theorem,

Z PL(JW):hi Z hpPr(M To /

0<M<hpy+Lix; L ocnr<hpyrrin
(B.17)

Note that this result follows from the convergence of f1(t) to f(t), without
using the bound (B.15), since Pr(M) is a probability measure [3]. We
are stressing here the role of (B.15) only because we shall generalize in
the following the previous argument to some cases where Pp(M) is not a
probability measure, even if > 3;_ Pr(M) = 1.

Finally, by analyzing the properties of the limiting measure Laplace
transform, we shall prove that this measure has a smooth and strictly pos-
itive density.

By a straightforward calculation, one can see that

1 — e—BEx—a/hy

log F1.(0) LN g lo
o) = o — =

1 1 —e /M
_ Z [hL TR log( + R 1 )] = (B.18)

k0
1 [ 1 —e /M
vy b - —a/fu]+zc< )
BE, _ ( 2n2p/n2 /L% __
i ARG
where G(u) = u — log(1 4 u).
Let us consider first the case d = 3. Then hy = L?, so that F (o) is well

defined for Ro > 0y = —2723; hence we shall fix ¢ so that this condition is
satisfied. Then the first term in the third line of (B.18) goes to 0 as L — oo,
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since it is bounded by CL™!, where C' (here and in the following) denotes a
suitable positive constant, depending on ¢ but independent of L. Note that
1 —e /M o

Un,L = e2m?fn?/L* _ 1 L—oo UZ 271.25@2 <B'19)

and that |u, |, |uh| < Cn? and |u, — ui| < C/L? On the other hand,
Ru, ; and Ru,, are larger of some constant uy > —1, for any n; since G'(u) =

u/(1 4+ u), it immediately follows that
Glupr) = Glup)l < Clugr —upn® < On Pluyy —uy | <

< Cln|7PL7Y? (B.20)

It follows that log F(0) and Fp (o) are convergent for L — oo and that, if
F(o) =limj . Fr(0),

(o) =log F(o) =Y G (#W) (B.21)

n#0
It is not hard to show that I1(¢) is differentiable and that

o
II'(o) = B.22
() % 27%0n?(o + 2m%4n?) (B-22)

implying that, if x € R,

hril I'(z) =400 lim I'(z) = —o0 (B.23)

T—1T00 r—0

Let us now call P(dy) the probability measure such that
Flo) = el — / P(dy) e (B.24)

The property (B.23) easily implies that the support of P(dz) is the full real
line. Moreover, the characteristic function f(¢) of P(dzx) is given by the

equation

—itan 2

fit) =" =T ;-

m X a = (27'['25)_1 (B25)
n#0 -
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By using the bound log(1 + ) > 2z/3, valid for 0 < z < 1/2, we get, if
[t > 1,

f@)] < [+ a’n[ )2 <

n#0
< [I w27 JI e"rP<e™ (B2
n|<(v2alt])/? In|>(v2alt])1/?

This bound and the support properties of P(dy) imply that P(dy) = p(y)dy,
with p(y) a strictly positive smooth function on R.

In order to complete the proof of the Theorem in the case d = 3, we still
have to prove the strong convergence property (B.16), together with the uni-
form bound (B.15) on hy Pr(M). Note that the definition of characteristic
function implies that

why
hLPL(M) ! /+ dt B_itnyL(t) (B27)

2 why,

By using (B.18), we see that

eUn,L

t) = Fr(—it) = B.28
) = Fut-it) = T o (3.25)
n#0 ’
where w, 1, is given by (B.19) with ¢ = —it and
! (B.29)

Un,L = LQ(ezﬂzﬂﬂz/Lz _ 1)

It follows that | f(t)| < [T, [14+unr| ™. Moreover, by using (B.19), we see
that, if [t| < 7L?/2 and |n|*> < |t], |1 + u, 1| > 1+ 6, with a suitable § > 0.
Hence, if |t| < wL?/2, |fr(t)] < [To<pu<pr (L + §)7! < exp(—C|t|73/?). If
wL?/2 < |t| < wL? the same result is obtained, by observing that in this
case, if [n| < L, |[1+u, | > 1+1/(e*™ 7 —1), so that | f1(t)| < exp(—CL?) <

exp(—C|t|73/?). Hence, we can show that, uniformly in L,

()] S exp(=CJt*?) . |t] < ahy (B.30)
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which implies, together with (B.27), that h P (M) < C, with C inde-
pendent of L and M. Moreover, by the dominated Lebesgue convergence

Theorem, we get, for any y € R,

1 oo
v =y = hPr(M) — oy e f(t) = p(y) (B.31)

L—oo
00

In order to complete the proof of (B.15), we use the identity

1 +7hy, .
(i PP D) = 5o [ e (B.32)

2 why

Since f/(t) = fr(t)[IT}(—it)* + 117 (—it)], where Il (—it) = log Fr(—it),
and, as one can check easily by proceeding as in the analysis given before

of log F7(0), uniformly in L,
[ (—it)| < Clt| -, [Hp(=it)]| < C (B.33)

the bound (B.15) immediately follows from the bound (B.30).

Let us now suppose that d = 4. Then h; = L?\/log L, so that, given any
z < 0, Fp(0) is well defined for Ro > z, if L > exp(—z/(27%3). Moreover,
as in the case d = 3, the first term in the third line of (B.18) goes to 0 as
L — o0, since it is bounded by C(log L)™'/,
If we define u, as in (B.19), |u,z| < C(n*ylogL)™!, with C only

depending on ¢ if L is large enough. Hence, if G(u) = u—log(1+u) —u?/2,

. C 1
Dl < B.34
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Note also that L4 Z|@\2L[6Xp(a@2/[f2) — 1]7% is bounded for L — oo, for
any a > 0, and that

1 1 1
— <

0<|n|<L
C 1
— — ——0 B.35
0<|n|<L

so that (log L)~1L~4 D nt0 lexp(an?/L?) —1]7% is convergent for L — oo and

1 1 1 !
_ — i poTY i
o T e T T, X

n#0 0<|n|<L
1 1 diz  2n?
— ~ lim / 2L (B.36)
a? L-oolog L Ji<p<p 2] a?

