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1 Introduction

Vulnerable options are financial contracts that are subject to some default
event concerning the solvency of the option’s seller. The classical reference on
this topic is the paper by Johnson and Stulz ([33]), the first to price European
options with Counterparty Credit Risk (CCR). Their work was developed
within the structural approach to credit risk and it considered the option
as the sole liability of the counterparty. Later Klein, in [35], discussed more
general liability structures and the presence of correlation between the option’s
underlying and the option’s seller’s assets, while in [36] interest rate risk was
included and in [37] a (stochastic) default barrier depending on the value of
the option was considered. In all these works default could happen only at
maturity.

In the meantime reduced-form models to price bonds or options that might
default at any time prior to maturity, started to be proposed. We refer the
reader to Hull and White ([29]) and Jarrow and Turnbull ([32]) for the case
of vulnerable options and to [20] and the references therein for a more general
framework. Some more recent papers on vulnerable options include [17], [19],
[22], [31] and [48].

Even before the last financial crisis (2007-2008), the focus on CCR started
to increase remarkably (see [16]) and attention shifted to building a general
framework for the evaluation of a premium to compensate a derivative’s holder
(in particular of Interest Rate Swaps) for taking (counterparty credit) risk.
This risk premium was then clearly defined in a paper by Zhu and Pykhtin
([49]), under the name of Credit Value Adjustment (CVA). In the post-crisis
era CVA became a key quantity to be taken into account when trading deriva-
tives in the OTC markets and this spurred a lot of research in the field: see
[7], [12] and [28] just to mention some. In practice, CVA is an adjustment of
the default-free value of a portfolio, to reduce this price in order to include the
default risk. Along the years, other value adjustments have been introduced
leading to the acronym (X)VA, where X stands for D= debt, L= liquidity,
F=funding, to include risks due to default of either party and/or to funding
investment strategies, to lack of liquidity etc. An updated overview of the
recent research directions under investigation is presented in [27], including
the existing relationship between XVA and the theory of BSDE’s, partially
discussed also in the present paper.

In this work we treat in detail the plain vanilla (unilateral) CVA, but we
also show that our methodology may be extended to include some forms of
XVA. A correct evaluation of CVA is crucial when Wrong Way Risk (WWR)
might occur, that is when a decrease in the credit quality of the counterparty
produces a higher exposure of the derivative’s holder. Under independence
between the exposure and the credit quality of the counterparty, computa-
tion of CVA simplifies, while it becomes computationally much more delicate
if dependence is assumed. To overcame this difficulty, several methods were
proposed: Monte Carlo methods, from brute force to enhanced ones (see [30]
and [47]), the copula method or static approach (see [18], [44]), a linear pro-
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gramming characterization leading to bounds for WWR (see [26]). Here, we
propose a new method and we compare it with another recently investigated
in [11].

More in detail, we employ the stochastic intensity approach for the time of
default, when the investor might face either a total loss or a partial recovery
of the investment’s current value. Within this context, the computational dif-
ficulty in the evaluation of the CVA is twofold. First, the default time might
be not completely measurable with respect to the information generated by
the market prices, since it may reflect other exogenous factors, secondly even
under full knowledge of the default time, the derivative’s evaluation calls for
the joint distributions of the random time and the price processes, usually very
difficult to know.

Conditionally to the information generated by the market prices, under
appropriate conditions the joint dynamics of the asset prices, of the default
time intensity and of possibly other stochastic factors can be described as a
Markovian system, whose components may exhibit correlation, that may be
modeled by means of a set of parameters linking the processes driving the
dynamics. In this framework, the usual theory of stochastic calculus allows to
set up a PDE system, whose solution might be approximated. Several meth-
ods of approximations of PDE’s are at disposal, most of them being based on
some clever numerical discretization scheme, see e.g. [34]. Here we suggest an
alternative method, introduced in the papers [3] and [4], which approximates
the solution of the PDE system by a Taylor’s polynomial with respect to the
correlation parameters. Indeed, under quite general hypotheses, it is straight-
forward to verify that the solution to the PDE is regular with respect to the
correlation parameters and therefore it can be developed in series around the
zero value for all of them.The coefficients of the series are characterized, by
using Duhamel’s principle, as solutions to a chain of PDE problems and they
are therefore identified by means of Feynman-Kac formulas and expressed as
expectations. There are several advantages in using this method:

– the series coefficients are computed at the zero values of the correlation
parameters and by consequence they are expectations of functionals of
independent processes so they are easier to compute or to approximate;

– in many cases the zero-th term can be explicit computed, increasing the
precision of the approximation;

– comparing with Finite Differences methods or Monte Carlo methods, often
a comparable accuracy is reached by the first order expansion;

– consequently the computational times are very little;
– differently from other methods, ours extends quite easily to multi-factor

models, as shown is Section 5.

In the next section we introduce the general problem and setting, in the
third section we define our market model, while in the fourth we prove the
convergence of the series in the case of a Future contract and we refer the
reader to [6] for more general contracts. A stochastic interest rate is considered
in the fifth section where it is showed that the method can cope also with this
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case. In the sixth section we provide, under some assumptions, the extension
of our approach to include DVA, FVA and LVA. It follows a short section
recalling the main features and results of the method [11], based on a change
of measure technique, to which we compare in the numerical analysis run in
the last section.

2 CVA Evaluation of Vulnerable Options in an Intensity Model

We consider a finite time interval [0, T ] and a complete probability space
(Ω,F , P ), endowed with a filtration {Ft}t∈[0,T ], augmented with the P−null
sets and made right continuous. We assume that all processes have a cádlág
version.

The market is described by the interest rate process rt determining the
money market account denoted by B(t, s) = e

∫ s
t
rudu and by a process Xt

representing an asset log-price (whose dynamics will be specified later), this
process may depend also on additional stochastic factors. We assume

– that the filtration {Ft}t∈[0,T ] is rich enough to support all the aforemen-
tioned processes;

– to be in absence of arbitrage;
– that the given probability P is a risk neutral measure, already selected by

some criterion.

In this market a defaultable European contingent claim paying f(XT ) at
maturity is traded, where f is a function whose regularity properties will be
specified later. We denote by τ (not necessarily a stopping time w.r.t. the filtra-
tion Ft) the default time of the contingent claim and by Zt an Ft−measurable
bounded recovery process.

To properly evaluate this type of derivative we need to include the informa-
tion generated by the default time. We denote by Gt the progressively enlarged
filtration, that makes τ a Gt−stopping time, that is Gt = Ft∨σ({τ ≤ t}). From
now on, we indicate by Ht = 1{τ≤t}, the process generating the filtration Ht,
so that Gt = Ft ∨Ht.

We make the fundamental assumption, known as the H-hypothesis (see e.g.
[25] and [24] and the references therein), that

(H) Every Ft−martingale remains a Gt−martingale.

Under this assumption, we may affirm that eXs/B(t, s) for s ≥ t remains a
Gs−martingale under the unique extension of the risk neutral probability to
the filtration Gs. (To keep notation light, we do not indicate explicitly the
probability we use for the expectations, assuming that we are always working
with the one corresponding to the filtration in use).

In this setting, for any given time t ∈ [0, T ], the price of a defaultable
claim, with positive final value f(XT ), default time τ and recovery process Zt,
is given by

cd(t, T ) = E[B−1(t, T )f(XT )1{τ>T} +B−1(t, τ)Zτ1{t<τ≤T}|Gt], (1)
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while the corresponding default free value is

c(t, T ) = E[B−1(t, T )f(XT )|Ft]. (2)

Correspondingly the CVA, as a function of the running time and of the ma-
turity, is given by

CV A(t, T ) = 1{τ>t}[c(t, T )− cd(t, T )]. (3)

In many situations, investors do not know the default time and they may
observe only whether it happened or not. The actual observable quantity is
the asset price, therefore it is interesting to write the pricing formula (1) in
terms of Ft, rather than in terms of Gt. For that we have the following Key
Lemma, see [9] or [7].

