MnO$_x$-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes

Fatemeh Shahbazi Farahani1,2, Barbara Mecheri 2,*, Mir Reza Majidi 1,*, Maida Aysla Costa de Oliveira 2, Alessandra D’Epifanio 2, Francesca Zurlo 2, Ernesto Placidi 3,4, Fabrizio Arciprete 3, Silvia Licoccia 2

1 Dept. of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 51664 Tabriz, Iran
2 Dept. of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
3 Dept. of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
4 CNR-ISM, Via Fosso del Cavaliere 100, Rome, Italy

*Corresponding authors

Barbara Mecheri
e-mail: barbara.mecheri@uniroma2.it; tel: +39 06 7259 4488

Mir Reza Majidi
e-mail: majidi@tabrizu.ac.ir
tel: +98-413-335-5998
Abstract

Multivalent MnO$_x$ supported on nitrogen-doped carbon (C(N)/MnO$_x$-SP) and reduced graphene oxide (rGO(N)/MnO$_x$-SP) is fabricated via a solid state method. The synthesized catalysts are characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS) to get insights on crystalline structure, morphology and surface chemistry. The electrocatalytic activity toward oxygen reduction reaction (ORR) is evaluated by cyclic voltammetry, hydrodynamic voltammetry with rotating disk electrode, and electrochemical impedance spectroscopy in neutral media. As compared to rGO(N)/MnO$_x$-SP, C(N)/MnO$_x$-SP shows higher performance toward ORR, due to the interplay of surface chemistry and morphology. C(N)/MnO$_x$-SP is assembled as cathode of a single-chamber microbial fuel cell (MFC) fed with sodium acetate as fuel. The MFC performance is evaluated by measuring power generation and acquiring voltage generation cycles in long-term operation mode. MFCs assembled with C(N)/MnO$_x$-SP exhibits a peak power density of 467 mWm$^{-2}$, slightly higher than that of reference Pt/C (446 mWm$^{-2}$). The obtained results indicate that C(N)/MnO$_x$-SP is a viable catalyst for MFC cathodes owing competitive price and high performance in terms of power generation and stability of voltage cycle.

Keywords: Manganese dioxide, nitrogen-doped carbon, oxygen reduction reaction, air cathode, microbial fuel cell
1 Introduction

Microbial fuel cell (MFC) is a bioelectrochemical system which has attracted increasing attention during the past decade since it converts chemical energy stored in organic compounds to electrical power and simultaneously treats wastewater (1-3). However, the widespread diffusion of MFCs is constrained because of durability issues and high cost of materials, mainly arising from the use of platinum as catalyst for the oxygen reduction reaction (ORR) occurring at the cathode side.

A viable approach for reducing costs, while enhancing ORR, is the use of platinum group metal (PGM) free catalysts. Previous literature reports have shown that PGM-free catalysts obtained by supporting transition metal, such as Fe and Co, on different carbon supports can be used as cathode in MFCs, achieving an electrochemical performance comparable to that of Pt (4-8). Also, thanks to low cost, natural abundance, environmental friendly nature, and good electrochemical properties, electrode materials based on manganese dioxide (MnO$_2$) have been tested at the cathode side of MFCs (5, 6). ORR activity and the overall electrochemical performance was found to be strongly dependent on size, morphology, crystal structure, surface chemistry, and surface area (7-11).

MnO$_2$ can be synthesized following diverse strategies, including sol-gel process, microwave heating, and precipitation/ion-exchange, obtaining materials with different structure, surface area, and hydration degree (12-14). Generally, MnO$_2$ exists in three crystallographic forms, i.e. α-, β-, and γ-MnO$_2$, which correspond to differently connected [MnO$_6$] octahedral frameworks, resulting in different morphologies and pore structures (15-20).

However, MnO$_2$ has an intrinsic low electrical conductivity and suffers from agglomeration and dissolution issues, which limits its activity as ORR catalysts. Supporting MnO$_2$ on highly conductive materials, such as graphene and graphene oxide, carbon black, carbon nanotubes, and activated carbons is a widely recognized strategy for overcoming the above-mentioned drawbacks (21, 22).
Electronic conductivity, catalytic activity, and anchoring of the metal particles can be further enhanced
by heteroatom functionalization of the carbon support (23-25). In particular, carbon materials show a
nitrogen-doping-enhanced ORR activity in neutral and alkaline environment, due to improved
adsorption of oxygen and decomposition of peroxide intermediate (26-30). In fact, there are two
possible ways of oxygen reductions that can take place: oxygen can be reduced to water by direct 4-
electron pathway or to peroxide by 2-electron pathway, following a pH-dependent mechanism as
illustrated in Table 1. For achieving high power performance in MFCs and avoid peroxide formation,
the direct 4-electron pathway is a mandatory requirement of ORR catalysts (28).

