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Abstract
We prove the density of polyhedral partitions in the set of
finite Caccioppoli partitions. Precisely, we consider a decom-
position u of a bounded Lipschitz set Ω ⊂ Rn into finitely
many subsets of finite perimeter, which can be identified with
a function in SBVloc(Ω;Z) with Z ⊂ RN a finite set of pa-
rameters. For all ε > 0 we prove that such a u is ε-close to
a small deformation of a polyhedral decomposition vε, in the
sense that there is a C1 diffeomorphism fε : Rn → Rn which
is ε-close to the identity and such that u ◦ fε − vε is ε-small
in the strong BV norm. This implies that the energy of u
is close to that of vε for a large class of energies defined on
partitions. Such type of approximations are very useful in
order to simplify computations in the estimates of Γ-limits.

1 Introduction

Besides their theoretical interest, approximation results have a great tech-
nical importance in the treatment of variational problems; in particular, in
the computation of Γ-limits for varying energies. The density of piecewise-
affine maps in Sobolev spaces, for example, often allows computations for
integral energies to be performed only in the simplified setting of maps with
constant gradient. Similarly, the approximation of sets of finite perimeter
by polyhedral sets, which sometimes is taken as the definition of sets of
finite perimeter itself, allows to reduce problems involving surface energies
to the case of a planar interface. The use of approximation theorems for
the computation of Γ-limits is not strictly necessary, since more abstract
integral-representation theorems can be used, whose application though is
often quite technical. The computation is simpler if representation formulas
are available such as relaxation or homogenization formulas. Indeed, in that
case it is easier to prove a lower bound for a Γ-limit by the blow-up tech-
nique elaborated by Fonseca and Müller [FM93]. Approximation results are
crucial to reduce the proof of the upper bound to simpler functions for which



recovery sequences are suggested by the representation formulas themselves.
In multi-phase problems, i.e., for interfacial problems when more than

two sets are involved, the proper variational setting is that of partitions into
sets of finite perimeter, or Caccioppoli partitions, for which a theory of relax-
ation and Γ-convergence has been first developed by Ambrosio and Braides
[AB90a, AB90b]. The study of Caccioppoli partitions is also a fundamen-
tal step in the analysis of free-discontinuity problems defined on (special)
functions of bounded variation, since lower-semicontinuity conditions and
representation formulas for the latter can be often deduced from those for
partitions. In that spirit, integral-representation theorems for partitions
have been proved by Braides and Chiadò Piat [BCP96] and Bouchitté et
al. [BFLM02].

The scope of this paper is to fill a gap that seemingly exists in the
treatment of problems on Caccioppoli partitions, namely the existence of
approximations by polyhedral sets. This is a widely expected result, so
much expected that sometimes it is mistakenly referred to as proved in some
reference text. Conversely, its non-availability makes it more complicated to
obtain homogenization results even when formulas are available (see e.g. the
recent work by Braides and Cicalese [BC15]). A “dual” result for systems of
rectifiable curves has recently been proved by Conti et al. [CGM15] and used
to show convergence of linear elasticity to a dislocation model [CGO15]. In
a two-dimensional setting one can use that approximation result to obtain
polyhedral partitions by considering boundaries of sets as rectifiable curves,
and as such it has been recently used to the study of systems of chiral
molecules [BGP16].

It must be noted that the method usually followed to obtain approximat-
ing sets for a single Caccioppoli set cannot be used for partitions. Indeed,
for a single set of finite perimeter E ⊂ Rn we can use that the characteristic
function u := χE is by definition a function with bounded variation; hence,
by a mollification argument it can be approximated by smooth functions uρ
and this mollification process does not increase the corresponding variation.
Approximating sets are then obtained by taking super-level sets of the form
Eρ := {x : uρ(x) > cρ}. By Sard’s theorem the set Eρ is smooth for almost
all values of cρ, and by the coarea formula cρ can be chosen so that the
boundary of Eρ is not larger than the boundary of E. Finally, polyhedral
sets are obtained by triangulation using the smoothness of Eρ. Such a simple
argument cannot be repeated if we have a partition. Indeed, identify such a
partition (E1, . . . , EN ) in Rn with a BV -function by setting u :=