Lemma 1 For any integrable G−measurable r.v. Y , the following equality
holds

E
[
1{τ>t}Y |Gt

]
= P (τ > t|Gt)

E
[
1{τ>t}Y |Ft

]
P (τ > t|Ft)

. (4)

Applying this lemma to the first and the second term of (1) and recalling
that 1−Ht = 1{τ>t} is Gt−measurable, we obtain

E[B−1(t, T )f(XT )1{τ>T}|Gt] = 1{τ>t}
E[B−1(t, T )f(XT )1{τ>T}|Ft]

P (τ > t|Ft)
(5)

E[B−1(t, τ)Zτ1{t<τ≤T}|Gt] = 1{τ>t}
E[B−1(t, τ)Zτ1{t<τ≤T}|Ft]

P (τ > t|Ft)
, (6)

which may be made more explicit by following the hazard process approach.
We denote the conditional distribution of the default time τ given Ft by

Ft = P (τ ≤ t|Ft), ∀ t ≥ 0, (7)

whence, for u ≥ t, P (τ ≤ u|Ft) = E(P (τ ≤ u|Fu)|Ft) = E(Fu|Ft). If Ft(ω) <
1 for all t > 0 (which automatically excludes that Gt ≡ Ft), we can well define
the so called F- hazard process of τ as

Γt := − ln(1− Ft) ⇒ Ft = 1− e−Γt ∀ t > 0, Γ0 = 0, (8)

moreover

St := 1− Ft = e−Γt ∀ t > 0, S0 = 1, (9)

is the F-survival process. We assume Γt to be differentiable; its derivative,
known as the intensity process and denoted by λt, is such that Γt =

∫ t

0
λudu.

Exploiting (5) and (6) to pass to the Ft filtration and assuming that
B(t, ·)−1Z. is a bounded F− martingale (which is usually the case), by an
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extension of Proposition 5.1.1 of [8], as developed in [5], we may rewrite the
pricing formula (1) as

cd(t, T ) = 1{τ>t}E[e−
∫ T
t

(rs+λs)dsf(XT )|Ft]

+ 1{τ>t}E[

∫ T

t

Zsλse
−

∫ s
t
(ru+λu)duds|Ft],

(10)

recovering formulas (3.1) and (3.3) in [40], that the author obtained by mod-
eling directly the random time τ .

Remark 1 Indeed, we point out that if Z is an optional and uniformly inte-
grable process, then it needs to be a martingale (Proposition 3.6 of [43]). Thus
a bounded predictable process is a predictable martingale, which is the case
considered in Proposition 5.1.1 of [8].

This formula can be specialized even further if we assume fractional re-
covery of the type Zt = Rc(t, T ) for some 0 ≤ R < 1. Using the Optional
Projection Theorem, see e.g. Theorem 4.16 in [43] , one gets to

cd(t, T ) = 1{τ>t}

[
RE[e−

∫ T
t

ruduf(XT )|Ft]

+ (1−R)E[e−
∫ T
t

(ru+λu)duf(XT )|Ft]
]
,

(11)

which can be interpreted as a convex combination of the default free price and
the price with default.

An alternative choice for the recovery process could be made ( i.e. fractional
recovery of the market value as in Section 5.6 of [41] or in Section 4 of [15]),
assuming that the market quotes, at default, an evaluation of the defaultable
product based on the past information (i.e. Ft). As we will mention later, this
choice leads to setting a solvable Backward Stochastic Differential Equation
(BSDE) that gives

cd(t, T ) = 1{τ>t}E
[
e−

∫ T
t

(ru+(1−R)λu)duf(XT )|Ft

]
. (12)

It is evident that this formula is very similar to the second piece of (11), hence
the method we are going to present is applicable to both choices.

As a consequence, from (3) we have an expression also for the unilateral
CVA as

CV A(t, T ) = 1{τ>t}(1−R)E[e−
∫ T
t

ruduf(XT )(1− e−
∫ T
t

λudu)|Ft]. (13)

Remark 2 Last formula, by means of the survival process, could be briefly
rewritten as

CV A(t, T ) = −1{τ>t}
(1−R)

St
E[

∫ T

t

f(XT )

B(t, T )
dSu|Ft]. (14)
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If G(t) = P (τ > t) = E[1{τ>t}] is the (deterministic) survival function, as-

suming it can be written as G(t) = e−
∫ t
0
hsds, for some non-negative function

h, then we have that E(St) = G(t) for all t ≥ 0 (see (8) and (9)) and

dSt = −λtStdt =
λtSt

htG(t)
dG(t) = ζtdG(t)

where we set ζt :=
λtSt

htG(t)
. Consequently, using the optional projection theo-

rem, the expectation in (14) may be rewritten as

E[

∫ T

t

f(XT )

B(t, T )
dSu|Ft] = E

[ ∫ T

t

f(XT )

B(t, T )
ζudG(u)|Ft

]
= E

[ ∫ T

t

E[
f(XT )

B(t, T )
ζu|Fu]dG(u)|Ft

]
= E

[ ∫ T

t

E[
f(XT )

B(t, T )
|Fu]ζu]dG(u)|Ft

]
= E

[ ∫ T

t

c(u, T )ζu
B(t, u)

dG(u)|Ft

]
=

∫ T

t

E[
c(u, T )ζu
B(t, u)

|Ft]dG(u)

and

CV A(t, T ) = −1{τ>t}
(1−R)

St

∫ T

t

E[
c(u, T )ζu
B(t, u)

|Ft]dG(u). (15)

For t = 0 and a generic portfolio price process Vt (the positive part V +
t coin-

ciding in our case with c(t, T ), the default free price of the claim ) this formula
is the starting point of the analysis developed in [11].

Finally we remark that under independence between λt and (Xt, rt), the
second term in (11) simplifies further to

E[e−
∫ T
t

(rs+λs)dsf(XT )|Ft] = E[e−
∫ T
t

rsdsf(XT )|Ft]E[e−
∫ T
t

λsds|Ft]. (16)

Correspondingly, we get a similar factorization for the CVA

CV A(t, T ) = 1{τ>t}(1−R)E[e−
∫ T
t

ruduf(XT )|Ft]E[(1− e−
∫ T
t

λudu)|Ft]

= 1{τ>t}(1−R)c(t, T )
P (t < τ ≤ T |Ft)

P (τ ≥ t|Ft)
, (17)

where the last equality follows from the Key Lemma and the definition of haz-
ard process (see e.g. [8], Sect. 8.2). In this case, the two factors are respectively
the price of a European derivative and the price of a bond. Thus we may ar-
rive at explicit formulas whenever the models for X and λ are appropriately
chosen.
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3 The model

We assume that in the given probability space, the following diffusion dynamics
are satisfied

Xs = x+

∫ s

t

(ru − σ2

2
)du+ σ(Bs −Bt), x ∈ R (18)

λs = λ+

∫ s

t

γ(θ − λu)du+ η

∫ s

t

√
λudYu, λ > 0 (19)

rs = r +

∫ s

t

k(µ− ru)du+ ν(Ws −Wt), r > 0, (20)

where the parameters are such that k, θ, η, σ, µ > 0, γ, ν ≥ 0, 2γθ > η2 and
B, Y,W are correlated Brownian motions with a given correlation matrix. To
simplify calculations, in what follows we assume independence between the
interest rate and default intensity, i.e. between Y and W ; with this choice we
may represent the triple B, Y,W as

Bt = ρ1B
1
t + ρ2B

2
t +

√
1− ρ21 − ρ22B

3
t , Yt = B1

t , Wt = B2
t ;

where (B1, B2, B3) is a 3-dimensional Brownian motion and ρ21 + ρ22 ≤ 1.

We remark that under independence we have an explicit expression of

the factor E[e−
∫ T
t

λsds|Ft] appearing in (16), being the bond price with a
CIR interest rate. The problem is then reduced to computing the other factor
representing the price of the European derivative.

4 Correlation expansion

For the sake of simplicity, in this section we assume R = 0 and the short
rate to be constant, rt ≡ r for all t ∈ [0, T ]. To consider r a function in
time is a straightforward generalization, while a stochastic interest rate will
be considered specifically in the next section.

The model, which we write in flow notation, is hence reduced toXt,x,λ,ρ
s = x+ (r− σ2

2 )(s−t) + σ
[
ρ(B1

s−B1
t ) +

√
1−ρ2(B2

s −B2
t )
]

λt,λ
s = λ+

∫ s

t
γ(θ − λt,λ

u )du+
∫ s

t
η
√

λt,λ
u dB1

u.
(21)

The two-dimensional diffusion Ut,x,λ,ρ
t := (Xt,x,λ,ρ

s , λt,λ
s ) is a Markov process

since the coefficients,

µ(x, λ) :=

(
r − σ2

2
γ(θ − λ)

)
and Σ(x, λ) :=

(
σρ σ

√
1− ρ2

η
√
λ 0

)



CVA and vulnerable options pricing by correlation expansions 9

are deterministic. This implies that the price cd(t, T ) of any European de-

faultable derivative with integrable payoff F (Xt,x,λ,ρ
T ) will be a deterministic

function u(·) of all the initial data, that is

u(x, λ, t, T ; ρ) = e−r(T−t)E(e−
∫ T
t

λt,λ
s dsF (Xt,x,λ,ρ

T )). (22)

We remind that this computation is a crucial step towards the evaluation of
the defaultable derivative (11) and of the corresponding CVA. We notice that,
when ρ = 0, µ(x, λ) and

Σ(x, λ)Σ(x, λ)′ =

(
σ2 0
0 η2λ

)
have components which are affine functions of (x, λ), therefore the vector pro-

cess Ut,x,λ,0
t is an affine process (Thm. 2.2,[23]). On the contrary, when ρ ̸= 0,

the process Ut,x,λ,ρ
t is not so and the power of Fourier transform techniques,

often exploited in the affine case, cannot be employed and one has to resort to
an alternative method to evaluate (22). Here we adapt a technique introduced
in [3] and [4], to approximate u(x, λ, t, T ; ρ) by means of a Taylor polynomial
in ρ around 0. The following theorem shows the effectiveness of this approach.

