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Abstract: General expressions for anisotropic particle diffusion Monte Carlo (PDMC) in a d-dimensional
space are presented. The calculations of ground state energy of a helium atom for solving the many-body
Schrödinger equation is carried out by the proposed method. The accuracy and stability of the results are
discussed relative to other alternative methods, and our experimental results within the statistical errors
agree with the quantum Monte Carlo methods. We also clarify the benefits of the proposed method by mod-
eling the quantum probability density of a free particle in a plane (energy eigenfunctions). The proposed
model represents a remarkable improvement in terms of performance, accuracy and computational time
over standard MCMC method.
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1 Introduction
Probability distributions over many variables occur frequently in Bayesian inference, statistical physics and
simulation studies [14]. Computational methods for dealing with these large and complex distributions
remain an active area of research. As a canonical example, we consider a statistical model θ → x for data x
generated using parameters θ. The predictive distribution over new data x(N+1) given observations of N
previous settings {x(n)}Nn=1 is an average under the posterior distribution p(θ|{x(n)}Nn=1r) as

p(xn+1)|{x(n)}Nn=1 = ∫ p(xN+1|θ)p(θ|{x(n)}Nn=1) dθ = 𝔼p(θ|{x(n)}Nn=1)[p(xN+1)|θ],
where the posterior distribution is given by the Bayes rule

p(θ|{x(n)}Nn=1) = p((θ|{x(n)}Nn=1)|θ)p(θ)
∫ p((θ|{x(n)}Nn=1)| ́θ)p( ́θ) d ́θ .

Given a parameter space, we can specify the target distribution as a smooth probability density function p(θ),
while expectations reduce to integrals over parameter space 𝔼p[f] = ∫ dθp(θ)f(θ). Unfortunately, we will
not be able to evaluate these integrals analytically for any nontrivial target distribution. The predominant
methodology for sampling from such a probability density is Markov chainMonte Carlo (MCMC) [16]. Despite
the potential efficiency gains to be obtained in MCMC sampling, the tuning of the MCMC methods remains
a major issue especially for challenging inference problems. This paper seeks to address these issues by
proposing an adapting method based on the Langevin diffusion algorithm for the overall development of
MCMC methods. Major steps forward in this regard were made in a proposal process based on the gradient
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information of the target density. A brief review of the proposed method is provided in the following sec-
tion, and general concepts with certain extensions and a description of the formalism in terms of gradient
flows of the target density which contains all the relevant information are also considered. Finally, the new
methodology is demonstrated and assessed on a number of interesting statistical problems.

2 Adaptive proposal distribution
For an unnormalized probability density function ̃p(θ), where θ ∈ ℝd, the normalized density follows as
p(θ) = ̃p(θ)/∫ ̃p(θ) dθ, which is analytically intractable for many statistical models. Monte Carlo estimation
of integrals with respect to p(θ) are therefore required. The predominant methodology for sampling from
such a probability density is Markov chain Monte Carlo (MCMC). Consider p(θ) a probability density function
on ℝd, from which we desire to draw an ensemble of independent and identically distributed samples. We
consider the Langevin diffusion equation ̇θ = ∇θ log(p(θ)) + √2Ẇ driven by the time derivative of a standard
Brownian motion W. In the limit as t →∞, the probability distribution p(θ) approaches a stationary distri-
bution, which is also invariant under the diffusion; in fact, it turns out that p∞ = p(θ). If we consider the
random vector θ ∈ ℝd with density p(θ) and the log density denoted as L(θ) ≡ log(p(θ)), then the Metropolis
adjusted Langevin algorithm (MALA) [27] is based on a Langevin diffusion, with stationary distribution p(θ),
defined by the stochastic differential equation (SDE) as

p(θ(t)) = 12∇θL(θ(t)) dt + dW(t), (2.1)

whereW denotes n-dimensional Brownianmotion [7, 21, 33]. In case of Brownianmotion, a particle of mass
m suspended in a fluid experiences two type of forces: a frictional force Ff that dissipates the kinetic energy
of the particle and a random force Fr(t) that pushes the particle in an erratic way. The random force Fr(t) has
zero mean and is uncorrelated at different time. Its statistics is Gaussian, and its strength is related to the
temperature Te of the fluid.