Bu using (B.18) and (B.36) with a = 2724, it is now easy to prove that
log F1(0) is convergent for L — oo and that

(o) = Llim log Fr.(0) = (B.37)
1, 1 1 12

e _ -
27 [one Ltlog L 2 (2Pl 12~ 2(278)2°

n#0

It follows immediately, if we define P(dy) as in the case d = 3, that P(dy) is a
Gaussian probability measure with density p(y) = (2mco) /2 exp[—y%/(2¢)],
with ¢y = 2/(273)%. The proof of (B.15) and (B.16) in the case d = 3 can
be easily extended to this case; we omit the details.

Let us finally consider the case d > 5. Then h; = LY? and we can
proceed as in the previous case, the only relevant difference being that now
II(o) gets a contribution also from the first term in the third line of (B.18).
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We find that II(c) = 1cyo?, with
. 1 1 1
Cy = nglc}o ﬁ nz;é% [eQWQﬁnQ/LQ 1 + (6277%32/& _ 1)2] — (B.38)
ddk‘ e‘ﬁEk ]
— —ﬁE 1+72+1
/ (2m)4 (1 — e=FFk)2 Z / s = Z (27 35)/2
J1,J220 Jj=>1

The proof of (B.15) and (B.16) in the case d = 3 can be easily extended

also to this case, so completing the proof of the Theorem. [l

Appendix C. Proof of Theorem 3.1

Note that the mean field grand canonical partition function can be writ-

ten as
> Brd
2rd
:T{ €2ﬂ)\L Ze L( -V’ ZNL (Cl)
N=0
and that

L4 Ld/Q 2
P,(M <N) = Py (yL < —A=X)+—an+ —cL> (C.2)

hr hr hr
N
Ty = Ld/2(ﬁ —\)
Let us now define
:g\n{/ ’BLd
Pz = e3INVL Q) /2 Ld/2 Ze "M < N) (C.3)

Theorem 3.1 follows from the following Lemma.
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Lemma C.1. If A > X*, the quantity 'y has a limit as L — oo. If
A > N we have, for any d > 3,

_ 2m
L11—I>I<>10 IBWAES 7 (C.4)

while, if A = A\, we have

JE [ dyp(y) d=3
O<LIEEOFA’L: % d=4 (C5)
[ dwe 02 [T dyply) d>5

where p(y) is the density probability defined in Theorem B.2.
Moreover, if N = [uL? (-] denotes the integer part), u > X\*, and
N; = [\*L9), then

(C.6)

PROOF. By theorem B.2, Pr(y, < §) +—= fog dyp(y), for any fixed
y, p(y) being a strictly positive function depending on the dimension d.
Hence, by using (C.2) and Lemma B.1, we can easily show that, if A\ > \*

and Ty T T

while, it A = A" and any 7— x,
Py <c,) d=3
Py <x) d>5

Then (C.4) and (C.5) follow from (C.3) and a simple application of the

dominated Lebesgue convergence theorem. The proof of (C.6) is a simple
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consequence of (C.2), (C.8) and the equation, valid if N = [uL9], u > \*,
and N; = [\*L9],

lim = —
L—o0 ZNE,L L—o0 PL(M S NE) L—oo PL(yL S CLLQ/hL)

By similar arguments, one can prove the following Theorem (see also [2]
for the case A > \*).

Theorem C.2. If A > X\*, the distribution of the random variable x
converges, as L — oo, to a Gaussian distribution with density exp(—pBx2/2);
the same result 1s true if A\ = \* and d = 3,4. However, if d > 4, the
limiting distribution is still well defined, but it is not Gaussian anymore;
it is proportional to e P72 [*_dyp(y), p(y) being the density probability
defined in Theorem B.2.

Appendix D. Distribution of “short loops”

In this appendix we will restrict to d > 3 and A > A\* and study the

distribution of the variables

Z' aJng — LdPA,L
yar = = hj s PAL = ij,[, (D.1)
AL jeA

where A is a finite subset of N*, L? p;.r, is the mean value of jn; with respect
to the mean field measure and hy4 1 is a suitable scaling factor. The main
results are stated in Theorems D.4 and D.5 below, the main ingredient in
the proofs is the reduction to the analysis of the probability distribution
Pr(M) defined in Appendix B.
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We start by deriving the following expression for p; r:

PjL = a(ﬁ]a )Oé],

where
1

T LLCW Z _ﬁxN/QPL(M <N —j)

N>0

QL =

with zx as in (C.2).

Proof of (D.2) - Let wo(j, nj) be as in (2.1) with A = 0, then:

B/\Q

PjeL = r—amf Z N Z Hwo(%”j)jzlf

BAZ 14

el . _5i
l—; a(fj ,L)Ze > ZN_j* L

SAL N

By (B.1) and (B.3) we get:

A2
eﬁTLd
SN

hence (D.2) follows by (C.3).

a(B5*, L)QL Y e T Py (M < N — %)
N

(D.2)

(D.3)

(D.4)

(D.5)

]

Lemma D.1. For any A > \*, there is a constant C, independent of L

and j, such that, if hy is defined as in (B. 12)

0<1—OJJL<C
L

Moreover, if A = \*,

( ple)

C* d — 3
hy IS dyp(y)
lim —(1 —a;1) =< 2p(0) d=4
g LXie e
S dwe 0t [T dyply)

where p(y) is defined as in Lemma C.1.

(D.6)

(D.7)
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PROOF. Note that

1 1 )
7 > e PPN~ j <M< N) (D.8)

1 —aj; = ——
s F Ld
AL N>0

By using the claim in Lemma C.1 that hyp Pp(M) is bounded uniformly in
L and M, we get

N .
1
PLN = j< M <N)=1- S hePu(M) < ChiL (D.9)
M=N-—j+1

which immediately implies (D.6), by using Lemma C.1. On the other hand,
if \=Xand M = N —r, r > 1, the corresponding y;, variable is equal, see
(C.2), to (LY?xx + L?c, — 1) /hyr, so that, by using (B.16),

pc) d=3
hpPL(M=N—r) == ¢ p0) d=4 (D.10)

plz) d=5
(D.7) then follows from Lemma C.1 and dominated convergence Theorem.
O]

IfA> N hpPp(M = N—r) goes to 0 as L — 00, so we expect the bound
(D.6) can be improved. This is especially true if j is taken as a diverging
function of L; in particular, if j > (A —A*)L%, it is easy to see that a; — 0
as L — o0o. In order to get good bounds in all these cases, we shall use the
following large deviation bound for the probability measure Pp(M).