Theorem 1 Given the model (21), if F (x) = ex −K (representing the payoff
of a forward contract) then (22) can be approximated by the Taylor polynomial
of order n around ρ = 0,

un(x, λ, t, T ; ρ) =
n∑

k=0

∂ku

∂ρk
∣∣
ρ=0

ρk

k!
, (23)

with a remainder Rn = u(x, λ, t, T ; ρ)− un(x, λ, t, T ; ρ) bounded by

|Rn| ≤ MCn+1, (24)

where M,C are positive constants (not depending on n) such that C < 1 if
|ρ| < (2σ2T )−1/2.

Remark 3 This result can be extended to European call options, i.e. F (x) =
(ex−K)+, but the proof becomes more complicated, as it relies heavily on the
careful use of the Faa di Bruno formula to get the estimates on the derivatives
of u. A bound similar to (24) is achieved and a strictly positive convergence
radius still exists. We refer to [6] for the complete and long proof, the present
paper being focused on the applications of these results to CVA.

Proof . Without loss of generality, we set t = 0 and r = 0 and we omit
the dependence on t = 0 in the formulas to come. Recalling (9) and (21),

we have ST = e−
∫ T
0

λsds, XT (ρ) = x − σ2

2 T + σρB1
T + σ(1 − ρ2)1/2B2

T and
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F1
T = σ({B1

s : 0 ≤ s ≤ T}), so conditioning internally with respect to F1
T ,

equation (22) becomes

u(x, λ, T ; ρ) = E(ST (e
XT (ρ) −K)) = E

(
E(ST (e

XT (ρ) −K)|F1
T )
)

=E
(
ST e

x+σB1
T ρ−σ2T

2 ρ2

E(eσ
√

1−ρ2B2
T− (1−ρ2)σ2T

2 |F1
T )
)
−KE(ST )

=e−
σ2T
2 ρ2

E
(
ST e

x+σB1
T ρ
)
−KE(ST ),

(25)

since the inner factor is an exponential martingale independent of F1
T . When

evaluating the remainder of order n only the first term counts, as the second
does not depend on ρ. Denoting by D = d

dρ , we have

Dnu(x, λ, T ; ρ) =
n∑

k=0

(
n

k

)
Dk(e−

σ2T
2 ρ2

)Dn−k
(
E(ST e

x+σB1
T ρ)
)

=

n∑
k=0

(
n

k

)
Dk(e−

σ2T
2 ρ2

)E
(
STD

n−k(ex+σB1
T ρ)
)

and remarking that |ST | ≤ 1,we may bound each term in the following way

|Dk(e−
σ2T
2 ρ2

)| = (e−
σ2T
2 ρ2

)|Hek(σ
√
Tρ)| ≤ 0.816 4

√
π
√
k!

|Dn−k(ex+σB1
T ρ)| = |σB1

T |n−kex+σB1
T ρ,

where we used the uniform bound on Hermite polynomials Hek(z) that arise

from the iterated derivatives of the function e−
z2

2 (see [1]). Plugging it back
into the Lebnitz formula we get to

|Dnu(x, λ, T ; ρ)| ≤ 0.816 4
√
πex

n∑
k=0

n!

k!(n− k)!

√
k!E(eσB

1
T ρ|σB1

T |n−k)

=1.0864ex
n∑

k=0

n!√
k!(n− k)!

σn−kE(eσB
1
T ρ|B1

T |n−k)

≤1.0864ex
n∑

k=0

n!(
√
2)kσn−k

√
k!(n− k)!

E(e2σB
1
T ρ)

1
2E(|B1

T |2(n−k))
1
2

=1.0864ex+σ2Tρ2
n∑

k=0

n!
√
(2(n− k)− 1)!!√
k!(n− k)!

(σ
√
T )n−k

≤1.0864ex+σ2Tρ2
n∑

k=0

n!
√
(2(n− k))!!√
k!(n− k)!

((σ
√
T )n−k

≤1.0864ex+σ2Tρ2
n∑

k=0

n!√
k!(n− k)!

(
√
2)n−k(σ

√
T )n−k

≤1.0864ex+σ2Tρ2

n!(
√
σ2T )n

n∑
k=0

(
√
2)k ≤ 1.0864ex+σ2Tρ2

n!(
√
σ2T )n(

√
2)n+1.
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Setting M = 2 · 1.0864ex+σ2T , we may conclude that the remainder Rn−1 in
Lagrange form is uniformly bounded by

1

n!
|Dnu(x, λ, T ; ρ)||ρ|n ≤ M(

√
2σ2T )n|ρ|n −→ 0 as n → +∞

as long as |ρ| < 1√
2σ2T

. ⊓⊔

From now on we denote gk(x, λ, t, T ) :=
∂ku

∂ρk
∣∣
ρ=0

. The series expansion

gives a tool to approximate u(x, λ, t, T ; ρ), by stopping it at any chosen order.
The coefficient g0(x, λ, t, T ) equals u(x, λ, t, T ; 0) and it can be computed in
closed form. As we mentioned before, this corresponds to the independent case
when the vector process U is affine. All the other coefficients gk(x, λ, t, T ) can
be iteratively computed by exploiting Duhamel’s principle.

By the Feymann-Kac formulas, u(x, λ, t, T ; ρ) solves the parabolic PDE{
∂u
∂t + Lρu = 0

u(x, λ, T, T ; ρ) = (ex −K)+,
(26)

where we denoted Lρ = L0 + ρA, with

L0 :=
σ2

2

∂2

∂x2
+

η2λ

2

∂2

∂λ2
+ (r − σ2

2
)
∂

∂x
+ γ(θ − λ)

∂

∂λ
− r − λ (27)

A := ησ
√
λ

∂2

∂x∂λ
. (28)

By differentiating and taking ρ = 0, it is readily seen that the coefficients
gk(x, λ, t, T ) must satisfy the following parabolic equations{

∂g0
∂t + L0g0 = 0

g0(x, λ, T, T ) = (ex −K)+,

{
∂gk
∂t + L0gk = −Agk−1

gk(x, λ, T, T ) = 0.
k ≥ 1. (29)

Once again, by the Markov property and Feymann-Kac formulas, g0(x, λ, t, T )
admits the following representation

g0(x, λ, t, T ) = e−r(T−t)E(e−
∫ T
t

λt,λ
s ds(eX

t,x,λ
T −K)+)

= E(e−
∫ T
t

λt,λ
s ds)e−r(T−t)E((eX

t,x
T −K)+), (30)

where in the last passage we used the independence of the processes (Xt) and
(λt) (ρ = 0). The first factor is the bond price with a CIR process and presents
an exponentially affine solution, while the second is the usual Black & Scholes
price of a European call option, cBS(x, t, T ), hence we have

g0(x, λ, t, T ) = e−B1(T−t)−B2(T−t)λcBS(x, t, T )

=e−B1(T−t)−B2(T−t)λ
[
exN(d1(x, T − t)−Ke−r(T−t)N(d2(x, T − t))

]
,

(31)
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where d1,2(x, T − t) =
x−lnK+(r±σ2

2 )(T−t)

σ
√
T−t

, N(x) is the standard normal cu-

mulative distribution function and

B1(T − t) =
2γθ

η2
ln

(
2βe

γ+β
2 (T−t)

β − γ + (γ + β)eβ(T−t)

)
(32)

B2(T − t) =
2(eβ(T−t) − 1)

β − γ + (γ + β)eβ(T−t)
, (33)

with β =
√
γ2 + η2. The other equations of (29) can be solved by Duhamel’s

principle which states that

gk(x, λ, t, T ) = −
∫ T

t

gξk(x, λ, t)dξ,

where gξk(x, λ, t) is the solution to the PDE problem for any fixed α ∈ (t, T ] ∂gξk
∂t

+ L0gξk = 0, t < ξ

gξk(x, λ, ξ) = −Agk−1(x, λ, ξ, T ).
(34)

This sets up an iterative procedure to compute theoretically the coefficients
of any order, by means of a repeated application of Feymann-Kac formulas.
Indeed for all k ≥ 1 we have:

gk(x, λ, t, T ) = −
∫ T

t

gξkk (x, λ, t)dξk

=

∫ T

t

E
(
e−r(ξk−t)e−

∫ ξk
t λt,λ

s dsAgk−1(X
t,x
ξk

, λt,λ
ξk

, ξk, T )
)
dξk

and we can iterate the procedure arriving to a formula involving k integrals
but depending only on g0.