∑
j ajχEj ,

for suitable labelling parameters aj . If we choose aj real numbers, the pro-
cess outlined above will require the choice of more superlevel sets {uρ > cjρ},
which will introduce artificial interfaces. To picture this situation, think of
having a partition into three sets of finite perimeter and choose as labels
the numbers aj := j. Then in the process above we will have two approxi-



mating sets E1
ρ := {x : c1

ρ < uρ(x) ≤ c2
ρ} and E2

ρ := {x : uρ(x) > c2
ρ} with

1 < c1
ρ < 2 < c2

ρ < 3 and the interface between the set E1 and E3 will be ap-
proximated by a double interface: one between E1

ρ and E2
ρ and another one

between E2
ρ and E3

ρ . Although these approximations weakly converge to the
original partition, the total length of the surface has doubled and the energy
of the partitions will not converge. If otherwise we label the sets with aj in
some higher-dimensional Rm then the use of the coarea formula is not pos-
sible. It is then necessary, as is done in the proof of integral-representation
results, to make a finer use of the structure of boundaries of sets of finite
perimeter.

In our construction we use the fact that essential boundaries between
sets of finite perimeter are contained in C1 hypersurfaces that can be locally
deformed onto portions of hyperplanes. By a covering argument we can thus
transform most of the interfaces with a small deformation into open subsets
of a finite system of hyperplanes, which can in turn be approximated by poly-
hedral sets. We finally introduce a decomposition of the ambient space into
a system of small polyhedra whose boundaries contain the above-mentioned
lower-dimensional polyhedral sets, and define a Caccioppoli partition by
choosing the majority phase (i.e., the label corresponding to the set with
the largest measure) on each of the small polyhedra. This finally gives the
desired approximating sets.

A scalar version of this result is proven in [Fed69, Th. 4.2.20] and then
refined in [ADC05] and [QdG08]. The vector-valued approximation, how-
ever, does not follow from the scalar one working componentwise since ap-
proximation of the energy requires to choose a single deformation f for all
components. Approximation of vector-valued SBV p functions was studied
in [CT99, KR16], but the case of partitions does not seem to follow directly
from the arguments therein, which introduce large gradients in small re-
gions. The vectorial case of SBDp functions was addressed for p = 2 in
[Cha04, Cha05, Iur14].

2 The density result and its proof

We will consider partitions of an open set Ω ⊂ Rn into N sets of finite
perimeter (E1, . . . , EN ) for some N ≥ 1. We say that a set Σ ⊂ Ω is polyhe-
dral if there is a finite number of n− 1-dimensional simplexes T1, . . . , TM ⊂
Rn such that Σ coincides, up to Hn−1-null sets, with

⋃M
j=1 Tj ∩ Ω. We are

interested in showing that for a general partition (E1, . . . , EN ) there ex-
ist polyhedral approximations; i.e., partitions (Ej1, . . . , E

j
N ) of Ω into sets

whose boundaries are polyhedral, such that for all k ∈ {1, . . . , N} we have
|Ejk4Ek| → 0 and Hn−1(∂Ejk)→ H

n−1(∂Ek) as j → +∞ (where in the last
formula ∂Ek denotes the reduced boundary of Ek), and the normal to ∂Ejk
converges in a suitable sense to the normal to ∂Ek (see Corollary 2.5).



It will be handy to use a finite set Z := {z1, . . . , zN} ⊂ RN as a set of
labels for the different phases, and identify each partition with the function
u : Ω → RN given by u(x) = zk on Ek. In this way the set of parti-
tions into N sets of finite perimeter is identified with a subset of the space
SBVloc(Ω;Z) (see [AB90a, AB90b]). Note that our results will be inde-
pendent of the labelling, but the latter allows to state the convergence of
boundaries of sets as a convergence of the derivatives of functions.