Lemma D.2. Let 0 < u; < uo; then there ewist L(uy), such that the

probabilities

ST (ur, ug) = Pr(LIN5 + Ly < M < LN} + Lluy) (D.11)

Sy (ur,ug) = Pr(LN; — Luy < M < LN — L'uy) (D.12)
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satisfy, for L > L(uy), the following bounds.

gl (140 < S7 (ur, up) < el (1-01) , Vur >0 (D.13)

e f(w2) (L) (1401) ST (uy,up) < e~ J)(LYh) (1=00) g o A (D.14)

where Oy, is a function which goes to 0 as L — 00, ay is a positive constant,
depending on d, and f(u) is a positive function of order u® for u — 0 (equal
indeed to ayu® for d = 2,3).

Proor. By (C.2), we can write

UQLd/hL I (¢ U2Ld/hL ;
ST (ur,ug) = / Pr(dy) = et )/ e P, 1.(dy) (D.15)
u1L4/hy, u1 L4 /hy,

where 11y (t) = log F(t), F(t) is the Laplace transform of Pr(dy) given by
(B.18), t is any real number such that Fp(¢) is well defined and P, 1(dy) is
the probability measure

e WPL(dy)

0 (D.16)

P, 1(dy) =

By looking at (B.18), we see that F7(¢) is defined for ¢ > ¢}, where t] is the
value of ¢ such that the argument u,, 1, of the function G(u) = u—log(1+u)
is equal to —1 if |n| = 1, that is t; = —ahy/L?. We choose t so that

L
10 = [dyy Patay) = o 0= BE (D17)
’ hr 2
By using (B.18), this condition can be written
1 (6—t/hL _ 1)€aQ2/L2 LA )
hL ) (e — o~thy(eo® /T — 1) “hp 0 4T 2n°6 (D18

n#0
By proceeding as in the proof of Theorem B.2, it is easy to see that the

sum in the L.h.s. is bounded by C|t|, if we extract from it the terms with



FINAL VERSION - 11 OTTOBRE 2004 ORE 12.04 37

In| = 1; hence we get

¢ 1 L2 Le
- Y48 = v D.19
nZa/L?+t/hy S +o)=v (D-19)

Cr, — d
with 0,7, — 0 and ¢, — ¢ as L — oo. It follows that

t— = —al*(1+ 6 1) (D.20)

with da 1 — 0 as L — oo. It is easy to see that, for such a value of ¢, I11(¢)
diverges as C'log L for d = 3,4 and as L% for d > 5, so that we can write
a2 UQLd/hL 4
Sf(uhw) _ e—ch (1+5L)/ 6t(y—vL /hL)Pt,L(dy) (D.21)
ulLd/hL
with ; — 0 as L — oo. The upper bound in (D.13) easily follows from

this equation. In order to prove the lower bound we have also to show that

Ung/hL
[ Py =16, (D.22)
ulLd/hL

with 67, — 0. This result can be deduced as the other ones from the proper-
ties of the Laplace transform of the measure P, ;(dy); we omit the details.

Let us now consider the upper bound of (D.14). We proceed as before,
by writing

7U1Ld/h
S~ (ur,up) = MO / "t L) p () <
—Ung/hL

< M-t (®) (D.23)

where ¢ is chosen so that 1T (t) = u;L?/hy. It is easy to see that 1T/ (t) is
a monotone function and that lim; .., [T} (t) = X5 L%/hp, so that t is well
defined for L large enough, if u; < A*. It turns out that limy .. t(hy /L) =
fo(u) > 0, with fo(u) of order u for u — 0 (and equal to cgu for d = 3,4,
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for some ¢4 > 0). Moreover

I (t) — t (1) = —/t ds /S dull](u) , C/2<Ij(u)<C (D.24)

and one can prove that lim;_,. I} (u) = Cy > 0, uniformly for 0 < u < ¢;
this allows us to get the upper bound in (D.14). The lower bound is obtained
in a similar way, by choosing t so that I/ (t) = usL?/h; and by proving

that f:ZILde/thL P, (dy) — 1/2 for L — oo. O

We can now prove the following bounds on the factors «; r.

Lemma D.3. Given d > 3, A\ > \* and a sequence ji, such that
lim g /L=y < (A= X) (D.25)
there exists L such that, if L > L and j < jr,
1 —aj < Ce AN =L (D.26)

where C' and as are constants independent of L and of j.
Moreover, if X > \* and v > X\ — X\*, there exist C, a4 and L such that,
if L>L and j > jr,

a;p < Cemub= P9I (D.27)
PROOF. Note that

Pr(N—j<M<N)<
(A= X)L+ ¢ L2 + oy L2 — j)
hy

Hence, if j < jr, with j; /L% — v as L — oo, and |zy| < L@ D/2 5o that
lxn|LY? /by, < L~Y2L

N o~y d
PL(N_j<M§N)§PL<yLZ()\ AN =1 5L)L>

= (D.29)
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with 6;, — 0 as L — oo. On the other hand

o0
1 _ﬁLd—l

i Z €_§$%1‘$N|ZL(¢171)/2 < (Ce 1 (D.30)
N=0
The bound (D.26) then easily follows from (D.8) and Lemma D.2 since the
upper bound in (D.13) is independent of the uy value (equal to +oc in this
case).
The bound (D.27) is proved in a similar way, by using the upper bound

in (D.14) and the remark that L&t < (L9/hp)% O

We have now all the technical ingredients to study the Laplace transform
Fy4 1(0) of the probability distribution of the random variables y4 ;, defined
in (D.1). We have

LdPA,L
s
e A,L

1 2 9 1
_ —_E —Bay/2_~ E , _
Far(o) = L, Li~? e Qr 1ZJnj=N

[ wGony) [ wt.npe "7 (D31)

Jj¢A jEA

By using (2.14) and the identity

Jng

w(j,n)e AL = (D.32)
R O}
(o0} n'! J nl \ J
we see that
Fur(o) = GAL(U)LL e NP, (M < N) (D.33)
’ ’ Ty L2 o
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where

Paro(M) = Qire Y sjuu -

{n;>0,j>1}
H’IIJ(], nJ)HUNJ(]? ”I’Lj,O') (D34)
j¢A JjeEA
QA,L,O’ = Z Hw(]a nj) H’UNJ(], ’ij,O') (D35)
{n;>0,j>1} j¢A jeA
1 [Lda(Bj. Ly mr — 1]
@(jn,0) = — alBj, L)e (D.36)
n! j
LdPA,L
Garlo) = e’ AL M (D.37)

Qr
Note that Py 1 ,(M) in general is not a probability distribution for any value

of o (this is clear only for o real and negative). Moreover, in all the choices
of the set A we shall consider, P41 ,(M) is absolutely summable over M
and its sum is equal to 1 (which is formally true by definition). Hence,
we can consider it as a finite complex measure on R (with support on a
lattice set) and we shall study its convergence, as L — 0o, to a measure
with smooth density.