Inevitably, coefficients of higher order are harder to compute. In the hope
to obtain good numerical results, we consider the first order approximation

ū(x, λ, t, T ; ρ) := u(x, λ, t, T ; 0) + (
∂u

∂ρ

∣∣
ρ=0

)ρ ≡ g0(x, λ, t, T ) + g1(x, λ, t, T )ρ.

Using (31), we may explicitly compute

Ag0(x, λ, t, T ) = ησ
√
λ

∂2

∂x∂λ
g0(x, λ, t, T )

= −ησ
√
λB2(T − t)e−B1(T−t)−B2(T−t)λ ∂

∂x
cBS(x, t, T )

= −ησ
√
λB2(T − t)e−B1(T−t)−B2(T−t)λexN(d1(x, T − t)),
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therefore

g1(x, λ, t, T )

=−
∫ T

t

gξ1(x, λ, t)dξ =

∫ T

t

E
(
e−r(ξ−t)e−

∫ ξ
t
λt,λ
s dsAg0(X

t,x
ξ , λt,λ

ξ ξ, T )
)
dξ

=−ησ

∫ T

t

E
[√

λt,λ
ξ B2(T−ξ)e−B1(T−ξ)−B2(T−ξ)λt,λ

ξ eX
t,x
ξ N(d1(X

t,x
ξ , T− ξ))

]
dξ

=− Γ (t, ξ, T )E
[√

λt,λ
ξ e−B2(T−ζ)λt,λ

ξ −
∫ ξ
t
λt,λ
s ds

]
E
[
eX

t,x
ξ N(d1(X

t,x
ξ , T− ξ))

]
,

(35)

where Γ (t, ξ, T ) ≡ ησe−r(ξ−t)B2(T − ξ)e−B1(T−ξ) > 0 and we used that the
expectation in the integral is evaluated under independence of the processes
X and λ. Hence we obtain the following approximation result for the CVA.

Proposition 1 The price of the defaultable European call increases with ρ in
a small interval around ρ = 0, moreover it holds

CV A(0, T ) = c(0, T )P (τ ≤ T )− g1(x, λ, 0, T )ρ+O(ρ2) (36)

Proof The first statement follows from (35) which implies that g1(x, λ, t) < 0.
From (3) and (30) (and the remark following Theorem 1) for t = 0 we have

CV A(0, T ) = c(0, T )− cd(0, T )

= c(0, T )− g0(x, λ, 0, T )− g1(x, λ, 0, T )ρ+O(ρ2)

= c(0, T )− c(0, T )P (τ > T )− g1(x, λ, 0, T )ρ+O(ρ2)

= c(0, T )P (τ ≤ T )− g1(x, λ, 0, T )ρ+O(ρ2). ⊓⊔

The first term on the right-hand side represents the CVA under indepen-
dence between the default event and the exposure (see (17)). Hence g1(x, λ, 0, T )
measures the impact of the factor correlation on CVA.

We now focus on the first expectation in the last line of (35). We set

bξ := B2(T −ξ) for shorthand and conditioning with respect to λt,λ
ξ , we obtain

E
[√

λt,λ
ξ e−bξλ

t,λ
ξ −

∫ ξ
t
λt,λ
s ds

]
=

∫ +∞

0

E
[√

λt,λ
ξ e−bξλ

t,λ
ξ −

∫ ξ
t
λt,λ
s ds|λt,λ

ξ = ζ
]
fλt,λ

ξ
(ζ)dζ

=

∫ +∞

0

√
ζe−bαζE

[
e−

∫ ξ
t
λt,λ
s ds|λt,λ

ξ = ζ
]
fλt,λ

ξ
(ζ)dζ.

The density fλt,λ
ξ

is explicitly known (see for instance [2]). Moreover in [42] or

in [45] an explicit expression of the conditional moment generating function

of

∫ α

t

λt,λ
s ds is provided

E
[
e−

∫ ξ
t
λt,λ
s ds|λt,λ

ξ = ζ
]
=

Mt,ξ(λ, ζ)

fλt,λ
ξ

(ζ)
Iν

( 2γ̄
√
ζλ

σ2 sinh
( γ̄(ξ−t)

2

)),
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where ν = 2γθ
σ2 − 1, γ̄ =

√
γ2 + 2σ2,

Iν(z) ≡ (
z

2
)ν

∞∑
n=0

( z
2

4 )n

n!Γ (ν + k + 1)

is the modified Bessel function of the first kind and

Mt,ξ(λ, ζ) =
2γ̄

σ2

( ζ
λ

) ν
2
e
− γ̄(ξ−t)

2 − 1
σ2 [γ̄(λ+ζ) eγ̄(ξ−t)+1

eγ̄(ξ−t)−1
−γ(λ−ζ)−θγ2(ξ−t)]

1− e−γ̄(ξ−t)
.

Setting an(ν) ≡ [2ν+2nn!Γ (ν + n + 1)]−1 and zt,ξ(λ, ζ) = 2γ̄
√
ζλ

σ2 sinh
(

γ̄(ξ−t)
2

) , we
may write our expectation as a power series

E
[√

λt,λ
ξ e−bαλt,λ

ξ −
∫ ξ
t
λt,λ
s ds

]
=

∞∑
n=0

an(ν)

∫ +∞

0

√
ζe−bξζMt,ξ(λ, ζ)[zt,ξ(λ, ζ)]

ν+2ndζ

that can be truncated at any chosen order.

Since Xt,x
ξ ∼ N(x+ (r − σ2

2 )(ξ − t)), σ2(ξ − t)), the second expectation in
(35) becomes

E
[
eX

t,x
ξ N(d1(X

t,x
ξ , T− ξ))

]
=

∫
R
eyN(d1(y, T − ξ))

exp

{
[y−x−(r−σ2

2 )(ξ−t)]2

σ2(ξ−t)

}
√

2πσ2(ξ − t)
dy.

5 A three-factor model

In this section we shortly present the correlation expansion for the more general
market model (18), to show that the method can be easily extended to multi-
factor models. Indeed the methodology remains the same and it is just a
matter of handling slightly more complex calculations that lead nevertheless
to computable formulas. As in the previous section we take R = 0.

Let ρ̄ = (ρ1, ρ2) be the correlations vector, then by the Feymann-Kac
theorem, the call price u(x, λ, r, t, T ; ρ̄) must solve the following parabolic PDE:{

∂u
∂t + Lρ̄u = 0
u(x, λ, r, T, T ; ρ̄) = (eXT −K)+,

(37)

where

Lρ̄ ≡ L0 + ρ1(ση
√
λ

∂2

∂x∂λ
) + ρ2(σν

∂2

∂x∂r
) ≡ L0 + ρ̄ · (Aρ1 ,Aρ2)

and

L0 ≡ σ2

2

∂2

∂x2
+
η2λ

2

∂2

∂λ2
+
ν2

2

∂2

∂r2
+(r−σ2

2
)
∂

∂x
+γ(θ−λ)

∂

∂λ
+k(µ−r)

∂

∂r
−r−λ.
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By definition, the first-order approximation of the call price is given by

ū(x, λ, r, t, T ; ρ̄) ≡ g0(x, λ, r, t, T ) + ρ̄ · ḡ1(x, λ, r, t, T ) (38)

where g0 solves (37) with ρ̄ = (0, 0) and ḡ1 = (v, w) with functions v =
v(x, λ, r, t, T ) and w = w(x, λ, r, t, T ) solving the following equations{

∂v
∂t + L0v = −Aρ1g0,

v(x, λ, r, T, T ) = 0

{
∂w
∂t + L0w = −Aρ2g0,

w(x, λ, r, T, T ) = 0.

