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Background and aims: We aimed to identify novel biomarkers for cardiovascular mortality through a
non-targeted metabolomics approach in patients with established atherosclerotic disease from the Tor
Vergata Atherosclerosis Registry (TVAR).

Methods: We compared the serum baseline metabolome of 19 patients with atherosclerosis suffering
from cardiovascular death during follow-up with the baseline serum metabolome of 20 control patients
matched for age, gender, body mass index (BMI) and atherosclerotic disease status, who survived during
the observation period.

Results: Three metabolites were significantly different in the cardiovascular mortality (CVM) group
compared to controls: 2-hydroxycaproate, gluconate and sorbitol. 2-hydroxycaproate (otherwise known
as alpha hydroxy caproate) was also significantly correlated with time to death. The metabolites per-
formed better when combined together rather than singularly on the identification of CVM status.
Conclusions: Our analysis led to identify few metabolites potentially amenable of translation into the
clinical practice as biomarkers for specific metabolic changes in the cardiovascular system in patients
with established atherosclerotic disease.
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1. Introduction

Cardiovascular events on the basis of atherosclerotic vascular
disease (AVD) are the leading cause of mortality in the world [1].
Although many risk factors for AVD have been discovered, such as
hyperlipidemia, hypertension, family background, smoking and
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diabetes mellitus, 40% of patients with atherosclerosis have only
one conventional risk factor and 20% of patients have none [2]. In
addition, classical risk score calculators such as the Framingham
risk score take only account of patients with unknown AVD status.
However, it is particularly important to identify high risk patients
with established AVD to develop individual treatment and pre-
ventative strategies.

A promising tool to identify high-risk patients might be the
study of metabolite profiles in biological samples, especially in
blood, so called “metabolomics”. “Metabolome” refers to the set of
all biochemical smaller than 2 kDa, including amino acids, sugars
and lipids that can be found in biological samples [3]. Compared to
the human proteome, which comprises more than 10® molecules, it
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has recently been estimated that the human metabolome only
contains approximately 3000 particles, making it easier to analyze
than the proteome [4].

Metabolomics has been used to identify biomarkers for cardio-
vascular prediction in different cohorts [5—7]. For instance, fasting
plasma trimethylamine N-oxide (TMAO) levels, a gut microbiota-
dependent metabolite, was associated with coronary artery dis-
ease, stroke and heart failure in several studies [8]. Metabolites
involved in pyrimidine metabolism, tricarboxylic acid (TCA) cycle,
and the pentose phosphate pathway were altered after planned
myocardial infarction (MI) [9]. Other cross-sectional and prospec-
tive studies led to identify phospholipids, fatty acids and amino
acids as biomarkers for increased risk of cardiovascular and cere-
brovascular events [10,11].

We recently applied targeted-mass-spectrometry-based
profiling of 49 metabolites, including amino acids and acylcarni-
tines, in a group of very old subjects [12]. We found that long-chain
acylcarnitines, and alanine were independently associated with
major adverse cardiac events (MACE) after adjustment for clinical
cardiovascular covariates, suggesting that specific metabolites
could help improve the identification of at risk subjects. Through a
non-targeted mass-spectrometry-based profiling to identify path-
ways associated with cardiovascular disorders in experimental
models, we found that alterations in metabolites connected to
muscle breakdown, collagen/elastin, energy metabolism and
branched-chain amino acids are potential disease biomarkers
[13,14].

The aim of the current study was to use the same non-targeted
metabolomics approach to identify novel biomarkers for cardio-
vascular mortality in patients with established atherosclerotic
disease from the Tor Vergata Atherosclerosis Registry (TVAR) [15].

2. Materials and methods
2.1. Description of patients

The TVAR observational registry study (ISRCTN registry, ID
ISRCTN42405215) was previously described [15]. Subjects with
established atherosclerotic disease were enrolled from 2007 at the
Center for Atherosclerosis of the Policlinico Tor Vergata in Rome. All
the patients undergone a vascular procedure for significant
vascular stenosis or have had a major cardiovascular event. Subjects
were excluded if they had liver disease, renal insufficiency, heart
failure, coagulopathy or any other severe systemic or infectious
disease. We yearly screened cardiovascular mortality, death for any
other cause, survival and events by phone interview. In 2014, we
recorded 66 non-fatal cardiovascular events (24.6%) and 44 deaths
(16,5%), 20 of which were due to cardiovascular causes (7,5%). 19
patients from the 20 male individuals with atherosclerotic disease
suffering from cardiovascular death were included in the current
study as “cardiovascular mortality” (CVM) group; 1 patient was
excluded from the study because no serum was available for the
metabolomics analysis. The control group matched the CVM group
for age, body mass index (BMI), gender, lipid and inflammatory
profile using unpaired Student t-test analysis, and was composed
by 20 male subjects with chronic atherosclerotic disease, who
survived the observation period. The mean observation time was
43.17 + 24.9 months and the two groups were matched for duration
of follow-up (CMV group 36.4 +23.5 months vs. control group
50.4 + 24.5 months, unpaired Student t-test, p > 0,05).