A few simple calculations show that

Lla(Bj, Lye "Tr — 1 Lla(Bj, L) — 1
log QA,L,U _ Z (ﬁ] ) + Z (ﬁ] ) (D38)
jeA J JgA J
so that
L? La(Bj,L) ( —o
log GAyL(O') m— hpA,L + Z a(@j? ) <€ hA7L — 1) =
AL A J
L%(Bj, L) ( —opl J )
=ory;+ ——— (e ML 140" D.39
AL Z J hA,L ( )

jeA
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where

Ld
raL = T Z a(Bj, L)(ajr — 1) (D.40)

jeA
It will also useful to consider the random variable
M— My,
hr, .

YA, Lo = (D41)

where M is a random variable with measure Py 1, ,(M) and hz, is defined as
in (B.12).

The mean value of M is given by

Mig, = S MPar (M) =" (1fa(5j, D)e 5 —1)
M=0 jeA
+ > (L%a(Bj,L) — 1) (D.42)

JEA

By using (B.8) and (B.4), we see that

Mipo= LN + L3 a(3j,L) (¢ 57 —1)  (D43)
jeA
so that
PA&L7‘7<M S N) = (D44)
LYXN=N)+ LPay + Lcp |,
PA,L,U <yA,L,U < ( ) hL N L + yA,L,a)
Ld o1
Yire =7~ alBiL) (1 —e hA»L) (D.45)
T g

As in the proof of Theorem B.2, the limiting distribution of y4 1, will be
obtained by studying the Laplace transform Hy 1 ,(w) of its measure. We
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have
= L%(Bj,L) — 1 ( i j >
log Haopo(w) = ’ e " — 14w |+
w - 3 .
+ log Raro(w) (D.46)
Léa(Bj, L) / —gi_ i '
l0g Rao(w) = 3 2O (w7 ) <e o +wi> (D.AT7)
; J hy
jJEA
If we define far,(t) = Har,(—it), we have also
1 +mhy, ‘
hLPA7L,a(M) = —/ €7ZtyA’L"’fA7L7U(t) (D48)
27{ —7ThL

Moreover, if 0 = 0, the function H, 1 ,(w) has to coincide (as one could
check by using the identity (A.4) and some easy algebra) with the function
Fr(w) defined in (B.18). It follows that

log Haro(w) = log Fp(w) +log Rarq(w)
fare(t) = fo(t)Raro(—it) (D.49)

We shall consider some special cases for the set A. First of all, we consider
the simplest one, that is the case where A contains only one element; we
prove the following Theorem.

Theorem D.4. If A= {j} and hay = L2 then, if d > 3 and X\ > \*,

putL T P = (2mB5) " (D.50)

Moreover, if d > 3 and A\ > X" ord = 3,4 and A = X\, the probability
distribution of ya converges, as L — oo, to a Gaussian distribution with
variance jpj. Finally, of d > 5 and A = X*, the limiting distribution is still



FINAL VERSION - 11 OTTOBRE 2004 ORE 12.04 43

well defined, but its Laplace transform is given by

1
§aszj + (D.51)

4 log ] o2 e ST dyply)
[ dweb22 [T dyp(y)

Llim logF{jLL(J) = —or'jp; +

where ,
L dee P p(a)

[T dwe 2 [T dyp(y)

PROOF. By using the definition of a(3j, L) in (2.2), we see that, for any

(D.52)

7
a(B), L) 7= (2m05) ™" = p; (D.53)
Moreover, by Lemma D.1 and (D.Z), YA >\,
lim oy =1 = lim p;; =p; (D.54)

Let us now observe that, by (D.47), for any fixed o and w,

108 R .0(0)| < O d® 0 (D.55)
Moreover, if we put w = —1it, t € R, for any fixed o, we have
[log Ryjy.r0(—it)] < C\tlLd/Qh JI2 < ot (D.56)

Hence we see, by using (D.49) and the bound (B.30), that |far.(t)] <
exp(—C|t]*/?). Tt is easy to prove that this bound is valid also for Lot
which implies that the measure Py 1 ,(M) satisfies the analogous of (B.15)
and (B.16) (we omit the details); and that Py, 1 ,(y < #) converges to
P(y < g) for any g, if P(dy) is the limiting probability measure of Theorem
B.2. On the other hand, we have, see (D.45),

0 d=3,4

py — D.
Y Lo Toe { cjp;  d>5 (D.57)
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Note also that, by Lemmas D.1 and D.3, see (D.40)

0 d=3,4 , A=ZXN
TN T ) O d>5 , A> N\ (D.58)

If d =3 ord=4, it follows, by using (D.33) and (D.39), that, for any

A >\

. . I 5.
Jim log Fjy 1 (0) = lim log Gyjy (o) = 50%jp; (D.59)

The same result is true, if d > 5 and A > \*. However, if d > 5 and A = \*,
we get (D.51).

The fact that the Laplace transform converges for any o implies that
also the characteristic function is convergent. As it is well known [3], this is

sufficient to prove the convergence of the probability distribution of y4 . U

We now consider a more interesting choice of the set A.

Theorem D.5. Let A = {1 < j < jp}, with j; a monotone diverging
function of L such that j;, < L?. Then, if d > 3 and X\ > \*,

paL = > pi=A (D.60)
j=1

Moreover, if ji/L* = 0 and A > \*, the probability distribution of yar
converges, as L — 0o, to a Gaussian distribution, provided we take
L /L)Y d=3
har =< L*/logjr d=4 (D.61)
L2 d>5

The same result is true, if A = X*, provided d = 3 or d = 4 and limy,_,,

\/logjL/logL = 0; wn the other cases the limiting distribution is still well
defined but it is not gaussian.
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PROOF. By using (2.2), it is easy to prove that, if j < L?, there is a
constant C', independent of j and L, such that

a(Bj,L) < Cp; , 0<a(Bj,L)— p; < Cpje /%) (D.62)
Hence, since 0 < a1 <1,

0< Y (pir—pjajr) <C Y j e B/ <or* ——0  (D.63)

I—
i<iL j<L2
On the other hand, by (D.6),
C
0< > pi(l—ayr) < a » i —0 (D.64)
j<i bj<r2

(D.60) is an easy consequence of the last two bounds.