⟨Fr(t)⟩ = 0,
⟨Fr(t)Fr(s)⟩ = 2γKBTeδ(t − s),

where γ is the friction constant and KB is the Boltzmann factor. This simple model has been extended, mod-
ified and generalized in many different ways. For example, one may allow for potential forces that act on
the considered particle in an external field of force [22]. Other generalization concern the random and the
frictional forces. For example, the surrounding mediummay undergo slow processes that result in long-lived
correlation of the fluctuating force. Other generalization concerns the statistical character of the noise, which
maybenon-Gaussian. In this article,wepursue the idea that the friction coefficientmaybe afluctuatingquan-
tity that randomly changes its value in space and time. In the following, we formulate our model and derive
the expression of the diffusion tensor in terms of the time-ordered directional derivative of the fluctuating
friction tensor. This approach is based on the Fokker–Planck equation [5, 12, 20, 24, 34] and the Langevin
equation for generating a trajectory in coordinate space. Lets consider the d-dimensional Brownianmotion of
amassive particle in an external potential U(θ) under influence of a spatially constant and in time fluctuating
friction tensor γ(t). The motion of the particle with a function of all the position coordinates

θ =
[[[[[

[

θ1
θ2
...
θd

]]]]]

]

and v =
[[[[[

[

v1
v2
...
vd

]]]]]

]

is governed by the Langevin equations as

̇θ(t) = v(t),

m × ̇v = −∇U(θ) − γ(t)v(t) + √2KBTeb(t)W(t),
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where ∇U(θ) is the gradient of the potential and b(t) is related to the friction tensor γ(t)

γ(t) = b(t)b(t)T ,

and

W(t) =
[[[[[

[

w1(t)
w2(t)
...

wd(t)

]]]]]

]

is a vector of independent, identical Gaussian white noise with

⟨wi(t)⟩ = 0,
⟨wi(t)wj(s)⟩ = δi,jδ(t − s),

where T is thematrix transposition. However, it turns out that the probability density of the Brownian particle
approaches the Maxwell–Boltzmann distribution [13, 17, 18] defined as

Z−1 exp[−(mv2 + U(θ))/KBTe]
in the limit as t →∞ provided the potential U(θ) is confirming such that the partition function

Z = ∬ ddθ ddv exp[−(mv2 + U(θ))/KBTe]

is finite. For a diffusion process characterized by a time-dependent probability density p(θ, t), the Fokker–
Planck equation is defined as

∂p
∂t = ∑i

D × ∂
∂xi
(
∂
∂θi
− μi)p(θ, t),

where μi is the i-th component of the drift term caused by an external potential, and D is the diffusion tensor.
In one spatial dimension θ with drift term μ(θt , t) and diffusion coefficient D(θt , t) = σ2(θt , t)/2, the Fokker–
Planck equation for the probability density p(θ, t) of the random variable θt is

∂
∂t p(θ, t) = −

∂
∂θ [μ(θ, t)p(θ, t)] +

∂2

∂θ2
[D(θ, t)p(θ, t)],

where the zero-drift equation with constant diffusion can be considered as a model of classical Brownian
motion. A first-order Euler discretization of equation (2.1) gives the proposal mechanism

θn+1 = θn + ϵ22 L(θn) + ϵzn ,
where z comes from a normal distribution N(z|0, I) and ϵ is the integration step size. An apparent problem
with this method is that the resulting proposal is no longer a Markov process (resulting in a non-standard
MCMC), and the convergence to the invariant distribution, p(θ), is no longer guaranteed for finite step size ϵ,
due to the first-order integration error. Instead, it is still possible to obtain a valid algorithm by viewing the
chain as a d-dimensional Markov process. This discrepancy can be corrected by employing a Metropolis
acceptance probability after each integration step, thus ensuring convergence to the invariant measure. We
would like to mention that the isotropic diffusion will be inefficient to draw independent and identically dis-
tributed samples from target density without correlation. As an example, MALA incorporates an independent
draw from isotropic multivariate normal distribution on ℝd with mean μ(θn , ϵ) = θn + ϵ22 L(θ

n); then the dis-
crete form of the SDE defines a proposal density q(θ⋆|θn) = N(θ⋆|μ(θn , ϵ), ϵ2I) with acceptance probability
of min[1, p(θ⋆)q(θn|θ⋆)/p(θn)q(θ⋆|θn)] and covariance matrix equal to a d × d identity matrix scaled by step
size ϵ [27]. In contrast to the standard MALA algorithm, we would like to have an adaptive proposal mecha-
nism which satisfies the Markov property. To complete our algorithm, we need to specify a proposal q from
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whichwe sample θ⋆, and to this aimwemake use of the gradient information and the last accepted θ. Theway
to alleviate this problem, by generating proposals based on the drift term (transition kernel), is the following:

p(θ(t)) = 12∇θL(θ(t)) dt + dW(t),

W(t) = N(μ(θn , ϵ), Σ(θn , ϵ)),

μ(θn+1, ϵ|θn) = θn + ϵ22 L(θn),
Σ(θn , ϵ|θn , Σn , ∇θL(θn−1)) = ϵ × [β + ψ(Σ, n) × (󵄩󵄩󵄩󵄩 θnθn−1 − (󵄩󵄩󵄩󵄩 ∇θL(θn)2∇θL(θn−1) 󵄩󵄩󵄩󵄩)󵄩󵄩󵄩󵄩)ξ ]

[1 + exp[−󵄩󵄩󵄩󵄩
∇θL(θn)2∇θL(θn−1) 󵄩󵄩󵄩󵄩]] ,

ψ(Σ, n) = √2π + Σn ,

(2.2)

where ‖ ⋅ ‖ is the Euclidean norm, β is a constant scalar value, ψ( ⋅ ) is a uniform random variable between
[0,√2π + Σn] and 0 ≪ x < 1.

In this manner, we build up the complete path of diffusion, but, as a step size ϵ → 0, we recover the
solution path of the continuous SDE, and the target distribution would be the solution of the equation. As
mentioned before, if ϵ is a finite value, then the distribution of the path is biased and Markov properties
are modified. We can correct the biases by use of θ(t + ϵ) as a proposal mechanism with a mean of θ(t) and
the non-isotropic covariance, scaled by ϵ. Therefore, the covariance matrix is encountered by the gradient
information of the posterior distribution. Up to this stage, we use the directional gradient of the posterior
distribution to accommodate the small variance. Then, to correct the bias, we have to enforce the acceptance
probability to ensure detailed balances as

p(θ⋆|θ) = min[1, p(θ
⋆)p(θ|θ⋆)

p(θ)p(θ⋆|θ) ].
Therefore, the interesting question here could be: can geometric structures be employed in the proposed
methodology? The concept we proposed is not far from the notion of metric tensor and the curvature in
Riemannian manifold. Here we have a probability distribution which is completely a function of the direc-
tional derivative of the target density. Our proposed method captures the notion of similarities in a tangent
space defined by themetric tensor which is associated with the Fisher informationmatrix. So we can see that
the proposed methodology shares relevant structure with the Fisher information matrix defined as

X2(δθ) = ∫ |p(y; θ + δθ) − p(y; θ)|
2

p(y; θ) dy ≈ δθTG(θ)δθ,

where the Fisher information may also be written as

X(θ) = 𝔼[( ∂∂θ log f(y; θ))
2
|θ] = ∫( ∂∂θ log f(y; θ))

2
f(y; θ) dy.

Fisher information has a lot of impact on a target density f( ⋅ ) and defines the overall geometry of the space.

3 Numerical simulations
In the following, we are going to describe the proposed technique to approximates the ground state energy
of a helium atom by means of refining a trial wave function dependent on a set of parameters, Ψ(θ, t). The
helium atom consists of two electrons and a nucleus with charge z = 2. For this two-electron problem, the
Schrödinger equation has the form

ℏ2

2m (∇
2
1 + ∇

2
2)Ψ −

ze2

r1
Ψ − ze

2

r2
Ψ = EΨ,

where m is the mass of an electron, and the subscripts refer to electron 1 and 2, respectively, and ℏ is the
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reduced Planck constant. Here

∇1 =
∂2

∂x21
+
∂2

∂y21
+
∂2

∂z21
, ∇2 =

∂2

∂x22
+
∂2

∂y22
+
∂2

∂z22
.

Then, cross-multiplying, we have

−(∇21 + ∇
2
2)Ψ −

2m
ℏ2

ze2

r1
Ψ − 2m
ℏ2

ze2

r2
Ψ = E2m
ℏ2

Ψ.

Assuming infinite nuclear masses, the Hamiltonian is

Ĥ = − ℏ
2

2m (∇
2
1 + ∇

2
2) −

ze2

r1
−
ze2

r2
+
e2

r12
.