Clinical biochemistry laboratory measurements and methods
were previously described [15,16].

2.2. Informed consent and ethics committee approval

An informed written consent was obtained from all participants.
The study was approved by the local ethics committee and the
reported investigations were carried out in accordance with the
principles of the Declaration of Helsinki as revised in 2000.

2.3. Metabolomics analysis

Non-targeted metabolomics were performed on the Metabolon
(North Carolina, USA) platform that has previously been described
[17,18].

In short, samples were inventoried and immediately stored
at —80 °C. Several recovery standards were added prior to the first
step in the extraction process for quality control purposes. To
remove protein, dissociate small molecules bound to protein or
trapped in the precipitated protein matrix, and to recover chemi-
cally diverse metabolites, proteins were precipitated with meth-
anol. The resulting extract was analyzed by 4 different methods:
two separate reverse phase (RP) Ultrahigh performance liquid
chromatography/Mass Spectroscopy (UPLC-MS/MS) with positive
ion mode electrospray ionization (ESI), RP/UPLC-MS/MS with
negative ion mode ESI, and hydrophilic interaction
chromatography/UPLC-MS/MS with negative ion mode ESI.

Raw data was extracted, peak-identified and quality control

Table 1
Patient baseline characteristics.
Control CVM p-value
N 20 19
Gender (M/W) 20/0 19/0
Age (years) 73.35+3.88 7542 +5.31 0.171

BMI (kg/m?) 25.84+2.84 25.14+4.17 0.554
Systolic blood pressure (mmHg)  132.0 + 14.63 140.59 +20.06  0.142
Diastolic blood pressure (mmHg) 79.75 +9.52 85.59 +11.44 0.105
Total cholesterol (mg/dl) 181.9 +36.93 185.33+41.97 0.79

HDL cholesterol (mg/dl) 47.60+12.8 42.83+14.73 0.293
LDL cholesterol (mg/dl) 106.0 +32.28 115.06 +41.42 046

Triglycerides (mg/dl) 118.65+46.86 163.06 +86.40 0.053

eGFR 83.20+20.73 7292 +23.75 0.187

Fasting plasma glucose (mg/dl) 97.95+9.53 108.37 +18.58 0.038
Fasting plasma insulin (uU/ml) 12.11+£5.97 13.79+10.34 0.543
HbA1c (mmol/mol) 36.85+7.81 41.28 +7.91 0.092
HOMA IR 220+ 1.54 3.26+3.03 0.173
hs-CRP (mg/dl) 4.88 +5.86 13.68 +24.43 0.22

diabetes status (0/1/2/3) (9/9/1/1) (5/7/4/3) 0.244
Smoking (no/yes/ex) (10/5/5) (5/7]7) 0.277
Statins (no/yes) (9/11) (11/8) 0.314
Fibrates (no/yes) (19/1) (19/0) 0.464
Omega-3 (no/yes) (19/1) (18/1) 0.774
ASA (no/yes) (7/13) (12/7) 0.23

ACE-i (no/yes) (11/9) (10/9) 0.507
ARB (no/yes) (14/6) (13/6) 0.55

Beta blockers (no/yes) (20/0) (15/4) 0.047
Calcium ch blockers (no/yes) (16/4) (14/5) 0.465
Alpha blockers (no/yes) (15/5) (17/2) 0.249
Diuretics (no/yes) (13/7) (15/4) 0.271

Clinical baseline characteristics of subjects suffering from cardiovascular death in
the observational period (=CV mortality (CVM) group) and control group including
surviving individuals matched for age, sex, and body mass index. Analysis by un-
paired Student t-test and X? test revealed significant differences (p < 0.05) in fasting
glucose and use of betablockers and a trend (p < 0.01) towards different levels of
triglycerides and glycated hemoglobin (HbA1c).