All the coefficients may be computed by the same method used in section
4 as we are showing below. Indeed, by the Feymann-Kac theorem and the
independence of the processes at ρ̄ = 0, we first get explicitly g0 as

g0(x, λ, r, t, T ) = E(e−
∫ T
t

λt,λ
s ds)E(e−

∫ T
t

rt,rs ds(eX
t,x
T −K)+)

= e−B1(T−t)−B2(T−t)λcVBS(x, r, t, T ),

where cVBS(x, r, t, T ) = exN(D1) − KP r(r, t, T )N(D2). Here P r(r, t, T ) =
e−A1(T−t)−A2(T−t)r is the Vasicek ZCB price maturing at T and the func-
tions D1,2 = D1,2(x, r, V (T − t)) and V (T − t) are known (see [46]). Then the

derivatives
∂

∂x
cVBS and

∂

∂r
cVBS are also explicitly computable and so are the

terms Aρ1g0 and Aρ2g0. By Duhamel’s principle we get

v(x, λ, r, t, T ) = −
∫ T

t

v(ξ)(x, λ, r, t)dξ, w(x, λ, r, t, T ) = −
∫ T

t

w(ξ)(x, λ, r, t)dξ,

where v(ξ) and w(ξ) solve the PDE’s{
∂v(ξ)

∂t + L0v(ξ) = 0, t < ξ

v(ξ)(x, λ, r, ξ) = −Aρ1g0(x, λ, r, ξ, T )

{
∂w(ξ)

∂t + L0w(ξ) = 0, t < ξ

w(ξ)(x, λ, r, ξ) = −Aρ2g0(x, λ, r, ξ, T ),

explicitly given by

v(ξ)(x, λ, r, t) =σηB2(T − ξ)e−B1(T−ξ)E
[√

λt,λ
ξ e−

∫ ξ
t
λt,λ
s ds−B2(T−ξ)λt,λ

ξ

]
×E

[
eX

t,x
ξ N(D1(X

t,x
ξ , rt,rξ , V (T − ξ)))

]
w(ξ)(x, λ, r, t) =− σν

A2(T − ξ)√
V (T − ξ)

E
[
e−

∫ ξ
t
λt,λ
s ds−B2(T−ξ)λt,λ

ξ

]
×E

[
e−

∫ ξ
t
rt,rs dseX

t,x
ξ N ′(D1(X

t,x
ξ , rt,rξ , V (T − ξ)))

]
We remark that all processes are evaluated for ρ̄ = (0, 0) and the expectations
involving only the intensity process are similar to those of the previous section,
while the other expectations are relative to Gaussian processes. Therefore (38)
is numerically fully implementable.
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6 Extension to XVA’s

In this section we show that under appropriate conditions, the method can be
extended to include several XVA’s, such as bilateral CVA, DVA (Debt Value
Adjustment), FVA (Funding Value Adjustment) and LVA (Liquidity Value
Adjustment) due to collateralization. For the sake of completeness let us point
out that an alternative path, which avoids the introduction of many credit
adjustments, has been recently proposed in ([10]) for the pricing of defaultable
European options.

Following [14], we remark that the adjusted value of a defaultable portfolio
(with default risk of both parties), that takes into account the funding and
collateralization costs verifies a, possibly nonlinear, BSDE that reduces either
to formula (11) or to formula (12), when considering only a single CVA due
to the defaultable counterparty.

To show this extension we refer to [15] and we consider the case of two
parties exchanging some European claim with default free payoff f(XT ), who
can both default with respective times τC and τ I . In this context we define
the filtration Gt = Ft ∨ HC

t ∨ HI
t , where HC

t = σ(1{τC≤t}), HI
t = σ(1{τI≤t}).

As before, we assume that every Ft−martingale remains a Gt−martingale and
that there exists a unique extension of the risk neutral probability, that we
keep denoting by P .

As in the classical framework of [21], we postulate the default times to be
conditionally independent with respect to Ft, i.e. for any t > 0 and t1, t2 ∈
[0, t], we assume that P (τC > t1, τ

I > t2|Ft) = P (τC > t1|Ft)P (τ I > t2|Ft).
We may use an intensity approach for both G−stopping times

P (τC ≤ t|Ft) = 1− e−
∫ t
0
λC
u du, P (τ I ≤ t|Ft) = 1− e−

∫ t
0
λI
udu, ∀ t ≥ 0,

so that under conditional independence λt = λC
t + λI

t is the intensity process
of τ = inf{τ1, τ2}.

We therefore choose the following model for our state variables

Xs = x+

∫ s

t

(ru − σ2

2
)du+ σ(Bs −Bt) x ∈ R (39)

λC
s = λ1 +

∫ s

t

γ1(θ1 − λC
u )du+ η1

∫ s

t

√
λC
u dB

1
u, λ1 > 0 (40)

λI
s = λ2 +

∫ s

t

γ2(θ2 − λI
u)du+ η2

∫ s

t

√
λI
udB

2
u, λ2 > 0, (41)

where the parameters verify γi, ηi, θi, σ > 0, 2γiθi > η2i , i = 1, 2, (B1, B2, B3)

is a 3-dimensional Brownian motion and Bs = ρ1B
1
s +ρ2B

2
s +
√

1− ρ21 − ρ22B
3
s

with ρ21 + ρ22 ≤ 1. The risk free interest rate r, for the sake of simplicity, is
taken to be bounded and deterministic and we therefore are in a situation
similar to the three factor model considered in the previous section.

From [14], the Gt−adapted adjusted value of a European claim c̄a(t, T ),
should be written as

c̄a(t, T ) = c(t, T )− CV A(t, T ) +DV A(t, T ) + LV A(t, T ) + FV A(t, T ), (42)
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with CV A(t, T ) and DV A(t, T ) ≥ 0 and LV A(t, T ), FV A(t, T ) ∈ R.
As an example we assume we are analyzing a single contract between the

two parties and that:

1. the parties are not investing in a repo market;
2. the claim pays no dividends;
3. the close out value at default is given by an Ft−adapted process ϵt, eval-

uated at τ ;
4. the collateral rate, rc, and the funding rate, rf , are deterministic;
5. the collateral account is proportional to the close-out value, Cs = αsϵs for

some deterministic function α : [0, T ] −→ [0, 1]
6. LC , LI ∈ (0, 1) are the loss given defaults in case of default respectively of

the counterparty and of the investor.

Proceeding along the same lines as in [15] (pages 42-47), after having applied
the Key Lemma to (42), we may conclude that Ft−adapted adjusted price of
the European claim, ca(t, T ), verifies the following BSDE on {τ > t}

ca(t, T ) = E
[
e−

∫ T
t

(rs+λs)dsf(XT )

+

∫ T

t

e−
∫ s
t
(ru+λu)ds[λsϵs − LCλ

C
s (1− αs)ϵ

+
s − LIλ

I
s(1− αs)ϵ

−
s ]ds

+

∫ T

t

e−
∫ s
t
(ru+λu)ds[(rf (s)− rc(s))αsϵs + (rs − rf (s))c

a(s, T )]ds|Ft

]
.

(43)

Remark 4 The above BSDE is linear or nonlinear depending on the choice
of ϵs. In the literature there are fundamentally two possible choices: either
ϵs = c(s, T ) (the default free value of the claim) or ϵs = ca(s, T ).

The first choice will always give a solvable linear BSDE.

With the second choice, we might obtain a solvable linear BSDE if the
adjusted value stays always non negative (or non positive), otherwise the non-
linearity due to the negative and positive parts will give a non linear BSDE,
not explicitly solvable.

In absence of DVA, LVA and FVA, with constant α (as in the case of a
call option), the first choice leads to the evaluation (11), the second to the
evaluation (12). In both cases, the recovery constant will be R = 1−L(1−α).

Since our method, aimed at pointing out the contribution of the correla-
tions to the forming of the price, needs to have an explicit representation of
zero-correlation term, in what follows we choose ϵs = c(s, T ) (that corresponds
to asking a collateralization proportional to the default free price rather than
to the current price), to guarantee the solvability of the BSDE for all European
claims.
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Equation (43) hence becomes

ca(t, T ) = E
[
e−

∫ T
t

(rs+λs)dsf(XT )

+

∫ T

t

e−
∫ s
t
(ru+λu)ds[λsc(s, T )−λC

s LC(1−αs)c(s, T )
+− LIλ

I
s(1−αs)c(s, T )

−]ds

+

∫ T

t

e−
∫ s
t
(ru+λu)ds[(rf (s)− rc(s))αsc(s, T ) + (rs − rf (s))c

a(s, T )]ds|Ft

]
.

(44)
This equation can be solved with

ca(t, T ) = E
[
e−

∫ T
t

(rf (s)+λs)dsf(XT )

+

∫ T

t

e−
∫ s
t
[rf (u)+λu]ds[λsc(s, T )−λC

s LC(1−αs)c(s, T )
+− LIλ

I
s(1−αs)c(s, T )

−]ds

+

∫ T

t

e−
∫ s
t
[rf (u)+λu]ds(rf (s)− rc(s))αsc(s, T )ds|Ft

]
.