We start with the idea of expressing the kinetic energy part of the Hamiltonian in a form appropriate for this
problem. That operator surely has the form

−
ℏ2

2me
(∇21 + ∇

2
2).

The contribution to the potential energy due to the attraction from the nucleus is

−
2ze2
r1
−
2ze2
r2

,

and if we add the repulsion arising from the two interacting electrons, we obtain the potential energy

V(r1, r2) = −
2ze2
r1
−
2ze2
r2
+
ze2

r12

with the electrons separated at a distance r12 = |r1 − r2|. Then the Hamiltonian becomes

Ĥ = −
ℏ2∇21
2m −
ℏ2∇22
2m −

2ze2
r1
−
2ze2
r2
+
ze2

r12

and the Schrödinger equation is ĤΨ = EΨ with the corresponding probability density

p(R) = |ΨT(R)|2

∫|ΨT(R)|2 dR

generatedby the trialwave function. The choice of the trialwave functionused in the computations for helium
(assuming r1 → 0) is

EL(R) =
1

ΨT(R)
HΨT(R) =

1
ΨT(R)
(−

1
2∇

2
1 −

z
r1
)ΨT(R) + finite terms,

EL(R) =
1

RT(r1)
(−

1
2
d2

dr21
−
1
r1

d
dr1
−
z
r1
)RT(r1) + finite terms.

For small values of r1, the terms which dominate are

lim
r1→0 EL(R) = 1

RT(r1)
(−

1
r1

d
dr1
−
z
r1
)RT(r1).

This results in
1

RT(r1)
dRT(r1)
dr1
= −z and RT(r1) ∝ exp[−zr1].

A similar condition applies to electron 2 as well. For orbital momenta l > 0, we have

1
RT(r)

dRT(r)
dr = −

z
l + 1 .
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Similarly, by the case r12 → 0, we can write a possible trial wave function for a system with N electrons or
particles as

ΨT(R) = Φ(r1)Φ(r2) ⋅ ⋅ ⋅Φ(rN)∏
i<j f(ri,j).

During the development of our benchmark, helium, the wave function is

ΨT(r1, r2) = exp[−α(r1 + r2)] + exp[
r12

2(1 + βr12)
]

with α and β as variational parameters. The local energy for this case is defined as

EL2 = EL1 +
1

2(1 + βr12)2
[
α(r1 + r2)

r12
[1 − r1r2r1r2

] −
1

2(1 + βr12)2
−

2
r12
+

2β
1 + βr12

].

Various quantum Monte-Carlo methods have in fact been used extensively in the calculation of the ground
state energy and wave function for the Schrödinger equation. The basic simulation technique of the various
quantum Monte-Carlo methods has been described in detail several times in the literature [1–4, 6, 10, 19,
26, 28, 29, 35], and only a brief description follows here: given aHamiltonian Ĥ and a trial wave function ΨT,
the variational principle states that the expectation value of ⟨H⟩, defined as

E[Ĥ] = ⟨Ĥ⟩ =
∫ dRΨ⋆T(R)Ĥ(R)ΨT(R)
∫ dRΨ⋆T(R)ΨT(R)

,

where the trial wave function can be expanded in the eigenstates of the Hamiltonian

ΨT(R) = ∑
i
αiΨi(R).

The basic procedure in our numerical simulation is as follows:
∙ Choose a trial wave function ΨT(R, α, β) for a many-body system consisting of N particles located at

positions

R̄ =
[[[[[

[

R1
R2
...
RN

]]]]]

]

,

with variational parameters

̄α =
[[[[[

[

α1
α2
...
αN

]]]]]

]

and ̄β =
[[[[[

[

β1
β2
...
βN

]]]]]

]

.

∙ Choose an initial R̄ and variational parameters ̄α and ̄β and calculate |Ψ ̄α ̄βT (R̄)|2 with probability density
of the wave function defined as

p(R̄) = |ΨT(R̄)|2

∫|ΨT(R̄)|2 dR̄
.

∙ Define a local energy
EL(R̄, ̄α, ̄β) =

1
ΨT(R̄, ̄α, ̄β)

ĤΨT(R̄, ̄α, ̄β).

∙ The local energy together with the trial PDF yields

E[Ĥ( ̄α, ̄β)] = ∫ p(R̄)EL(R̄) dR̄ ≈
1
N

N
∑
i=1 p(R̄i , ̄α, ̄β)EL(R̄i , ̄α, ̄β).