We recall that a function u ∈ SBVloc(Ω;Z), for Ω ⊂ Rn open, has the
property that its distributional derivative is a bounded measure of the form
Du = [u] ⊗ νHn−1 Ju. Here Ju ⊂ Ω is a n − 1-rectifiable set, called the
jump set of u, the unit vector ν : Ju → Sn−1 is the normal to Ju, and
[u] := (u+−u−) is the jump of u, where u+ and u− : Ju → Z are the traces
of u on the two sides of Ju, which are Hn−1 Ju-measurable. We use the
notation µ E for the restriction of a measure µ to a µ-measurable set E,
defined by (µ E)(A) := µ(E ∩A).

The main result of this paper is the following approximation statement.

Theorem 2.1. Let Z ⊂ RN be finite, let u ∈ SBVloc(Ω;Z) with |Du|(Ω) <
∞, and let Ω ⊂ Rn be a Lipschitz set with ∂Ω compact. Then there is a
sequence uj ∈ SBVloc(Ω;Z) such that Juj is polyhedral, uj → u in L1

loc(Ω;Z)
and Duj⇀Du as measures, and there are bijective maps fj ∈ C1(Rn; Rn),
with inverse also in C1, which converge strongly in W 1,∞(Rn; Rn) to the
identity map such that |D(u ◦ fj)−Duj |(Ω)→ 0.

We remark that u◦fj is defined on the set f−1
j (Ω), and so is the measure

D(u ◦ fj), which is then implicitly extended by zero to the rest of Rn. In
particular,

|D(u ◦ fj)−Duj |(Ω) = |D(u ◦ fj)−Duj |(Ω∩ f−1
j (Ω)) + |Duj |(Ω \ f−1

j (Ω)).

The rest of this paper contains the proof of Theorem 2.1. We shall
first (Theorem 2.2) prove the analogous statement for functions defined on
Rn, and then (Lemma 2.7) give an extension argument to deal with general
domains. We remark that the assumption that ∂Ω is compact is only used in
constructing the extension, so that our result can be extended immediately
to some other unbounded sets, such as, for example, the half space.

Theorem 2.2. Let Z ⊂ RN be finite, and let u ∈ SBVloc(Rn;Z) with
|Du|(Rn) < ∞. Then there is a sequence uj ∈ SBVloc(Rn;Z) such that
Juj is polyhedral, uj → u in L1

loc(Rn;Z), Duj⇀Du as measures, and there
are bijective maps fj ∈ C1(Rn; Rn), with inverse also in C1, which con-
verge strongly in W 1,∞(Rn; Rn) to the identity map such that |D(u ◦ fj) −
Duj |(Rn)→ 0.



The proof of Theorem 2.2 relies on a deformation argument allowed by
the rectifiability of Ju. We recall that the latter means that Ju coincides, up
to an Hn−1-null set, with a Borel subset of the union of countably many C1

surfaces [AFP00, Sect. 2.9]. Furthermore, in this characterization one also
has that, for Hn−1-almost all points y ∈ Ju, denoting by My the C1 surface
containing y, the vector ν(y) is the normal in y to the surface My and

lim
ρ→0

1
ρn−1

Hn−1((Ju4My) ∩Bρ(y)) = 0, (2.1)

where Bρ(y) is the open ball of radius ρ centered in y. The measurability
of the traces u±(y) and the finiteness of Z imply, via the Lebesgue point
theorem, that the traces are locally approximately constant, in the sense
that

lim
ρ→0

1
ρn−1

Hn−1({x ∈ Ju ∩Bρ(y) : u+(x) 6= u+(y)}) = 0 (2.2)

for Hn−1-almost every y ∈ Ju. We refer to [AFP00] for a more detailed
treatment of these concepts. The idea of the proof is to cover most of the
jump set of u by disjoint balls, such that in each of them the jump set is an
(almost flat) C1 graph (see Step 2). In each of the balls the jump set can
then be explicitly deformed into a plane, up to an interpolation region (see
Step 1).