In order to study the limiting distribution of y4 1, we proceed as in the
proof of Theorem D.4. First of all we observe that, by (D.47), if ha is
chosen as in (D.61), for any fixed o and w,

Ld jL o
|log Rao(w)] < Ch ™ Z]2 d/2 —— 0 (D.65)
AL, 1
Moreover, if we put w = —it, t € R, for any fixed o, we have

d JL
| log Ryjy 0.0 (—it)] < C\ﬂhALLhL ;jldm < Cl¢] (D.66)
Once again, by proceeding as in the proof of Theorem D.4, one can prove
that the measure Py 1 (M) satisfies the analogous of (B.15) and (B.16); we
omit the details. This implies the convergence of P41 ,(y < 7) to P(y < %)
for any g, if P(dy) is the limiting probability measure of Theorem B.2. On
the other hand, we have, see (D.45),

0 d=3

Yare == § 0 (2m°0) 2 limp o \/logjr/logL d=4 (D.67)
o Z;; P d=5
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Let us now suppose that A > A*. Then, by using (D.26), we can easily
show that, for any d > 3, 17 ; (see (D.40)) goes to 0 as L — oo. It is also
very easy to show that the factor which multiplies G4 (o) in the r.h.s. of
(D.33) goes to 1 as L. — oo. Hence, by using (D.39), we get

lim log Fa (o) = lim log Gar(o) = (D.68)
lim M (e—“m — 1+ JL)
L—o = i hA,L

If we insert the value of h4  given in (D.61) in the r.h.s. of this equation, we
can see that only the terms of order o2 survive in the limit L — co. More-
over, the fact that the Laplace transform converges for any ¢ implies that
also the characteristic function is convergent. Therefore the limiting distri-
bution of y4 1 is well defined and is gaussian; we can also easily calculate
its variance.

If A = \*, we get a different result for d > 4, because we can see, by
using Lemma D.1, that

0 d=3
rar Ty —200(27%0) ?limp o y/log jr/log L d =4 (D.69)
—r’ Z;i1 JP; d=>5

Moreover, the factor which multiplies G4 (o) in the rh.s. of (D.33) is
still convergent, but it goes to 1 as L — oo only for d = 3 and for
d = 4, if limy_, \/logjL/logL = 0. It follows that the limiting distri-

bution of y4 1, is still well defined and its Laplace transform can be explic-

itly calculated; however, it is gaussian only for d = 3 and for d = 4, if
limy, .o v/log jr./log L = 0. H
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Appendix E. Large deviations for “short loops”

In this appendix we consider d > 3 and A > \*; our main result is stated
in Theorem E.3

Given any finite subset A of N*, we define

Sutl0,6) = Pl [Lpas +v—6) < S jng < Lilpar +0+8)]  (E1)
jeA
with p4 defined as in (D.1). We want to show that, if A = {j} or A =
{j < jr}, with j; a monotone diverging function of L, such that j; < L?, we
can evaluate the behavior for L — oo of the r.h.s. of (E.1) by substituting
the measure PZL g with the measure, independent of A (recall that A > A* in
this section)
Par(ng,j€A) =25 [Jwliny) (E.2)
jeA
We shall consider in detail only the case A = {j < jr}; the other case can
be treated in a similar (simpler) way.
Let us define 114 1(t) = log Fu 1.(tha ) and

ﬁA,L(t) = log GA7L(thA,L) - thA,LTZL =
L , L :
- B i 1) (E:3)

jeA J

where Fy (0) and G4 (o) are defined as in (D.33) and 1 ; is defined as
in (D.40). Choose t = t1(v) so that

—I1, ;(t) = vL* (E.4)

Lemma E.1. Let A = {1 < j < jp}, with j. a monotone diverging
function of L such that j < L?. Then the equation (E.4) has a solution for
any v > —\*. Moreover, if 0 > v > —\*, t;(v) has a finite positive limit
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t(v) for L — oo, such that, for v — 0 and suitable constants cq

c3v> d=3
t(v) ~ < cv/log(l/v) d=4 (E.5)
Cqv d>5H
while, if v >0, tr(v) <0 and
i et (E.6)

L—oo log(v‘jg/2_l)

PROOF. By using (D.39), we see that equation (E.4) can be written as

) = Z (Bj, L)(e™ —1)=w (E.7)

Note that the sign of ¢ is the opposite of the sign of v. Let us consider
first the case v < 0. In this case t > 0 and Hy(t) — —>_,;, a(Bj, L), as
t — +oo; since limpoo Y .c; a(B4, L) = A", equation (E.7) has a unique
solution t7(v) only if v > —A*. It is an easy exercise to show that t1(v)
converges, as L — 0o, to a limit ¢(v), verifying (E.5).

If v > 0, there is a unique negative solution ¢y (v) of (E.7) for any v, since
Hp(t) — +o00 as t — —oo, and it is easy to see that limy .ty (v) = 0. A
more careful analysis shows that equation (E.6) is verified. O]

Lemma E.2. Let A = {1 < j < jr}, with j. a monotone diverging
function of L such that jp < L?. Then, if t is defined as in (E.4), there
exists 1 > 0 such that, for L large enough,

FA,L(thA,L) = GAvL(thA,L)[l +5L(t)] , |(5L(t)‘ < e 1" (ES)
Wot) = I ) +ou(t) o) <e ™ (E.9)
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PROOF. By using (D.33), we see that (E.8) is satisfied, if we define

(5L(t) = (5L,1 —|—5L’2(t) (E.IO)
1 1
orl = F—7an > etz (B.11)
AL N>0
1 1 2
(5L72(t) = _F—W Z 67/8:6N/2PA7L¢(M > N) (E12)
AL N>0

where P41 (M) is the measure defined in (D.34), with ¢ = thar, t being
the solution of (E.7). By using (C.3), we see that

1 1 )
= “PeN/2p (M > N) (E.13)
d/2 Z ¢ L '
Dy LY =

where Pp(M) is the probability measure defined in (B.3). By using (C.4)
and the large deviation estimates of Lemma D.2, it is easy to prove that
102.1] < exp(—L"), with 0 <n < d—2.