BMI: body mass index. HDL: high density lipoprotein. LDL: low density lipoprotein.
eGFR: estimated glomerular filtration rate. HOMA IR: Homeostatic Model Assess-
ment for Insulin Resistance. hs-CRP: high-sensitivity C-reactive protein. ASA: ace-
tylsalicylic acid. ACE-i: angiotensin-converting-enzyme inhibitors. ACE-i (no/yes).
ARB: angiotensin receptor blockers). Diabetes status (0: Normal glucose tolerance/1:
Impaired glucose tolerance/2: new diagnosis of type 2 diabetes/3: History of type 2
diabetes).
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processed using Metabolon's hardware and software. Compounds
were identified by comparison to library entries of purified stan-
dards or recurrent unknown entities.

2.4. Statistical analysis

Quantitative variables were expressed as mean + SD and cate-
gorical variables were presented as numbers. Patients baseline
characteristics were analyzed by unpaired Student t-test and X? test
with IBM software SPSS Version 23. p-values <0.05 were consid-
ered as statistically significant. Multivariate analysis was performed
to test the effect of beta-blockers and survival status.

Metabolomics analysis was performed using Metabolon plat-
form and analyzed by program R (http://cran.r-project.org/) and
MetaboAnalyst 4.0 (www.metaboanalyst.ca) [19].

Group separation was evaluated using orthogonal partial Least
squares discriminant analysis (O-PLS-DA). Permutation was used as
performance measurement [20].

Differences in metabolites between the groups were first
analyzed by Welch's Two-Sample t-test. Significant (p < 0.05) KEGG
pathway identified metabolites were next subject to pathway
enrichment analysis by hypergeometric test. For pathway topology
analysis, relative-betweeness centrality was applied.

For biomarker discovery, a more stringent test was performed.
Wilcoxon rank test between control and CVM group corrected for
multiple testing by false discovery rate approach (FDR) was used;
metabolites with p < 0.05 and g < 0.05 (=FDR 5%) were considered
as statistically significant. Significance analysis of microarrays
(SAM), another approach to correct for multiple testing, was
applied to confirm the previous results.

Additionally, receiver operating characteristic (ROC) curve was
calculated for a single or multiple metabolites to evaluate bio-
markers for cardiovascular mortality [19]. For multivariate model
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Fig. 1. Non-targeted metabolomics pathway analysis.
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including continuous clinical variables and metabolites, ROC curves
are generated by Monte-Carlo cross validation (MCCV) using
balanced sub-sampling. In each MCCV, two thirds (2/3) of the
samples are used to evaluate the feature importance. The top 2, 3, 5,
10 ... 100 (max) important features are then used to build classi-
fication models which are validated on 1/3 of the samples left out.
The procedures were repeated multiple times to calculate the
performance and confidence interval of each model (classification
method: Linear Support Vector Machine (SVM). Ranking method:
area under Receiver Operating Characteristic (AUROC)) [19].

Pearson correlation between metabolites and time to death in
the CVM group was calculated by GraphPad Prism 7.0.

3. Results
3.1. Baseline characteristics

Characteristics of cases of cardiovascular mortality and controls
from the TVAR are showed in Table 1. Among the classical risk
factors, CVM did not differ from controls in age, BMI, cholesterol
levels, smoking and diabetes status. We observed that fasting
glucose but not HbAlc was slightly but significantly (p =0.038)
elevated in CVM. Triglycerides were slightly higher in CVM
compared to controls, while among drugs, a minor difference was
observed only in the greater use of beta-blockers in CVM (Table 1).

3.2. Non-targeted metabolomics

Next, we took advantage of the metabolomics approach to
identify factors associated with mortality. Metabolomics analysis
revealed 773 identified compounds.

After data processing and normalization, we first applied O-PLS-
DA to evaluate separation of groups by metabolites (Supplementary

class
Control
N I cvm

2

ascorbate & aldarate
metabolism

o
~
2
i & alanine, aspartate and
glutamate metgbolism
N / pyrimidine
© _. butanoate metabolism
metabolism
PR, TCA
% ) 4 pgntothenate cycle
° ) ’and CpA biosynthesis / BCAA,
o . synthesis|
- BCAA J,
degradadtion ‘s inositol phosphate
X metabolism
RS "
riboflavin
- L metabolism
r T
0.00 0.05 0.10 0.15