∙ Initialize the energy and the variance, and start the Monte Carlo calculation.
∙ Propose a new position vector based on equation (2.2), and calculate a trial position Rp.
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Method E0 (a.u.) E0 (eV)

PDMC −2.903385 −79.0052
MHMC −2.37401 −64.6
VMC −2.84609 −77.446
GFMC −2.37906 −64.7376
VGFMC −2.85129 −77.5876
Table 1: Ground state energy of helium atom. Comparison between particle diffusion Monte Carlo (PDMC), Metropolis–Hastings
Monte Carlo (MHMC) [16], variational Monte Carlo (VMC) [9, 23], Green function Monte Carlo (GFMC) and variational Green
function Monte Carlo (VGFMC) [8, 31, 32]. The iterations were performed with a sample of approximately 106 points. The total
ground state energy of the helium atom is −79.005151042 eV, or −2.90338583 a.u. [37].

Figure 1: Comparative correlation function in our simulation for a helium atom, which provides a useful way of characterizing the
fast convergence with respect to other quantum Monte Carlo methods [8–23, 31, 32].

∙ Apply the Metropolis-Hastings proposal algorithm to accept or reject this move p(Rp)/p(R).
∙ If the step is accepted, then set R = Rp.
∙ Evaluate the expectation value of the Hamiltonian Ĥ.
In Table 1, we report the ground state energy obtained by some of the method in the literature and the
proposed described in this work.

For the second benchmark, we evaluate the performance of our method, which involves sampling from
the probability density function of a free particle in a plane of dimension Lx and Ly. The time-independent
Schrödinger equation for this system, as a wave function |Ψ⟩, can be written as [30]

−
ℏ2

2m [
∂2Ψ
∂x2
+
∂2Ψ
∂y2
] = EΨ,

where the permitted energy values are

Enx ,ny =
ρ2ℏ2

2m [
n2x
L2x
+
n2y
L2y
],

where ρ is a momentum and ℏ is the reduced Planck constant, while the normalized wave function is defined
as

Ψnx ,ny (x, y) =
2

√LxLy
sin[nxπxLx

] sin[
nyπy
Ly
].

where nxny = 1, 2, 3, . . . . We evaluate the performances of the proposed method by comparing it to the
pure Hamiltonian Monte Carlo (HMC) [11, 15, 25] and the classic Metropolis-adjusted Langevin algorithm
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Figure 2: Probability distribution wave function for a free particle.

Figure 3: Sampling trajectory of the proposed method, indicating a robust mixing property and fast convergence to the
theoretical reference values. Left and right panels are contour plots for target density and estimated posterior probability
distribution in order.

(MALA) [27]. In order to evaluate the performance of the above models, we run the Monte Carlo simulation
to obtain N = 50000 samples. In Figure 3, we represent the posterior estimation of the probability density
function for a particle from our method (PDMC).

It is interesting to conclude that HMC andMALA failed in sampling from the probability density function
of a free particle because of the complexity of spaceswheremodes are isolated, small and hard to hit. Instead,
the proposed method defines precisely high density regions around the modes and results in a more efficient
exploration of the posterior probability density (Figure 3). Table 2 demonstrates the overall performance of
the proposed method in comparison with the other two algorithms. The computational test in this study is
done on a 2.3GHz quad-core Intel Core i5-basedMacBook Pro systemwith 8GB of RAM.Wewould also like to
mention that, for the numerical simulations, we use a pseudo-random number generator armed with special
features and carefully designed for use in high performance computation based on cellular automata [36].

Method CPU (s) Speed

HMC No convergence —
MALA No convergence —
PDMC 115 t10

Table 2: Comparison of sampling methods from the probability density function of a free particle with N = 50000 samples for
every Monte Carlo simulation, where the average CPU time is measured in seconds for the whole run.
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4 Discussion and conclusion
In this paper, we proposed a newMonte Carlomethod (PDMC), to resolve the problem of existingMonte Carlo
algorithms. We have discussed a possible method for the numerical solution of the many-body Schrödinger
equation and described the computational procedures required for our solution. Therefore, we evaluated the
performance of proposed method to compare upon existing MCMC methodologies. We also provide a proba-
bilistic approach to model stochastic diffusion processes. Through experiments, we visualize the estimated
densities between most probable regions, which leads to smoother and more coherent results in contrast to
other Monte Carlo sampling methods.
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