In order to prove a similar bound for d75(¢), we need a large deviation

0,1

estimate for the measure Py (M). Let us consider first the case v > 0,
that is ¢ < 0, when P4 1,(M) is a probability measure. In this case, if
A— X —v>0and |zy| < L¥* by using (D.43) and (E.7), we see that, for
L large enough

Pyry(M > N) = Pap(M— M, >L' A= X —v)+

+L2ay + Lcp + hapr'y ) < Pap(M — M}, > L') (E.14)
if 0 <e < X— A" —w, so that, for L large enough,

[622(t)| < 2¢7PL2 2Py 1 (M — My, > L) (E.15)

Let us consider the Laplace transform Hp,(w) of the random variable
y =M — M} ,; it is related to the analogous function Hy| Lo(w) defined in
(D.46) by the relation

HL,t(w) = HA,L,thA,L (th) <E16)
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By proceeding as in the proof of Lemma D.2, we can write

+oo
Pari(M — My, > L%) = GHL’t(w)/ e Pr 1. (dy) (E.17)
eld

where Il (w) = log Hr(w) and Pry.(dy) = e Pr(dy)/Hr(w). We
now fix w so that —II7 ,(w) = eL% it is to see that this condition can be

written as

Jr
L' = L'y a(Bj,L)(e ¥ —1)(1—e ")+
j=1

+ ) (La(B5, L) — 1)(1 — ™) (E.18)

7=1
Since t < 0, the solution of this equation has to be negative and one can
show that IIp(w) + wel? = M (w) — wll} ,(w) is negative and of order

L2 Tt follows that
PA,Lt(M _ MZL,t > Lde) < oMo (w)—wlly \(w) ~ ,—cL®? (E.19)

for some ¢ > 0.
The case v < 0, that is £ > 0, is a bit more involved, since in this case
Py r+(M) is not necessarily a probability measure. However, it is easy to

prove, by using (D.34), that

Z |Pyp(M)] < e?losie (E.20)

so that, instead of the bound (E.15), we have
0r0(8)] < 2e7PLH2HRI080 L 9Py (M~ My, > L) (B21)
Moreover, since it is still true that Iz ;(w) — wIl} ,(w) is negative and of

order L?72, instead of bound (E.19), we get

Para(M =My, > L) <e ™ |Pryu(M) (E.22)
M=0
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which is a negligible difference, since |w|L? < ¢, so that, as one can easily
check,

oo

S Priw(M)] < 2/ e (E.23)
M=0

We still have to prove (E.9). By putting 0 = thu in (D.33) and by
doing the derivative with respect to t, we get

d

EFAL(thA,L) = LparFar(thar) —

JL
~Garthar) Y L'a(Bj,L)e L+ 6pok(t) +601]  (B.24)

j=1
where 07,1 is defined as in (E.11) and
1 1 2
Spon(t) = ————— PPy (M >N —k E.25
r2k(?) T Li/2 NZ:Oe AL ) (E.25)

Since k < j;, < L? we can find as before that |6724(¢)] < e7L". On the
other hand >"._. L%(3j, L)e " is always of order L?. It follows that

J<irL
) = L) SR g Lyt 4 O )
AL = = AL — )
Fur(thar) P
= I, (&) +O(e"") (E.26)

]

Theorem E.3. ]f.A(L%(U) is defined as in (5.7) and 0 < v < A—\*, then

.1 JL mf( 4(4)
v—0< —lim —————1logP <A )Su—!—é (E.27)
o Td log(ngﬂ—l) AL\ ALS

while, if —\* < v < 0, there are positive functions ty(v) and aq(v), depend-
ing on d, such that

aifv) = 1a(v)0 < — Jim — log Py} (A}‘f{s) < ag(v) +ta0)s  (E.28)
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Moreover, the two bounds above do not change if we substitute P;ng (.A(LZ%)
with T4 1 (tp(v)) — tl:I’A,L(tL(v)), tr(v) being the solution of (E.4).

PROOF. By (E.1) me (.A%) = Sar(v,0). By proceeding as in the proof
of Lemma D.2, we can erte

/ (v+6) L )
Sar(v,5) = Mar® -l (1) / I Py L (dy) (F.29)
(v—8) L4
where t is chosen so that vL¢ = —IT; ;(t). By using Lemma E.2, we see

that TT4 (¢) and its derivative can be substituted with IT4 z(t) and l:[;l’L(t),
and that ¢ can be taken as the solution of (E.4), without changing the
asymptotic behavior of Sy (v, 9),

Let us consider first the case 0 < v < A\ — A\*. It is easy to check that, in
this case, l:[AjL(t) is negligible, for L — oo, with respect to |t|vL?, so that we
get immediately, by using also (E.6), the lower bound in (E.27). In order to
prove the upper bound, we need also a lower bound on f (vto)L 5L PA (dy),
which can be obtained by studying the Laplace transform of PA £.+(dy); this

"’”LZ Pary(dy) — 1 as L — oo.

analysis shows that f

If =\ <v<0,as Shown in Lemma E.1, the solution of (E.4) converges,

as L — oo, to the function ¢(v) defined in (E.5). Moreover, it is easy to
check that, up to negligible corrections, for any fixed t,

lim L[ () — tITy ()] = —aa(v) (E.30)

L—oo

where a4(v) is a positive function equal to

i 1 l—e ¥
U);@wm)dﬂ( ) (=30

Since it is still true that f((v+(§)Ld Pyri(dy) — 1 as L — oo, we get the

bound (E.28). l
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Appendix F. Proof of Theorem 4.1

By (D.2):

EV(ysr) =

EV(X5.1)

EVI(X,) =

On the other hand, by (2.3),

|La(Bj, L) — 1] < Cexp(~Cj/L*) , Vj> L

1 )
Td Z L'a(Bj, L) L
j>oLe
Z Li(3j,L)
j>6L4
L . L
Z a(@?, )a

J

QL

JL
j>L?

53

(F.1)

(F.2)

which allows us to prove very easily the limits in (4.5) and (4.7), by using

Lemma D.3.

The arguments given at the beginning of section D can be used to prove

also that

EV (njnj,) =

L(Bj1, L) L%a(Bjs, L)

N

J2

EVI(nd) = EV{(nj(n; — 1)) + EVi(n)) =

_ (Lda(ﬁmf o Papi L)
J

It follows that

ETf(yﬁL) - E;?{(yd,L)Q

Qjijo, L - if J1 7 Jo

(F.3)

(F.4)

(F.5)

Z a(ﬁjla L>a’(5j27 L)(@j1+j2,L - athan,L) + Z ]a(ﬁja L)&j,L

J1,j2=>0L4

j>6L4
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The limit (4.6) follows through some simple calculations from this identity,
the bound (F.2) and Lemma D.3. In a similar way, one can prove also (4.8),
(4.9) and (4.10).