<table>
<thead>
<tr>
<th>Reaction Mechanisms</th>
<th>Reaction</th>
<th>pH</th>
<th>E^0(vs. SHE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4e pathway (direct)</td>
<td>$O_2 + 2H_2O + 4e^- → 4OH^-$</td>
<td>alkaline</td>
<td>0.401 V</td>
</tr>
<tr>
<td></td>
<td>$O_2 + 4H^+ + 4e^- → 2H_2O</td>
<td>acidic</td>
<td>1.229 V</td>
</tr>
<tr>
<td>2e pathway (peroxide)</td>
<td>$O_2 + H_2O + 2e^- → HO_2^- + OH^- $</td>
<td>alkaline</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>$HO_2^- + H_2O + 2e^- → 3OH^- $</td>
<td>alkaline</td>
<td>-0.065</td>
</tr>
<tr>
<td></td>
<td>$O_2 + 2H^+ + 2e^- → H_2O_2 $</td>
<td>acidic</td>
<td>0.670</td>
</tr>
<tr>
<td></td>
<td>$H_2O_2 + 2H^+ + 2e^- → 2H_2O$</td>
<td>acidic</td>
<td>0.670</td>
</tr>
</tbody>
</table>

Nitrogen-doping of carbon supports can be thus considered as an efficient way to improve MFC
performance of previously reported MnO$_2$-based cathodes (31-36).

In this work, we report a strategy to develop a novel multivalent MnO$_x$ supported on either nitrogen-
doped carbon black or nitrogen-doped graphene oxide to be used at the cathode side of MFCs, for
enhancing power generation, stability, and reducing costs. To the best of our knowledge,
electrocatalysts based on multivalent MnO$_x$ supported on N-doped carbon have not been yet
investigated in air-cathode MFCs.
2 Experimental

2-1 Materials preparation

XC-72R Carbon Vulcan (C) was obtained by Cabot Corporation. It was modified by a two steps treatment with nitric acid and ammonia gas, according to previous reports (37), obtaining a material labeled as C(HNO$_3$) and C(N), respectively.

Graphene oxide was synthesized through electrochemical exfoliation of graphite in aqueous solution of LiCl, as previously reported (38). N-doping and reduction of GO was further carried out by a thermal treatment in a flow of anhydrous ammonia into a tubular oven at $T=400^\circ$C (heating rate of 5$^\circ$C/min) for 4 h, obtaining a sample labeled as rGO(N).

MnO$_x$ was supported on C(N) and rGO(N) by a solid state method. In a typical preparation, 4.16 mmol of either C(N) or rGO(N), 0.0416 mmol Mn(Ac)$_2$·4H$_2$O, and 0.0277 mmol KMnO$_4$ (Mn$^{2+}$:Mn$^{7+}$=3:2) were mixed together in an agate mortar and ground for 20 minutes. The powder was then transferred to a glass vial, capped and kept at $T=180^\circ$C for 8 hours. The resulting powder was cooled and thoroughly washed with distilled water and ethanol four times, and then dried at 60$^\circ$C for 4 hours. Finally, the obtained samples were calcined at 400$^\circ$C for 90 minutes, and labeled as C(N)/MnO$_x$-SP and rGO(N)/MnO$_x$-SP, respectively.

2-2 Materials characterizations

To verify the crystalline structure, X-ray diffraction (XRD) was performed by using Philips PW1730 X-ray diffractometer with Cu K$_\alpha$ radiation (λ=1.5406 Å).

The morphology of the materials was investigated by scanning electron microscopy (SEM). All images were acquired using a Leo Supra 35 field-emission scanning electron microscope (Carl Zeiss, Oberkochen, Germany).
Raman Spectroscopy was performed with a DXR Raman Microscope (Thermo Scientific) using laser excitation wavelength of 532 nm with a 10 X objective. Laser power was maintained at 0.1 mW.