(45)
The processes Xt, λ

C
t , λ

I
t are Markovian, therefore c(t, T ) and ca(t, T ) are de-

terministic functions respectively of the state variables X and X,λC , λI , that
we are going to denote as udf (x, t) (the default free price) and u(x, λ1, λ2, t, T ; ρ̄),
with ρ̄ = (ρ1, ρ2) to point out the dependence on the correlation parameters.

From (45), by Feynman- Kaĉ formulas, u verifies the PDE{
∂u
∂t + Lρ̄u+ κ = 0

u(x, λ1, λ2, T, T ; ρ̄) = f(XT ),
(46)

where,

Lρ̄ ≡ L0 + σρ1η1
√
λ1

∂2

∂x∂λ1
+ σρ2η2

√
λ2

∂2

∂x∂λ2
≡ L0 + ρ̄ · (Aρ1 ,Aρ2)

with 0 = (0, 0) and

L0 ≡σ2

2

∂2

∂x2
+

η21λ1

2

∂2

∂λ2
1

+
η22λ2

2

∂2

∂λ2
2

+(r− σ2

2
)
∂

∂x
+γ1(θ1−λ1)

∂

∂λ1
+ γ2(θ2− λ2)

∂

∂λ2
− (rf+λ1+λ2)

κ(x, λ1, λ2, t) =[λ1 + λ2 + (rf (t)− rc(t))αs]u
df (x, t)

−LCλ1(1− αs)u
df (x, t)+ − LIλ

I
s(1−αs)u

df (x, t)−.

To simplify the exposition, in what follows we take rf ≡ r and constant α and
we denote Lα

C = LC(1−α) and Lα
I = LI(1−α). As before, we may construct

the first-order approximation of the adjusted price

ū(x, λ1, λ2, t; ρ̄) ≡ g0(x, λ1, λ2, t, T ) + ρ̄ · ḡ1(x, λ1, λ2, t, T ) (47)
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with g0 solving (46) with ρ̄ = (0, 0) and ḡ1 = (v, w) solving

{
∂v
∂t + L0v + κ = −Aρ1g0,

v(x, λ1, λ2, T, T ) = 0

{
∂w
∂t + L0w + κ = −Aρ2g0,

w(x, λ1, λ2, T, T ) = 0.

Omitting the flow notation used in the previous sections, the zero-th coefficient
by independence reduces to

g0(x, λ1, λ2, r, t, T ) = E(e−
∫ T
t

λC
s ds)E(e−

∫ T
t

λI
sds)E(e−

∫ T
t

rsdsf(XT ))

+

∫ T

t

E
(
e−

∫ s
t
ruduudf (Xs, s)

)[
(rs − rc(s))αsE(e−

∫ s
t
λC
u du)E(e−

∫ s
t
λI
udu)

+E(λC
s e

−
∫ s
t
λC
u du)E(e−

∫ s
t
λI
udu) +E(λI

se
−

∫ s
t
λI
udu))E(e−

∫ s
t
λC
u du)

]
ds

− Lα
C

∫ T

t

E(λC
s e

−
∫ s
t
λC
u du)E(e−

∫ s
t
λI
udu)E

(
e−

∫ s
t
ruduudf (Xs, s)

+
)
ds

− Lα
I

∫ T

t

E(λI
se

−
∫ s
t
λI
udu)E(e−

∫ s
t
λC
u du)E

(
e−

∫ s
t
ruduudf (Xs, s)

−
)
ds

= udf (x, t)
{
e−BC

1 (T−t)−BC
2 (T−t)λ1e−BI

1 (T−t)−BI
2 (T−t)λ2

+ α

∫ T

t

[
(rs − rc(s))e

−BC
1 (s−t)−BC

2 (s−t)λ1e−BI
1 (s−t)−BI

2 (s−t)λ2

+ e−BC
1 (s−t)−BC

2 (s−t)λ1E(λI
se

−
∫ s
t
λI
udu) + e−BI

1 (s−t)−BI
2 (s−t)λ1E(λC

s e
−

∫ s
t
λC
u du)

]
ds
}

− Lα
C

∫ T

t

e−BI
1 (s−t)−BI

2 (s−t)λ2)E(λC
s e

−
∫ s
t
λC
u du)E

(
e−

∫ s
t
ruduudf (Xs, s)

+
)]

ds

− Lα
I

∫ T

t

e−BC
1 (s−t)−BC

2 (s−t)λ1E(λI
se

−
∫ s
t
λI
udu)E

(
e−

∫ s
t
ruduudf (Xs, s)

−
)]

ds.

The expectations in the above terms are all explicitly computable. Indeed, once
we choose a contract so that there exists a closed formula (possibly differen-
tiable in time) for the default free price and for the discounted expectation of
its positive part (such as a forward for instance), then we have that all the
inner expectations to be evaluated are of the form

∫ T

t

f0(s)e
−f1(s)−λf2(s)E(λse

−
∫ s
t
λudu)ds,

where f0, f1, f2 are deterministic and differentiable functions of time, while λs

is a CIR process with λt = λ (constant) and E(e−
∫ s
t
λudu) = e−f1(s)−λf2(s),
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with f1(t) = f2(t) = 0. So, we have

∫ T

t

f0(s)e
−f1(s)−λf2(s)E(λse

−
∫ s
t
λudu)ds

E
(∫ T

t

f0(s)e
−f1(s)−λf2(s)λse

−
∫ s
t
λududs

)
=E
(
f0(t)e

−f1(t)−λf2(t) − e−
∫ T
t

λuduf0(T )e
−f1(T )−λf2(T )

)
+E

(∫ T

t

e−
∫ s
t
λudu[f ′

0(s)− f0(t)f
′
1(s)− λf0(t)f

′
2(s)]e

−f1(s)−λf2(s)ds
)

having applied itegration by parts in the last passage. Using Fubini’s theorem
we may conclude

∫ T

t

f0(s)e
−f1(s)−λf2(s)E(λse

−
∫ s
t
λudu)ds

=f0(t)e
−f1(t)−λf2(t) − f0(T )e

−f1(T )−λf2(T )E(e−
∫ T
t

λudu)

+

∫ T

t

[f ′
0(s)− f ′

1(s)− λf ′
2(t)]e

−f1(s)−λf2(s)E(e−
∫ s
t
λudu)ds

=f0(t)e
−f1(t)−λf2(t) − f0(T )e

−2(f1(T )+λf2(T ))

+

∫ T

t

[f ′
0(s)− f0(t)f

′
1(s)− λf0(t)f

′
2(t)]e

−2[f1(s)+λf2(s)]ds.

By Duhamel’s principle we may compute the components of g1

v(x, λ1, λ2, t, T ) = −
∫ T

t

v(ξ)(x, λ1, λ2, t)dξ,

w(x, λ1, λ2, t, T ) = −
∫ T

t

w(ξ)(x, λ1, λ2, t)dξ,

where v(ξ) and w(ξ) solve the PDE’s

{
∂v(ξ)

∂t + L0v(ξ) + κ = 0, t < ξ

v(ξ)(x, λ1, λ2, ξ) = −Aρ1g0(x, λ1, λ2, ξ, T ){
∂w(ξ)

∂t + L0w(ξ) + κ = 0, t < ξ

w(ξ)(x, λ1, λ2, ξ) = −Aρ2g0(x, λ1, λ2, ξ, T ),
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explicitly given by

v(ξ)(x, λ1, λ2, t) =ση1E
(√

λC
s e

−
∫ ξ
t
(ru+λu)du

∂2g0
∂x∂λ1

(Xξ, λ
C
ξ , λ

I
ξ , ξ, T )

)
+E

(∫ ξ

t

e−
∫ s
t
(ru+λu)duκ(Xs, λ

C
s , λ

I
s, s)ds

)
w(ξ)(x, λ1, λ2, t) =ση2E

(√
λI
se

−
∫ ξ
t
(ru+λu)du

∂2g0
∂x∂λ2

(Xξ, λ
C
ξ , λ

I
ξ , ξ, T )

)
+E

(∫ ξ

t

e−
∫ s
t
(ru+λu)duκ(Xs, λ

C
s , λ

I
s, s)ds

)
We remark that all processes are evaluated for ρ̄ = (0, 0): from the previous
discussion it is quite evident that the partial derivatives of g0 are explicitly
computable. The final evaluation will require expectations involving the in-
tensity processes similar to those of the previous section. Therefore (47) is
numerically fully implementable. We postpone the explicit numerical compu-
tations for some specific European claim to future work.