Proof. Step 1. We perform a local construction around Hn−1-almost all
points of the jump set.

Fix ε ∈ (0, 1), whose value will be chosen below. Assume that y ∈ Ju
has the following properties: there are g = gy ∈ C1(Rn−1), r = ry > 0 and
an affine isometry Iy : Rn → Rn, Iy(x) = Qyx + by, satisfying g(0) = 0,
Dg(0) = 0,

Hn−1((IyJu)4{(x′, g(x′)) : x′ ∈ B′r}) < εrn−1, (2.3)

where B′r denotes the n− 1-dimensional ball of radius r centered in 0,

Hn−1({Ju ∩Br(y) : u+(x) 6= u+(y)}) < εrn−1 (2.4)

and the same for u−. Since we chose the isometry Iy to make Dg(0) = 0,
choosing r sufficiently small we can ensure that additionally |Dg| ≤ ε2 in
B′r, which in turn implies |g| ≤ ε2r in B′r. By (2.1) and (2.2) Hn−1-almost
every y ∈ Ju has the properties above.

We fix ψ ∈ C1
c (Br(y); [0, 1]) such that ψ = 1 on B(1−ε)r(y) and ‖Dψ‖∞ ≤

2/(εr) and define f : Rn → Rn by

f(x) := x− ψ(x)g(Π Iyx)νy ,

where νy := Q−1
y en is the normal to Ju at y, and Π : Rn → Rn−1 is the

projection onto the first n− 1 components. We compute

Df = Id− gνy ⊗Dψ − ψνy ⊗ (D′gΠQy).



Here we use the notation D′g in place of Dg to highlight the derivation in
Rn−1. The bounds on g and ψ imply that |Df − Id| < 3ε everywhere. In
particular, f is a diffeomorphism, which is the identity outside Br(y).

Let µ := Du Br(y)− [u](y)⊗ νHn−1 {I−1
y (x′, g(x′)) : x′ ∈ B′r}, where

ν is the normal to the last set. By (2.3) and (2.4), we obtain |µ|(Rn) ≤
cεrn−1.

We choose a closed n−1-dimensional polyhedron P̂ contained in B′(1−ε)r
and such that

Hn−1(B′(1−ε)r \ P̂ ) ≤ εrn−1,

and define Py := I−1
y (P̂ × {0}) and

µ̂ := D(u ◦ f) Br(y)− [u](y)⊗ νyHn−1 Py . (2.5)

By the change-of-variable formula for BV functions, the bounds on f and the
estimate in µ we obtain |µ̂|(Rn) ≤ cεrn−1 ≤ cε|Du|(Br(y)). All constants
may depend only on n and Z.

Step 2. By a covering argument we conclude the construction.
Using Vitali’s covering theorem, we choose finitely many points x1, . . . , xM ∈

Rn and radii ri ∈ (0, 1) with the properties stated in Step 1, such that

|Du|

(
Rn \

M⋃
i=1

Bri(xi)

)
< ε

and the ballsBri(xi) are disjoint. Let f1, . . . , fM ∈ C1(Rn; Rn) and P1, . . . , PM ⊂
Rn be the corresponding deformations and polyhedra, respectively, and let
u±i ∈ Z, νi ∈ Sn−1 be the corresponding traces and normals. Let

f := f1 ◦ f2 ◦ · · · ◦ fM ∈ C1(Rn; Rn).