X-ray Photoelectron Spectroscopy (XPS) was performed using an Omicron DAR 400 Al/Mg Ka nonmonochromatized X-ray source, and a VG-CLAM2 electron spectrometer. Samples were dispersed in ethanol to a 1 mgmL⁻¹ content and deposited on silicon wafer.

The electrochemical tests to evaluate ORR activity of the different catalysts were carried out by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), and Hydrodynamic Voltammetry with a Rotating Disc Electrode (RDE) model 636A (Princeton Applied Research, Ametek). All electrochemical tests were performed with a VMP3 Potentiostat (Bio Logic Science Instruments) connected to a computer through EC-lab V10.18 software. Fitting and analysis of the EIS data were done by ZView software. 100 mM neutral phosphate buffer (PBS) saturated with either nitrogen or oxygen was used as electrolyte. A three electrode cell was used, using saturated calomel electrode (Amel 303/SCG/12), Pt wire (Amel 805/SPG/6J), and a glassy carbon disk (0.196 cm² area) modified with catalyst layer as the reference, counter, and working electrode, respectively. To prepare catalysts ink, 4 mg catalyst was dispersed in 455 µL of a mixture of ethanol, water and 5.0 wt% Nafion (Aldrich) with volume ratio 5.4:2.7:1. Then 7 µL of catalyst ink was deposited on the GC electrode to 0.31 mgcm⁻² catalyst loading.

CV experiments were performed in the potential range +1.1V ÷ -0.8 V (versus SCE) with scan rate in the range of 10-80 mVs⁻¹. Linear sweep voltammetry (LSV) with RDE electrodes was carried out at different rotation rates by sweeping the potential from -0.4 V ÷ -1 V (versus SCE) at 10 mVs⁻¹. EIS spectra were recorded at E= -0.3V and E= -0.6 V (vs. SCE) for C(N)/MnOₓ-SP and rGO(N)/ MnOₓ-SP, respectively, over a frequency range of 10 mHz to 100 kHz with an amplitude of 10 mV.
2-3 MFC operation:

2-3.1 Cathode preparation

In order to prepare modified carbon cloth cathodes, the diffusion layer (exposed to air) and the catalyst layer (faced to MFC solution) were applied and hot-pressed at pressure of 20 MPa and temperature of 120°C. 5 mg of the catalyst were dispersed in 0.83 µL DI water, 6.67 µL Nafion solution, and 3.33 µL 2-propanol and brush-painted on the surface of a mesoporous layer of a GDL carbon cloth (Quintech, Germany). The electrode was dried at room temperature for 24 h. On the opposite side, the diffusion layer was applied as previously described (37). A standard Pt/C cathode was prepared and taken as a reference for MFC testing. In both cases, the amount of either MnOₓ or Pt loading was 0.5 mg cm⁻².

2-3.2 MFC tests

MFC tests were performed using lab-scale prototypes of single chamber air-cathode MFCs previously described. A two electrode configuration was used: the working electrode was connected to the cathode and the reference and the counter electrode were both connected to the anode, which is a graphite brush as previously reported (38, 39). MFCs were firstly acclimated and fed with phosphate buffer solution containing 1 g L⁻¹ sodium acetate, acquiring voltage generation cycles (40). Polarization and power density curve were carried out by varying the external resistance (from 10-10000 Ω) every 30 minutes and measuring cell voltage at each resistance (41). All measurements were carried out at room temperature (23 ± 3 °C) having three independent replicates for each cathode.

3 Results and discussion

The morphology of C(N)/MnOₓ-SP and rGO(N)/MnOₓ-SP was characterized by field emission scanning electron microscopy (FE-SEM) (Fig. 1). Depending on the preparation procedure, the sample morphology is very different. In fact, C(N)/MnOₓ-SP (Fig. 1a) has a regular morphology, with the presence of homogeneous spherical particles and larger aggregates which are more evident at higher
magnification (Fig. 1b). In the case of rGO(N)/MnOx-SP, the morphology is not as homogeneous as compared to C(N)/MnOx-SP, showing a high degree of disorder (Fig. 1c). At higher magnification, it is possible to distinguish the lamellar shape of the carbon support from smaller and brighter round-shaped MnOx nanoparticles (Fig. 1d). From SEM images, it is evident that MnOx is more homogeneously distributed on C(N) rather than on rGO(N).