We still have to prove (4.11). The previous arguments imply that, if
e (1/2,1] and j > £(A — A*) L%, then

Jim PV (nj = 1) = lim B} (n;) (F.6)
and
lim P (Xgnon 2 1) = Jim P (n;=1)=—log¢ (F.7)

J>EA=A) LA

Appendix G. The limit functional

Theorem G.1. There is a non decreasing, negative, continuous function
Ao(A) on R, strictly negative in d < 2, such that

A= 2N o

Mo =0y %eww (G.2)
J
Moreover, p(A) := X — X\o(A), is a positive, strictly increasing, continuous

function of \ with range the whole (0,00) and

inf I = inf F G.3
p A(B) P22 Pi=p(A) A(B) ( )



FINAL VERSION - 11 OTTOBRE 2004 ORE 12.04 55

Remark 1. In [10] it is proved that the gran canonical mean field,

thermodynamical pressure coincides with 7()), namely
1
r(\) = lim —=7 (G.4)

thus proving our claim in the text that the computation of the pressure

using the limit functional gives the correct result.

Remark 2. The proof of Theorem G.1 identifies the function A\y(\) as
follows. There exists a dimension dependent constant \*, equal to +o0 in
d <2 and < oo in d > 3 such that for A < A* (by which we will mean, here
and in the sequel, any A in d < 2 and A < X\* in d > 3) there is a unique
solution A\g of

A— X = Zp}fe%ﬁj (G.5)
J

This solution, which depends on A, coincides with the function Ag(\) of
Theorem G.1 for A < A\*, while the latter is identically 0 for A > \*.
We will also prove that the inf in (G.1) is a minimum when A < A*, and,

in such a case, the minimizer is unique and given by

pi = pye” (G.6)
: ; * A0B)
in agreement with (G.3), because ije p(A) by (G.5).

The r.h.s. of (G.6) is the equilibgium density of 7 loops in the free, gran
canonical ensemble with chemical potential )y, so that Ay has the meaning
of an effective chemical potential.

If d >3 and A > A*, the inf in (G.1) is not attained and there is a finite
fraction of the density which “concentrates on infinitely long loops”.

By (G.3), p(\) can be interpreted as the equilibrium density when the
chemical potential is A; since the range of p(\) is the whole (0, 00), there is

no “forbidden interval” for the equilibrium density, namely there is no first
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order phase transition in our system. This is due to the assumption that

the interaction energy u?/2, u = >_ ; Pj» 18 convex.

m(a) m(a)

X :=m(0)

F1GURE 1. The two graphs, on the left and right, refer respectively to d < 2
and d > 3.

Proof of Theorem G.1 - Call m(«a) = Zp}’feﬁaj, a < 0ind < 2 and

J
a < 0in d > 3. The graph of m(«) is as in Fig. 1, having put \* = m(0)

in d > 3. Existence and uniqueness of the solution Ay of (G.5) for A < \*
follow from monotonicity of m(-). Graphically Ay is the a-coordinate of the
intersection point in Fig. 1
Let us next prove (G.1)-(G.2) when A < A*. With )y as in (G.5) we
write
2

Bp) =[5 == 200] + [~ dp =578, p=Dp (G

Then

B = inf {2~ = Mo} +inf {~dp— 5150} (G
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We have
inf { = Xop = 5715(p)} = -7, (G.9)
with a unique minimizer given by (G.6). On the other hand
2 A — )\ 2
it {2~ (3= A = -2 (G.10)
P

with minimizer any p such that Z pi =A—Xp. By (G.5), the previous

j
minimizer p, given by (G.6), satisfies such a condition, hence (G.1) and

(G.3).
Suppose next that d > 3 and A > \*. Then

Fp) 2 int (&~ dp) +in {37150} > -5 ) (@)

where the minimizers of the first inf are those p such that Z p; = A, while

J
the minimizer of the second inf is unique and given by {pj} We thus need
to show that there is a sequence E(”) such that Z pg-n) = )\ and

J

lim S(p™) = S(p*) (G.12)

n—oo
Let a := A — p* be the excess mass, A being the mass p which minimizes

p?/2 — Ap and p* = Zp}k Set
J

. "y
pm = {0 ty#n (G.13)

- pjt+a ifj=n
Then

n oy (Pn (Pn @ pnta
S(p™) =87 + (7 + (e ) (log(

) — 1)) (G.14)

with the last bracket vanishing as n — oc.
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(G.1), (G.2) and (G.3) are therefore proved. We will next show that p(\)
is continuous, strictly increasing, and with range (0,00). Let A < A* and )|
the derivative of \y w.r.t. A. Then

dp(A) _ /
Do =1 (G.15)
and, by differentiating (G.5),
) <5ijjewj + 1) —1 (G.16)
J

Hence Ay(+) is a non decreasing function, as claimed in Theorem G.1; more-

dp(N)

over, since \j < 1, . 0, for A < A*. For A > X*, p(\) = X\ and since

,\h/HAl p(A) = A*, because \* = m(0) and

ii;r(l)ijeo‘ﬂj = Zp;‘ =m(0), d>3 (G.17)
J J

we conclude that p(\) is continuous and strictly increasing.

Obviously, Alim p(\) = hm A = 00. It remains to prove that lim p(\) = 0.

A——00

By monotonicity, the hmlt eX1sts. Since p(-) > 0, A — A\g(A) > 0, so that

Ahm Ao(A) = —oo. Then

li * )\0 B3 li * aﬁj _ 1
/\—1>moo Z p a—1>moo Z p =0 (G 8)
Theorem G.1 is proved. ]

Remark. The construction of the minimizing sequence B(”) in the case
A > \* shows that the excess mass A\ — \* concentrates in the limit on

infinitely long loops.
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Let

a(u) == _inf  (Fi(p) + \u) (G.19)

Zj pj=u

observing that the r.h.s. does not depend on A. Obviously
a(u) > sup {/\u + inf FA(p)} (G.20)
A p -

We will prove that equality actually holds, namely

a(u) = sup {)\u + inf F)\(p)} (G.21)
A P -
which then shows that
a(u) = sup {)\u — 7'('()\)} (G.22)
A

namely that a(u) is the Legendre transform of (). In [10] an equivalence

of ensembles theorem is proved, namely that

1
— nggo T In ZﬁiL = sup {)xu — 7r(>\)} (G.23)
NL:[LdU] A

which, together with (G.22) shows that

1
Zinf_u (F(p) +Au) = = lim +n zZy (G.24)
3P Np=[L%]

as claimed in the text.