Since fi(x) = x outside Bri(xi) we have

|Df(x)− Id|+ |f(x)− x| ≤ 6ε

for all x ∈ Rn. We define v := u ◦ f . Then, letting

µ∗ :=
M∑
j=1

(u+
i − u

−
i )⊗ νiHn−1 Pi

be the polyhedral measure we have constructed in Step 1, we obtain

|Dv − µ∗|(Rn) ≤
M∑
i=1

|µ̂i|(Rn) + |Du|

(
Rn \

M⋃
i=1

Bri(xi)

)
≤ cε|Du|(Rn) + ε . (2.6)



Here µ̂i denotes the analog for the ball Bri(xi) of the remainder µ̂ obtained
in (2.5).

Step 3. We construct a piecewise-constant SBV function with polyhedral
jump set whose gradient is close to µ∗.

To that end, we will use the results of Lemma 2.6 separately stated and
proved below. We consider c∗ and the polyhedral decomposition into the
cells {Vq}q∈G of Rn obtained from Lemma 2.6 taking in its hypothesis the
polyhedra P1, . . . , PM , with a spacing δ > 0 such that 2c∗δ < dist(Pi, Pl) for
all i 6= l.

For any q ∈ G, we choose a value zq ∈ Z such that |Vq ∩ v−1(zq)| =
maxz′∈Z |Vq ∩ v−1(z′)|. We define w : Rn → RN by setting w(x) = zq if
x ∈ Vq. By the geometric properties of the cells Vq described in Lemma 2.6,
using Poincaré’s inequality and the trace theorem we obtain

‖v − zq‖L1(Vq) ≤ cδ|Dv|(Vq) and ‖v − zq‖L1(∂Vq) ≤ c|Dv|(Vq) , (2.7)

where c may depend only on n, Z and on c∗. To see this, we observe that
since Bδ/c∗(xq) ⊂ Vq there is mq ∈ RN such that ‖v − mq‖L1(Bδ/c∗ (xq)) ≤
cδ|Dv|(Vq). The estimate is then extended to Vq passing to polar coordinates
centered in xq and using the one-dimensional Poincaré inequality in the
radial direction; note that since Vq ⊂ Bc∗δ(xq) the Jacobian determinant is
bounded. Finally one replaces mq by zq using the fact that the volume of
the set Vq∩{v = zq} is at least |Vq|/#Z. The trace estimate, in turn, follows
by using the one-dimensional trace estimate on each segment connecting a
point on ∂Vq with xq, and estimating again the Jacobian determinant using
Bδ/c∗(xq) ⊂ Vq ⊂ Bc∗δ(xq).

It remains to check that the map w has the desired properties. Since w
takes finitely many values, and is piecewise constant on each of the polyhedra
Vq which cover Rn, we see that w ∈ SBVloc(Rn;Z) and that Jw ⊂

⋃
q∈G ∂Vq

is polyhedral.
To estimateDw, we consider two indices q 6= q′ ∈ G such thatHn−1(∂Vq∩

∂Vq′) > 0. Denoting by Tqv and Tq′v the inner traces of v on the boundaries
of Vq and Vq′ respectively, we obtain, using a triangular inequality and (2.7),

|Dw|(∂Vq ∩ ∂Vq′) =|zq − zq′ |Hn−1(∂Vq ∩ ∂Vq′)
≤‖Tqv − Tq′v‖L1(∂Vq∩∂Vq′ )

+ ‖Tqv − zq‖L1(∂Vq) + ‖Tq′v − zq′‖L1(∂Vq′ )

≤|Dv|(∂Vq ∩ ∂Vq′) + c|Dv|(Vq) + c|Dv|(Vq′)
≤c|Dv|(Vq ∪ Vq′ ∪ (∂Vq ∩ ∂Vq′)).