Pathway Impact

(A) Heatmap of non-targeted serum metabolomics showing the top 25 metabolites between cardiovascular mortality (CVM) and control group by Welch's Two-Sample t-test. (B)
Pathway enrichment analysis by hypergeometric test of significant (p < 0.05) KEGG pathway identified metabolites reveal that several pathways differ between the CVM and control
group, particularly, branched-chain amino acid (BCAA) metabolism, tricarboxylic acid (TCA) cycle and different co-factors such as ascorbate, pantothenate, coenzyme A (CoA) and

riboflavin metabolism.
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Fig. 1). O-PLS-DA revealed a separation between the groups shown reporting the 25 most relevant metabolites is shown in Fig. 1A.

by a significant Q? of 0.36 (p = 0.001, n = 1000 permutations). Based on the significant metabolites between the groups, we
Next, we used Welch's Two-Sample t-test to screen for metab- performed additional pathway analyses (Fig. 1B; Supplementary
olites and related pathways. We observed that a total of 74 me- Table 2), which revealed several differences between the two

tabolites were upregulated and 15 down-regulated in CVM groups. Particularly, we found an impact on branched-chain amino
compared to control (p < 0.05) (Supplementary Table 1). A heatmap acid (BCAA) synthesis and breakdown as well as TCA cycle.
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Fig. 2. 2-hydroxycaproate is the top metabolite to differentiate between groups and correlates with time to death.

(A and B) For biomarker discovery, a more stringent Wilcoxon rank test, corrected for multiple testing by false discovery rate (FDR=5%) approach, was used, which revelaed 3
significant (q<0.05) metabolites: 2-hydroxycaproate, gluconate and sorbitol. 2-hydroxycaproate was identified as the most significant metabolite (q=0.012). (C) Pearson correlation
analysis exposed significant correlation between levels of 2-hydroxycaproate and time to death in the cardiovascular mortality group (r=-0.54, p=0.018), while no significant
correlation between gluconate and sorbitol to time to death was found (data not shown). A.U.: arbitrary units.
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Fig. 3. Receiver operating characteristic analysis identifies 2-hydroxycaproate as top biomarker for cardiovascular mortality.

(A) Receiver operating characteristic (ROC) analysis was performed to evaluate metabolites as biomarkers for cardiovascular mortality. Single analysis of top 3 metabolites. (B) ROC
curves generated with Monte-Carlo cross validation (MCCV). MCCV identified the 5 feature model as the best to discriminate between cardiovascular mortality group and control.
(C) Top 10 selected frequency features showing 2-hydroxycaproate, gluconate and sorbitol as the most significant. (D) Combined ROC analysis of top 3 metabolite. AUC: Area under

the curve; 95% confidence interval (CI) in parentheses.

BCAA-derived metabolites included ie. 4-methyl-2-
oxopentanoate (derived from leucine), 3-methyl-2-oxovalerate
(derived from isoleucine), and 3-methyl-2-oxobutyrate (derived
from valine) were observed in the CVM group. Reductions in
circulating levels of additional metabolites derived from the BCAAs,
including isovalerylcarnitine and tiglyl carnitine, were also
observed in patients who experienced CVM (Supplementary
Table 1).

Next, to focus on biomarkers rather than metabolic pathways,
we applied a more stringent analysis using Wilcoxon rank test
corrected for multiple testing by FDR 5%. We found that only three
metabolites were significantly different in CVM compared to con-
trols: 2-hydroxycaproate (otherwise known as alpha hydroxy
caproate), gluconate and sorbitol (p < 0.05, q < 0.05; Fig. 2A and B).
2-hydroxycaproate was also the most significant metabolite using
different statistical approaches such as O-PLS-DA (Supplementary
Fig. 1B) and SAM (Supplementary Fig. 2A and B). These three me-
tabolites were significantly different between the two groups after
an adjustment for use of beta blockers in multivariate analysis [2-
hydroxycaproate: beta 0.567 (p <0.001); gluconate: beta 0.427
(p =0.0019); sorbitol: beta 0.747 (p = 0.0045].

Pearson correlations revealed that levels of 2-hydroxycaproate
correlated with time to death in the CVM group (p=0.018,
r = —0.54, Fig. 2C) while we did not observe any correlation with
gluconate, sorbitol or other metabolites (data not shown).

Additionally, calculation of ROC curves was performed to eval-
uate the previous identified metabolites as biomarker for cardio-
vascular mortality. For 2-hydroxycaproate a high AUC value of
0.887 (95% confidence interval (Cl): 0.763—0.962) was calculated,
whereas for both gluconate and sorbitol the AUC was 0.85 (Fig. 3A).