The XRD patterns of MnOx, C(N), C(N)/MnOx-SP, rGO(N), rGO(N)/MnOx-SP are shown in Fig. 2, together with MnOx peak identification according to JCPDS database. Fig. 2a shows the XRD pattern of bare MnOx calcined at 400 °C, indicating the presence of diverse crystalline phases corresponding to the tetragonal structure of Mn3O4 (JCPDS No. 001-1127), MnO2 (JCPDS No. 044-0141), Mn2O3 (JCPDS No. 024-0508), and MnO (JCPDS No. 075-1090). The presence of diverse crystalline phases can be ascribed to the low calcination temperature (400°C), resulting in a lack of energy for perfect crystallization. As previously reported (42-44), the calcination temperature has an effect on the formation of crystalline phases, in particular a higher calcination temperature leads to lower manganese valence, eventually affecting shape, texture, and particle size.
The diffraction pattern of C(N) in Fig. 2b shows a broad peak at $2\theta=24^\circ$ and two narrow peaks at 43° and 51°, which were assigned to typical features of N-doped carbon black. The XRD pattern of rGO(N) displays two narrow peaks at 2θ of 27° and 45° corresponding to the (002) and (101) planes, respectively.

Such peaks are shifted toward higher angles as compared to graphene oxide, due to N-dopoping and the reduction of GO to rGO which causes the partial loss of oxygen-containing functional groups (45, 46). According to the diffraction pattern in Fig. 2b, the crystalline structure of manganese oxide remains similar even after the formation of C(N)/ MnO$_x$-SP and rGO(N)/ MnO$_x$-SP.

Raman spectroscopy was used to further study the physical properties of the prepared materials (Figure 3). The Raman spectra of MnO$_x$, C(N)/ MnO$_x$-SP, and rGO(N)/ MnO$_x$-SP show a peak at 647 cm$^{-1}$, 645 cm$^{-1}$, and 615 cm$^{-1}$, respectively, due to the asymmetric stretching vibration of Mn-O bonds in the
MnOₓ compounds (47). According to previous reports, crystallite size affects position and width of Raman peaks, while the oxygen deficiency does not cause any shift or broadening of Raman peaks (48). The shift toward lower wavenumbers and the broadening of the peak for rGO(N)/ MnOₓ-SP can be ascribed to a smaller grain size of this sample as compared to C(N)/ MnOₓ-SP.

As indicated in Table 2, Raman spectra of pristine C(N) and rGO(N) displays two distinct peaks ascribed to the D-band (at 1346 cm⁻¹ and 1353 cm⁻¹, respectively) and G-band (at 1589 cm⁻¹ and 1581 cm⁻¹, respectively). Generally, the appearance of the D band is due to the presence of sp³ carbons or defect-induced disorder in graphene sheets, and G band results from vibrations of sp² carbons (49).

<table>
<thead>
<tr>
<th>Samples</th>
<th>D Band (cm⁻¹)</th>
<th>G band (cm⁻¹)</th>
<th>I_D/I_G</th>
<th>Mn-O (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(N)</td>
<td>1346</td>
<td>1589</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>rGO(N)</td>
<td>1353</td>
<td>1581</td>
<td>0.32</td>
<td>-</td>
</tr>
<tr>
<td>rGO(N)/MnOₓ-SP</td>
<td>1351</td>
<td>1575</td>
<td>0.32</td>
<td>615.14</td>
</tr>
<tr>
<td>C(N)/MnOₓ-SP</td>
<td>1350</td>
<td>1587</td>
<td>1.00</td>
<td>643.27</td>
</tr>
<tr>
<td>MnOₓ</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>646.77</td>
</tr>
</tbody>
</table>

The ratio of D to G band intensities (I_D/I_G) is related to the amount of defects in samples. I_D/I_G ratio is higher for C(N)/ MnOₓ-SP than rGO(N)/ MnOₓ, indicating that C(N)/ MnOₓ-SP has a highest degree
of defects. In general, a higher degree of disorder in carbon-based catalysts is related to an enhanced affinity for oxygen adsorption, hence increasing catalytic activity toward ORR (50, 51).