If |µ∗|(∂Vq ∩ ∂Vq′) = 0, this estimate suffices. Otherwise, there is exactly
one j such that Hn−1(Pi ∩ ∂Vq ∩ ∂Vq′) > 0. Assuming that νi is oriented



from Vq′ to Vq, a computation similar to the one above gives

|Dw − µ∗|(∂Vq ∩ ∂Vq′) =‖zq − zq′ − (u+
i − u

−
i )χPi‖L1(∂Vq∩∂Vq′ )

≤‖Tqv − Tq′v − (u+
i − u

−
i )χPi‖L1(∂Vq∩∂Vq′ )

+ ‖Tqv − zq‖L1(∂Vq) + ‖Tq′v − zq′‖L1(∂Vq′ )

≤|Dv − µ∗|(∂Vq ∩ ∂Vq′) + c|Dv|(Vq) + c|Dv|(Vq′)
≤c|Dv − µ∗|(Vq ∪ Vq′ ∪ (∂Vq ∩ ∂Vq′)).

We finally sum over all pairs. Since the number of faces of the polyhedra is
uniformly bounded, each Vq is included only in the estimates for a uniformly
bounded number of faces and therefore

|Dw − µ∗|(Rn) ≤ c|Dv − µ∗|(Rn) ≤ cε|Du|(Rn) + ε .

Since ε > 0 was arbitrary, this concludes the proof of Step 3.

The proof of the result then follows by choosing ε = 1/j and defining
fj , with a slight abuse of notation, as the corresponding function f in Step
2.

Remark 2.3. Since in Step 1 of the proof of Theorem 2.1 we may assume
ry < ε, the construction above additionally gives that dist(x, suppDu) < 1/j
for all x such that fj(x) 6= x.

Corollary 2.4. In the setting of Theorem 2.1, if ψ : Sn−1×Z×Z → [0,∞)
is continuous and symmetric and E[u] :=

∫
Ju∩Ω ψ(ν, u+, u−)dHn−1, then

E[uj ]→ E[u].

Proof. Since |D(u ◦ fj)−Duj |(Ω)→ 0 we have

Hn−1(Ω∩(Ju◦fj4Juj ))+Hn−1({x ∈ Ju◦fj∩Juj∩Ω : u±j 6= (u◦fj)±}) = o(1).

Since Z is finite and Sn−1 compact the function ψ is bounded. Therefore
the previous estimate implies that

E[uj ] =
∫
Ju◦fj∩Ω

ψ(νu◦fj , (u ◦ fj)
+, (u ◦ fj)−)dHn−1 + o(1).

We remark that u ◦ fj is defined on f−1
j (Ω), and denote by νu◦fj the normal

to its jump set Ju◦fj = f−1
j (Ju) ⊂ f−1

j (Ω). One easily checks that νu◦fj (x) =
DfTj (x)ν(fj(x))/|DfTj (x)ν(fj(x))|.

By the change-of-variables formula, see [AFP00, Th. 2.91], we have∫
Ju◦fj∩Ω

ψ(νu◦fj , (u ◦ fj)
+, (u ◦ fj)−)dHn−1

=
∫
Ju∩fj(Ω)

ψ(νj , u+, u−)Jn−1d
Juf−1

j dHn−1,



where νj := νu◦fj ◦ f
−1
j is the normal to Ju◦fj transported by fj , which

converges uniformly to ν as j →∞, and Jn−1d
Juf−1

j is the Jacobian of the
tangential differential of f−1

j . The claim then follows by dominated conver-
gence using continuity of ν 7→ ψ(ν, α, β), that ∇fj tends to the identity, and
the fact that Hn−1(Ju \ fj(Ω))→ 0.

Corollary 2.5. In the setting of Theorem 2.1, we obtain that for all z, z′ ∈
Z the polyhedral sets Azj := {x ∈ Ω : uj(x) = z} are such that Hn−1(∂Azj ∩
∂Az

′
j ∩Ω)→ Hn−1(∂Az ∩ ∂Az′ ∩Ω), where Az := {x ∈ Ω : u(x) = z} and ∂

denotes the reduced boundary.

Proof. It follows from the previous Corollary choosing ψ(ν, α, β) = 1 if
{α, β} = {z, z′} and ψ(ν, α, β) = 0 otherwise.

We finally state and prove the lemma used in the proof of Step 3 above.