Next, we generated a model including metabolites and contin-
uous clinical variables. The MonteCarlo cross validation (MCCV)
identified the 5 feature model as the best to discriminate between
CVM and control (Fig. 3B). The selected frequency table of features
identified 2-hydroxycaproate, sorbitol and gluconate as most
picked features (Fig. 3C).

Analysis of AUC for the set of all three metabolites yielded an
AUC of 0.907 (95% CI: 0.737—1.0) (Fig. 3D).

4. Discussion

In this study, we evaluated the metabolome in subjects with
established atherosclerosis and correlated it with clinical data and
cardiovascular death to identify potential pathways and biomarkers
to personalize risk reduction in subjects in secondary prevention.

Our analysis revealed that despite a robust class distinction (i.e.
death against survival) and very mild clinical differences, metab-
olomics did not identify specific metabolic pathways pointing to
specific biological processes that sustain the major clinical event.

However, metabolomics led to identify few metabolites
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potentially amenable to translation to clinical practice as bio-
markers for specific metabolic changes in the cardiovascular
system.

In our study, BCAA metabolism showed significant changes
between the two groups. The branched chain amino acids (valine,
isoleucine, and leucine) constitute a large portion of the amino
acids found in muscle proteins, but are also readily released and
metabolized by various tissues, including skeletal and cardiac
muscle, to meet energy demands [21]. Interestingly, recent studies
in the literature have uncovered a potential role for BCAA catab-
olism in cardiac pathophysiology and have established metabolic
defects related to BCAA degradation as a contributing factor to
cardiovascular disease [22]. In a process that occurs predominantly
in mitochondria, BCAAs are first converted to their a-keto acid
derivatives by branched-chain amino transferase (BCAT).
Branched-chain «-keto acids are subsequently oxidized by the
branched-chain o-keto acid dehydrogenase enzyme complex
(BCKD) to acetyl-CoA and succinyl-CoA, which can enter anabolic
pathways (i.e., gluconeogenesis, fatty acid synthesis) and/or
pathways of energy generation (i.e., TCA cycle). In a recent study
using the same non-targeted metabolomics approach, we
observed that treatment with empagliflozin enhances BCAA
catabolism, thus potentially explaining its cardioprotective effect
[23].

In the current study, we found 2-hydroxycaproate, a branched
chain alpha-keto acid, significantly increased at baseline in subjects
with cardiovascular mortality. Although directionality of change is
difficult to decipher from static measurements, these changes may
be suggestive of a defect in BCAA catabolism in the CVM group that
is possibly related to mitochondrial dysfunction. In addition to the
potential for altered energetics, changes in BCAA metabolism may
modulate cardiovascular function through changes in m-TOR
signaling. Alterations in BCAA catabolism observed in the current
study provide additional evidence implicating this pathway in
cardiovascular mortality in humans.

2-hydroxycaproate was previously observed in human blood
and found increased in cerebrospinal fluid of patients affected by
Nocardia meningitis [24,25]. 2-hydroxycaproate is among the in-
hibitors of aminoacylase 1, an hydrolase involved in several recy-
cling and degradation pathways including conversion of N-acyl-i-
amino acids into L-amino acids in the kidney and in the regulation
of the urea cycle [26]. Interestingly, in a recent study from the
Framingham cohort an aptamer-based proteomic profile revealed
aminoacylase 1 as a new biomarker for cardiovascular disease [27].
How the interaction between 2-hydroxycaproate and aminoacylase
1 affects cardiovascular function remains to be established. Our
data, however, revealed a positive correlation between gluconate
and hsCRP and fibrinogen (data not shown), suggesting a link to
low grade inflammation, an important contributor to both meta-
bolic and cardiovascular incident risk [28,29] that needs further
exploration.

Our study has limitations. The number of patients enrolled was
low and the power of the study has not been calculated, therefore,
our hypothesis-generating results must be validated in a larger
cohort with similar characteristics. The use of beta blockers was
lower in the CVM group, however, the metabolite was still signifi-
cant after adjustment in multivariate analysis.

Future studies must also confirm if those biomarkers are suit-
able for different populations, including different ethnicities. If the
predictive efficacy of these metabolites will be validated, it is
mandatory to test their efficiency to improve risk scores using
reclassification methods. This procedure was recently performed
with low-grade inflammatory markers or metabolites using the
Framingham Recurrent Score or the FINRISK Score [12,30,31].
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