Proof of (G.21) - By (G.3) the inf of F)(p) is achieved on the set
{p:> pj=A—A}. Call o the value of A such that

J

pla) =a— (a) =u (G.25)
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(existence and uniqueness follow from Theorem G.1). Then

sup {/\u + inf F,\(p)} > {au + inf Fy(p)}
A P - P -

= {au+ inf F.(p)} = a(u) (G.26)
py;pi=pla)=u

which, together with (G.20), proves (G.21). O

By general thermodynamic relations, and making explicit now the de-

pendence on (3, the entropy o(5,u) and the internal energy, e(3,u), are

da(,u)
B’

o(f, u)
&)

0—(67 U) = 62 a’(ﬁv u) = 6(57 ’LL) o (G27)

2
In our model e(3,u) = % + k(B,u), with k(3,u) the kinetic part of the in-

ternal energy. By direct inspection, o(/3,u) and k((,u) as functions of the
particles density u, become constant for u > u*. This is the Bose condensa-
tion phenomenon, which is interpreted by saying that the fluid added when

increasing the density past u* does not carry entropy nor momentum.

Appendix H
Let A :={};,7 > 0} be the sequence defined by

A+ N eV,

A otherwise.
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and
1 ? |
=3 (Z pﬂ') B (Z Ajﬂj) —3°0 (H.2)
>0 7>0
myo= =i B, PP =) ) (11.3)
’ JEVK
Then
inf F _
P ey, Pi=PM (V) +v Ap)
= inf F Y () 4o
23 ev, Pi=pF (N +v )\(B) Z Pj (P ( ) )
* JEVE
= inf F N (P () + v
P ey, Pi=P (A)+v A<B) (p ( ) )
> —my + N (p®(A) +0) (H.4)

The equality in line (H.4) holds if X is chosen in such a way that the
minimizer sequence p (A, X') satisfies the constraint » .y, pj = pF(N) + v,

The case V, = N follows directly from the arguments used in the ap-
pendix G, by changing the chemical potential from A — A + )\, where )\
is:

N =p\)+v—X+ X (H.5)

with Ay = M\g(\, v) = 0 when p(\) + v > A*, while otherwise is the unique
solution of the equation:

> = p(A) +v (E.6)

J
The minimizer sequence {pﬁn) }jen+ is then given by:

py = P3N 4 1+ X = N (H.7)



62 G. BENFATTO, M. CASSANDRO, I. MEROLA, AND E. PRESUTTI

where we have indicated by [-]. the positive part. In particular, if A > \*,
v>—(A—A\), then N =v.

For k = 2,3,4, we set A\g(\,v) as the solution of the equation

Z p;k-e;\‘)ﬂj =A—X—pPN) —w (H.8)
J¢Vi

when this solution exists, otherwise we take Ao = 0. Then ) is given by the

unique solution of the equation:

Z pj-e(;\o“‘/)ﬁj = p(k)()\) +v (H.9)

JEVL

whose existence and uniqueness follows (for any given value of \y) by mono-
tonicity arguments, since V} is bounded for £ > 1.

Then the minimizer sequence {pgn) }jent, n > max Vj, is given by:

pf) = pre O ey (pj@ﬁ P g = A = () - ”h) Ligv,
(H.10)
where )\; — ngévk pj-. Notice that, when the positive part is null, {pg-n)}

does not depends on n and it is actually a minimum.

In the case k # 1, A > \* (= pf(\) = \5) and v < A — A%
A1 S ovgs 1 ;
m=7+gzp—?ew+gzp—? (H.11)
jevic 7 JEVi J

where )\ is the unique solution of » .. pi (¥ —1) =
Collecting equations (G.1) and (H.4), we get:

inf E\(p) — inf F\(p) = —my + N (p(A) +0) +7(}) (H.12)
P jev, pi=pF (A)+v - P = =
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To prove Theorem 5.2, one has to show (see proof of Theorem E.3 for

notation) that

1
o (k))

i 1089ar(®:0) ﬁLdmlaL<AL6 (H.13)
L—oo [Il4p(t) — Iy ; ()] L—oo | — inf F)(p) +inf F\(p) '

’ BGA(Lk) P

For example, if A > A", v < A — A" and k # 1, one has
inf F\(p) —inf F\(p) =

P ey, Pi=PM (V) +v (_) L (_)

1 : Py

=32 L (- 1) X + (H.14)
J

JEVk
Hence, by using (E.3), (E.4), (E.8) and (E.9), it is easy to check that the
two limits are equal in the case k = 4. The other cases can be treated in a

similar way:.

Appendix 1

If £ = 1, by the analysis in Appendix H, substituting the value of \' as
a function of X and g in (H.4), we get:

1 - 1 p* =
inf  F(p) = =(p+v)" = (A=) (p(A) +v) = =Y _ e (L1
3 ke Mp) = 5(p+ )" = ( 0)(p(A) +v) 72 (L1)

If X\ = \*, this expression is twice differentiable and we get:

(v dho P\ EDY . 5oa
( ) — 1_|_1{)\<)\*} [2_0+ 0<p()\)+v) _Tozloje%ﬁ]

dv? |,_, dv — dv?

~ 2
dA o
. <d110> > e (L.2)
j

v=0
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On the other hand, if A < A* and v is small enough, )\ satisfies the equation
p(A\) +v=7>_,pje MBi g0 that:

d\ g
d—o Zp]ﬂjeA(’m =1 (L.3)
v
and we get
v=0
1

1+ 1{A<A*}Z]~ T (1.4)

where we used also the fact that, if v = 0, Ao = Ao, A\g being defined as in
(G.5).
If A = \*, the right and left limit of the derivative of Ay in v = 0 do exist

and are given by:
(

dro(N*
.
v— (%
A 1 1 (L.5)
lim —————= = lim oo | = -
\v—>0— dv v—0~ Zj pjﬁje o(A*,v) Zj pjﬁj
so that, if d < 4, the second derivative of J(v) in v = 0 does exist and is
given by
-1
d*3(v) Loaeny
1 . 1.6
dv? =0 + ﬁ ZJ p;jeAO(A)ﬂJ ( )

It follows that, if d = 3,4, d>3(v)/dv? is given by equation (1.6) for any A,
while, if d > 4, the same result is true, but only for A # \*.
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