7 CVA and the change of measure approach

Recently Brigo and Vrins [11], in a paper focusing only on CVA, proposed a
method for its computation under WWR, based on a change of measures, e.g.
Girsanov’s theorem, in the stochastic-intensity default setup. Their starting
point is the following formula for the time-zero CVA (compare with (15)) of
the portfolio price process Vt

CV A(0, T ) = −(1−R)

∫ T

0

E[
V +
t

B(0, t)
ζt]dG(t), (48)

where E[·] is the expectation under the risk-neutral measure. The EPE (ex-
pected positive exposure) under WWR is the function

EPE(t) = E[
V +
t

B(0, t)
ζt].

Girsanov’s theorem is used to factorize the EPE. Indeed by defining an equiv-

alent martingale measure QCF,t ∼ Q as

Zt
s :=

dQCF,t

dQ
=

M t
s

M t
0

, where M t
s = E[

1

B(0, t)
λtSt|Fs], s ∈ [0, t],

in [11] it is proved that

E[
V +
t

B(0, t)
ζt] = ECF,t

[V +
t ]E[

ζt
B(0, t)

].
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The measure QCF,t

is called wrong-way measure and it is associated to the
numéraire CF,t

· = B(0, ·)M t
· .

In order to apply such a methodology, it is therefore necessary to obtain the

dynamics of Vt under the measure QCF,t

. By assuming a continuous dynamic
for Vt under Q described by a SDE, the change of measure results in a drift
adjustment, we refer to [11] for the full details.

In [13] Brigo et al. applied the results obtained in [11] to the calculation
of CVA under WWR for a call option in the market model described by (21).
The risk free rate being constant implies that E[B(0, t)−1ζt] = e−rt. Moreover
the explicit expression of the new drift is

θst ≡ θst (λt) = ρη
√
λt

(
Aλ(s, t)Bλ

t (s, t)

Aλ(s, t)Bλ
t (s, t)λt −Aλ

t (s, t)
−Bλ(s, t)

)
, (49)

the functions logAλ = −B1 and Bλ = B2 being as in (32). In order to be able
to compute the expectations, it was necessary to replace the process λt with a
deterministic proxy λ(t) in (49). Once the chosen approximant is plugged into

(49), the expression EPE(t) = e−rtECF,t

[c(t, T )] can be evaluated analytically
leading to (see [13])

ECF,t

[
c(t, T )

B(0, t)
]

≈ex0+σΘtN

(
α̂(t) + β(t)σ

√
t√

1 + β2(t)

)
− eκ−rTN

(
α̂(t)− σ

√
T − t√

1 + β2(t)

)
,

(50)

where

Θ(t) =

∫ t

0

θ(u, t)du, θ(u, t) = θtu(λ(u)), α̂(t) = α(t) +
Θt√
T − t

α(t) =
1

σ
√
T − t

(
x0 − κ+

(
r +

σ2

2

)
T − σ2t

)
, β(t) =

√
t

T − t
.

Two deterministic proxies λ(t) were considered: E[λt] and ECF,t

[λt]. While
the first is analytically known, the second requires a further approximation
step (see [13]). Inserting (50) in (48) a numerical integration procedure gives
the CVA under WWR.

Remark 5 It should be noticed that other methods based on the approxima-
tion of the process (λt) could be exploited in order to price a vulnerable call
option in the market model (21), and hence its CVA. For instance, the volatility
expansion method of Kim and Kunimoto, see [38], considers a Taylor expan-
sion of the process (λt) in powers of η around η = 0. Taking the first order
polynomial iand setting λ(s) = λ exp(−γ(s− t))+ θ(1− exp(−γ(s− t))), they
have for all s ≥ t and λt = λ:

λs = λ(s) + η

∫ s

t

e−γ(s−u)
√
λ(u)(ρdB1

u +
√

1− ρ2dB2
u) + o(η). (51)
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Inserting the approximation (51) in the evaluation formula for the vulnerable
call option, after some manipulations the following result is obtained

u(x, λ, t, T ; ρ) ≈ e−
∫ T
t

λ(s)ds
[
cBS(x, t, T )−ρσηex−

σ2

2 (T−t)N(d1)Λ(λ, t, T )] (52)

with cBS denoting the classical Black-Scholes price and

Λ(λ, t, T ) =

∫ T

t

∫ T

u

e−γ(s−u)
√

λ(u)duds.

In the next section we are going to provide a comparison of the numerical
performances of the different methods which have been presented.

8 Numerical results

In this section we compare numerically our method to compute the CVA for a
vulnerable option with the methods mentioned above, using the Monte Carlo
approximations as a benchmark.

We considered model (21) with exogenously chosen parameters γ = 0.2,
θ = 0.05, λ0 = 0.04 and S0 = 100. Instead, we varied ρ, σ and η to check the
performances of the methods. Positive correlation values relate to the WWR
effect on the call option. The strike price is fixed to K = 100 and the maturity
is T = 1: without loss of generality we also set the risk-free rate r = 0 and
t = 0. All the pricing methods have been implemented in MatLab (R2017).

For the benchmark, Monte Carlo method was implemented with an Euler
discretization with full-truncation of the CIR process, while the geometric
Brownian motion was exactly simulated. In order to improve the Monte Carlo
estimates, we implemented a control variate technique by using the default-
free call price as a control. In these experiments we set n = 1000 time step
points in [0, T ] and M = 1000 000 samples.

For the approximation of the first order expansion in section 4, we com-
puted g0 analytically, while for g1, we first computed the term gα1 on a grid
of equispaced points αk in [0, T ] by using the adaptive Gauss-Kronrod (GK)
quadrature algorithm and then the resulting vector was interpolated and fi-
nally integrated by using once again the GK algorithm to get g1. On a Intel
Core i7 (2.40 GHz), the whole procedure requires about 0.3 secs. Of course, the
CVA approximation for different values of ρ is simply obtained by linearity,
see eq. (36), without any further computational cost.

The drift adjustment method recalled in section 7 is based on the replace-
ment of the process λt with a deterministic proxy in the drift (49). As it
was pointed out, different choices can be made: we have chosen to implement
λ(t) = E[λt]. Inserting (50) in (48) a numerical integration procedure gives
the CVA. This numerical approximation (taking about 0.6 secs in our imple-
mentation) must be repeated for every value of ρ.

The volatility expansion introduced in Remark 5 is easily implemented,
all the terms being available in closed forms with the exception of Λ(λ, 0, T )
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ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)
-0.9 0.11780 (0.00253) 0.11729 ( 0.00304) 0.12215 (-0.00181) 0.12034 (0.00009)
-0.7 0.12712 (0.00150) 0.12677 ( 0.00184) 0.12970 (-0.00108) 0.12861 (0.00010)
-0.5 0.13643 (0.00084) 0.13625 ( 0.00102) 0.13769 (-0.00042) 0.13727 (0.00012)
-0.3 0.14575 (0.00023) 0.14573 ( 0.00026) 0.14615 (-0.00017) 0.14598 (0.00013)
-0.1 0.15506 (0.00009) 0.15520 (-0.00004) 0.15508 ( 0.00008) 0.15516 (0.00014)
0.1 0.16438 (0.00004) 0.16468 (-0.00026) 0.16448 (-0.00006) 0.16443 (0.00015)
0.3 0.17369 (0.00014) 0.17416 (-0.00033) 0.17437 (-0.00053) 0.17383 (0.00015)
0.5 0.18301 (0.00062) 0.18364 (-0.00000) 0.18473 (-0.00110) 0.18364 (0.00015)
0.7 0.19233 (0.00156) 0.19312 ( 0.00077) 0.19558 (-0.00169) 0.19389 (0.00015)
0.9 0.20164 (0.00250) 0.20260 ( 0.00154) 0.20692 (-0.00277) 0.20414 (0.00014)

Table 1 Numerical results for varying ρ, σ = 0.1. In parenthesis the errors with respect
to the MC values and, for the MC values, the 95% confidence interval length. The CIR
volatility is η = 0.1.

ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)
-0.9 0.04460 (0.02252) 0.03199 ( 0.03514) 0.07181 (-0.00468) 0.06713 (0.00015)
-0.7 0.06979 (0.01364) 0.06042 ( 0.02302) 0.08500 (-0.00156) 0.08344 (0.00020)
-0.5 0.09499 (0.00688) 0.08886 ( 0.01302) 0.10125 ( 0.00063) 0.10188 (0.00027)
-0.3 0.12018 (0.00247) 0.11729 ( 0.00536) 0.12100 ( 0.00166) 0.12265 (0.00034)
-0.1 0.14537 (0.00014) 0.14573 (-0.00050) 0.14462 ( 0.00060) 0.14522 (0.00041)
0.1 0.17057 (0.00025) 0.17416 (-0.00334) 0.17237 (-0.00155) 0.17082 (0.00047)
0.3 0.19576 (0.00251) 0.20260 (-0.00432) 0.20437 (-0.00610) 0.19827 (0.00052)
0.5 0.22095 (0.00689) 0.23103 (-0.00318) 0.24059 (-0.01275) 0.22784 (0.00056)
0.7 0.24614 (0.01360) 0.25946 ( 0.00029) 0.28087 (-0.02111) 0.25975 (0.00057)
0.9 0.27134 (0.02248) 0.28790 ( 0.00592) 0.32493 (-0.03111) 0.29382 (0.00056)

Table 2 Numerical results for varying ρ, σ = 0.1. In parenthesis the errors with respect
to the MC values and, for the MC values, the 95% confidence interval length. The CIR
volatility is η = 0.3.

ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)
-0.9 0.00005 (0.04704) -0.05330 ( 0.10029) 0.04566 ( 0.00132) 0.04698 (0.00016)
-0.7 0.03431 (0.02821) -0.00591 ( 0.06844) 0.05762 ( 0.00489) 0.06252 (0.00024)
-0.5 0.06868 (0.01433) 0.04147 ( 0.04154) 0.07493 ( 0.00807) 0.08301 (0.00036)
-0.3 0.10305 (0.00530) 0.08886 ( 0.01950) 0.09960 ( 0.00875) 0.10836 (0.00049)
-0.1 0.13742 (0.00052) 0.13625 ( 0.00170) 0.13361 ( 0.00433) 0.13795 (0.00063)
0.1 0.17179 (0.00041) 0.18364 (-0.01143) 0.17841 (-0.00620) 0.17220 (0.00077)
0.3 0.20616 (0.00528) 0.23103 (-0.01959) 0.23451 (-0.02306) 0.21144 (0.00090)
0.5 0.24053 (0.01653) 0.27842 (-0.02135) 0.30140 (-0.04432) 0.25707 (0.00103)
0.7 0.27491 (0.02987) 0.32581 (-0.02102) 0.37783 (-0.07304) 0.30478 (0.00111)
0.9 0.30928 (0.05128) 0.37320 (-0.01263) 0.46226 (-0.10169) 0.36057 (0.00115)

Table 3 Numerical results for varying ρ, σ = 0.1. In parenthesis the errors with respect
to the MC values and, for the MC values, the 95% confidence interval length. The CIR
volatility is η = 0.5.

which was computed by a standard quadrature (GK) algorithm. The procedure
is very fast (about 0.5×10−3 secs.) and since the approximation is linear in ρ,
the estimated CVA is computed once for all values of ρ, as for the correlation
expansion method.

The approximation methods are compared to MC (with control variates)

estimates, the error being defined as ĈV AMC − ĈV AMethod. A positive sign
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ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)
-0.9 0.34222 ( 0.00937) 0.34623 ( 0.00537) 0.35829 (-0.00667) 0.35160 (0.00030)
-0.7 0.37230 ( 0.00576) 0.37557 ( 0.00249) 0.38192 (-0.00386) 0.37806 (0.00036)
-0.5 0.40238 ( 0.00292) 0.40490 ( 0.00040) 0.40714 (-0.00184) 0.40530 (0.00040)
-0.3 0.43246 ( 0.00046) 0.43424 (-0.00132) 0.43403 (-0.00110) 0.43292 (0.00044)
-0.1 0.46254 (-0.00005) 0.46358 (-0.00109) 0.46262 (-0.00014) 0.46249 (0.00048)
0.1 0.49262 ( 0.00023) 0.49292 (-0.00006) 0.49299 (-0.00013) 0.49285 (0.00050)
0.3 0.52270 ( 0.00077) 0.52225 ( 0.00122) 0.52517 (-0.00169) 0.52348 (0.00051)
0.5 0.55278 ( 0.00288) 0.55159 ( 0.00407) 0.55921 (-0.00354) 0.55566 (0.00052)
0.7 0.58286 ( 0.00605) 0.58093 ( 0.00799) 0.59514 (-0.00622) 0.58892 (0.00057)
0.9 0.61294 ( 0.00922) 0.61027 ( 0.01190) 0.63300 (-0.01083) 0.62216 (0.00048)

Table 4 Numerical results for varying ρ, σ = 0.3. In parenthesis the errors with respect
to the MC values and, for the MC values, the 95% confidence interval length. The CIR
volatility is η = 0.1.

ρ Corr. exp. Vol. exp. Drift adj. MC + control (C.I)
-0.9 0.54936 ( 0.01904) 0.55828 ( 0.01012) 0.56840 (-0.01310) 0.56840 (0.00054)
-0.7 0.60299 ( 0.01159) 0.61017 ( 0.00441) 0.61459 (-0.00784) 0.61459 (0.00064)
-0.5 0.65663 ( 0.00519) 0.66207 (-0.00026) 0.66182 (-0.00453) 0.66182 (0.00073)
-0.3 0.71026 ( 0.00163) 0.71397 (-0.00208) 0.71189 (-0.00163) 0.71189 (0.00081)
-0.1 0.76390 ( 0.00089) 0.76587 (-0.00108) 0.76479 ( 0.00069) 0.76479 (0.00087)
0.1 0.81753 (-0.00007) 0.81777 (-0.00030) 0.81746 (-0.00078) 0.81746 (0.00092)
0.3 0.87117 ( 0.00269) 0.86966 ( 0.00419) 0.87386 (-0.00225) 0.87386 (0.00096)
0.5 0.92480 ( 0.00615) 0.92156 ( 0.00939) 0.93095 (-0.00689) 0.93095 (0.00096)
0.7 0.97844 ( 0.01078) 0.97346 ( 0.01576) 0.98922 (-0.01436) 0.98922 (0.00096)
0.9 1.03207 ( 0.01804) 1.02536 ( 0.02475) 1.05011 (-0.02337) 1.05011 (0.00091)

Table 5 Numerical results for varying ρ, σ = 0.5. In parenthesis the errors with respect
to the MC values and, for the MC values, the 95% confidence interval length. The CIR
volatility is η = 0.1.

η 0.1 0.2 0.3 0.4 0.5
|g1| 0.0466 0.0898 0.1260 0.1532 0.1719

Table 6 The absolute value of g1 for different volatilities η.

indicates an underestimation of the CVA with respect to MC. In our exper-
iments (Tables (1) to (5)) we noticed that the three methods provide better
approximation for small values of |ρ|: the correlation expansion, which is linear
in ρ, provides a lower bound for CVA, while the drift adjustment gives a uni-
formly level of approximations which, however slightly worsens as the values
of ρ become larger and positive (other choices of the λ(t) tend to mitigate this
effect, see [13]). In particular we experienced a systematic underestimation of
the WWR effect for the correlation expansion method and an overestimation
for the drift adjustment method, while the volatility expansion has not a def-
inite behavior. This kind of pattern is still observed for the other parameter
sets considered (see Figures (1), (2)).

As pointed out before, the contribution to the CVA due to the correlation
ρ is quantified by g1: its behavior is reported in Table (6) and it suggests an
increasing impact of WWR as the volatility of the default intensity becomes
larger.
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λ0 γ θ η
Set 1 0.03 0.02 0.161 0.08
Set 3 0.01 0.8 0.02 0.2

Table 7 Parameter sets.
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Fig. 1 Comparison of all methods for the set of parameters in Brigo et al. [13], maturity
T = 1, parameter set 1 on the left and parameter set 3 on the right.

We further compared the approximation methods on the same two sets of
parameters (set 1 and 3) used in [13] for the CIR dynamic, see Table (7). The
results for T = 1 and T = 5 are reported graphically in Fig. (1) and Fig. (2),
respectively confirming the behavior observed.

9 Conclusions

We considered the pricing problem for financial options subject to counterparty
credit risk. The impact of a credit event is quantified by the Credit Value
Adjustment, which we modeled in a stochastic intensity framework. This allows
to represent the CVA as the expectation of the derivative’s payoff discounted
with a rate given by the sum of the risk-free and of the default intensity.
Wrong Way Risk is accounted for by considering positive dependence between
the exposure and the default event. The calculation of such a quantity may be
tackled by classical Monte Carlo methods once the dynamics of the stochastic
state variables (underlying, risk-free rate and default intensity) are chosen, but
it is computationally very expensive. As an alternative to that, we proposed
in this paper the correlation expansion method to evaluate CVA with WWR,
when the underlying and the intensity dynamics are respectively given by a
geometrical Brownian motion and a CIR process. We showed furthermore how
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Fig. 2 Comparison of all methods for the set of parameters in Brigo et al. [13], maturity
T = 5, parameter set 1 on the left and parameter set 3 on the right.

the correlation expansion method may be extended to cope with multi-factor
models and to include several XVA’s. Finally we compared the performance
of our method with that of two other semi-analytical techniques: the drift
adjustment introduced in [11] and the volatility expansion technique used in
[38].
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