Lemma 2.6. There is c∗ > 0, depending only on n, such that the following
holds: Let P1, . . . , PM be n− 1-dimensional disjoint closed polyhedra in Rn.
Then for δ > 0 sufficiently small there are countably many pairwise disjoint
open convex n-dimensional polyhedra Vq ⊂ Rn, q ∈ G, such that |Rn \⋃
q Vq| = 0 and Pj ∩Vq = ∅ for all j ∈ {1, . . . ,M} and q ∈ G. For any q ∈ G

there is xq ∈ Rn such that Bδ/c∗(xq) ⊂ Vq ⊂ Bc∗δ(xq). Each polyhedron Vq
has at most c∗ faces.

The idea of the proof is to define G as a set of points in Rn with a spacing
of order δ; and then to construct (Vq)q∈G as the corresponding Voronoi tes-
sellation. In order for the polyhedral Pj to be contained in the boundaries
between the Vq, in a neighbourhood of each Pj , we use a grid oriented as Pj .
The remaining difficulty is to interpolate between grids of different orienta-
tion. This is done superimposing the grids and removing, in an intermediate
layer, some points so that the remaining ones have approximately distance
δ from each other.

Proof. We set δ0 := 1
5n mini,j dist(Pi, Pj). For any j we define the t-neigh-

bourhood of Pj by (Pj)t := {x ∈ Rn : dist(x, Pj) < t} and fix an affine
isometry Ij : Rn → Rn such that Pj ⊂ Ij(Rn−1 × {0}).

For δ ∈ (0, δ0) we set

Ĝ0 := δZn \
M⋃
j=1

(Pj)2nδ0

and, for j = 1, . . . ,M ,

Ĝj := Ij

(
δZn +

1
2
δen

)
∩ (Pj)3nδ0 .



Figure 1: Sketch of the grid construction in the proof of Lemma 2.6.

The set Ĝ :=
⋃M
j=0 Ĝj is a discrete set with the property that any x ∈ Rn

has distance at most
√
nδ from Ĝ, see Figure 1 for an illustration. Inside

each of the disjoint sets (Pj)2nδ0 the set Ĝ coincides with Ij(δZn + 1
2δen).

We define G ⊂ Ĝ as a maximal subset with the property that any two points
of G have a distance of at least δ/n. By maximality, for any z ∈ Ĝ\G there
is q ∈ G with |q − z| < δ/n; hence for any x ∈ Rn there is a point q ∈ G
with |x− q| ≤ (

√
n+ 1/n)δ ≤ nδ. Further, G ∩ (Pj)nδ0 = Ĝ ∩ (Pj)nδ0 .

For q ∈ G, let Vq := {x ∈ Rn : |x−q| < |x−z| for all z ∈ G, z 6= q}. The
family of all such Vq is the Voronoi tessellation of Rn induced by G. The Vq
are open, disjoint, convex polyhedra which cover Rn up to a null set. This
concludes the construction.

It remains to prove the stated properties. Since the distance of two
points in G is at least δ/n, we have Bδ/(2n)(q) ⊂ Vq. Since any point in Rn

is at distance smaller than nδ from a point of G, we have Vq ⊂ Bnδ(q). In
particular, V q ∩ V q′ 6= ∅ implies |q − q′| ≤ 2nδ. Since the balls Bδ/(2n)(q),
with q ∈ G, are disjoint, given q ∈ G there are at most (4n2)n points q′ ∈ G
such that |q − q′| ≤ 2nδ. It follows that Vq is a polyhedron with at most
(4n2)n faces.

We finally show that the polyhedra Pj are cointained in the union of
the boundaries of the Vq. To do this, fix one j ∈ {1, . . . ,M}. Set Gj :=
Ij(δZn + 1

2δen)∩ (Pj)nδ0 . By construction, G∩ (Pj)nδ0 = Gj . In particular,
Pj ⊂

⋃
q∈Gj V q. At the same time, since Gj is symmetric with respect to

the hyperplane which contains Pj , each point of Pj is equidistant from at
least two of its points, and therefore Pj ⊂

⋃
q∈Gj ∂Vq. This concludes the

proof.



We finally turn to the extension argument which is needed for the deriva-
tion of Theorem 2.1 from Theorem 2.2.

Lemma 2.7. Let Ω ⊂ Rn be a Lipschitz set with ∂Ω bounded, let Z ⊂ RN

be a finite set, and let u ∈ SBVloc(Ω;Z). Then, there is an extension
ũ ∈ SBVloc(Rn;Z) with ũ = u in Ω, |Dũ|(∂Ω) = 0, |Dũ|(Rn) < c|Du|(Ω).

Proof. To construct the extension, we fix η ∈ (0, 1) and ν̂ ∈ C1(Rn; Rn) a
smoothing of the outer normal ν to ∂Ω, such that |ν̂| = 1 and ν̂ · ν > η
Hn−1-almost everywhere on ∂Ω. The map ν̂ is constructed by considering a
covering of ∂Ω by balls in which Ω is a Lipschitz subgraph, in the sense that
Ω ∩ Br(x) = {y ∈ Br(x) : (Qxy)n < ψx(ΠQxy)}, with x ∈ ∂Ω, Qx ∈ O(n),
ψx : Rn−1 → R Lipschitz, and Π : Rn → Rn−1 denotes the projection onto
the first n−1 components. This implies QTx en ·ν ≥ ηx := 1/

√
1 + (Lip(ψx))2

on Br(x) ∩ ∂Ω. By compactness, ∂Ω is covered by finitely many such balls
{Brj (xj)}j=1,...,J . We fix a partition of unity gj ∈ C∞c (Brj (xj)) with

∑
j gj =

1 on ∂Ω and define ν̂∗ :=
∑

j gjQ
T
xjen, η := minj ηxj . It remains only to

rescale so that |ν̂| = 1 on ∂Ω. Since we already know that |ν̂∗| ≥ ν̂∗ · ν ≥ η
on ∂Ω this can be done setting ν̂ := ϕ(ν̂∗), where ϕ ∈ C∞(Rn; Rn) coincides
with the projection onto the unit sphere outside Bη(0).

Having constructed ν̂ and η, we observe that there is ρ > 0 such that
(x, t) 7→ Φ(x, t) := x + tν̂(x) is a bilipschitz map from ∂Ω × (−ρ, ρ) to
a tubular neighbourhood of ∂Ω. To see this, one first uses the implicit
function theorem on the map Rn × R 3 (x, t) 7→ (Φ(x, t), t) ∈ Rn × R to
see that it is a diffeomorphism in a neighbourhood of any (x, t) ∈ ∂Ω×{0},
then the compactness of ∂Ω to show that it is covered by a finite number of
such sets, and finally one restricts to x ∈ ∂Ω.

We define ũ(x + tν̂(x)) = u(x − tν̂(x)) for x ∈ ∂Ω and t ∈ (0, ρ), or
equivalently ũ(x) = u(Φ(PtΦ−1(x)) for x ∈ Φ(∂Ω × (0, t)), where Pt is
the linear map that flips the sign of the last argument. We further set
ũ = u in Ω, and ũ equal to a constant arbitrary element z0 of Z on the
rest of Rn. Then ũ : Rn → Z. By the chain rule for SBV functions,
ũ ∈ SBVloc(Rn;Z). By the construction ũ has the same trace on both sides
of ∂Ω, hence |Dũ|(∂Ω) = 0.

Proof of Theorem 2.1. It suffices to apply Theorem 2.2 to the extension ũ
of u constructed in Lemma 2.7.

Remark 2.8. In the statement of Theorem 2.2 we can replace the Lipschitz
and boundedness assumption on Ω by the requirement that an extension as
in Lemma 2.7 exists. Such an assumption is satisfied for example if Ω is a
half space, taking the extension by reflection.
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