To get insights on surface chemistry and valence states of Mn in nanocrystalline MnOₓ, X-ray photoelectron spectroscopy (XPS) was performed. **Figure 4** shows N1s and Mn2p XPS spectra of C(N)/ MnOₓ-SP, as a representative sample of the series. Nitrogen and manganese peak fitting is also shown in **Errore. L'origine riferimento non è stata trovata.**, and the corresponding results are listed in Table 3.

![Figure 4- N1s (a) and Mn2p (b) XPS spectra of C(N)/ MnOₓ-SP](image)

For N 1s spectrum, the main peak is deconvoluted into three different peaks, centered at 398.4, 399.7, and 400.3 eV, corresponding to pyridinic-N, pyrrolic-N, and quaternary-N, respectively (Errore. L'origine riferimento non è stata trovata.). These results further demonstrate that C(N)/ MnOₓ-SP
composite contains nitrogen in the structure. The Mn2p spectrum shows two principal and typical peaks around 641.6 eV and 653.4 eV which can be attributed to the binding energy of Mn 2p3/2 and Mn 2p1/2, respectively. Generally, the XPS peak of Mn 2p3/2 can be deconvoluted in three different contributions assigned to Mn2+ (640.3 eV), Mn3+ (641.5 eV) and Mn4+ (642.5 eV), respectively. These results confirmed the coexistence of Mn2+, Mn3+, and Mn4+, and thus the presence of Mn3O4, Mn2O3, MnO and MnO2 in the synthesized sample as previously shown in the XRD patterns. Comparing the relative intensity of Mn2p peak in table 3, lower valence states (Mn2+ and Mn3+) are predominant in C(N)/MnOx-SP.

<table>
<thead>
<tr>
<th>N type</th>
<th>Peak BE (eV)</th>
<th>Rel. Intensity%</th>
<th>Mn type</th>
<th>Peak BE (eV)</th>
<th>Rel. Intensity%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyridinic-N</td>
<td>398.4</td>
<td>39.6</td>
<td>Mn2+</td>
<td>640.3</td>
<td>40.6</td>
</tr>
<tr>
<td>Pyrrolic-N</td>
<td>399.7</td>
<td>49.8</td>
<td>Mn3+</td>
<td>641.5</td>
<td>38.2</td>
</tr>
<tr>
<td>Quaternary-N</td>
<td>400.3</td>
<td>10.6</td>
<td>Mn4+</td>
<td>642.5</td>
<td>21.2</td>
</tr>
</tbody>
</table>

CV was used to investigate the electrocatalytic activity of the synthesized nanocatalysts toward ORR in oxygen and nitrogen saturated neutral electrolyte solution. As shown in Fig. 5, upon introduction of O2 in the electrolyte solution, a reduction peak can be seen for C(N)/MnOx-SP and rGO(N)/MnOx-SP, as a clear indication that both materials are catalytically active toward ORR.
Figure 5- Cyclic voltammograms of rGO(N)/MnO$_x$-SP and C(N)/MnO$_x$-SP catalysts in N$_2$- (dashed lines) and O$_2$-saturated (solid lines) 100 mM neutral PBS solution. Scan rate = 10 mVs$^{-1}$.

Peak potential values and the corresponding current density values are shown in Table 4. In particular, for C(N)/MnO$_x$-SP the reduction peak is shifted towards a more positive potential and peak current density is higher as compared to rGO(N)/MnO$_x$-SP due to an enhanced catalytic activity for C(N)/MnO$_x$-SP. To further evaluate the catalytic behavior of the prepared samples, the double layer capacitance (C$_{DL}$) was calculated by acquiring CVs in nitrogen saturated PBS at different scan rates, as previously reported (38), and the results are show in Table 4. Higher C$_{DL}$ values can be associated to higher surface area and density of available active sites (52, 53). Higher C$_{DL}$ values for C(N)/MnO$_x$-SP as compared to rGO(N)/MnO$_x$-SP leads to higher peak current density and more positive potential for ORR.

Table 4- Peak potential, peak current density, and double layer capacitance extrapolated from CVs.

<table>
<thead>
<tr>
<th>Sample</th>
<th>E_{pr}/V</th>
<th>J_{pr}/mAcm$^{-2}$</th>
<th>C$_{DL}$/mFcm$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(N)/MnO$_x$-SP</td>
<td>-0.23</td>
<td>-0.77</td>
<td>0.55</td>
</tr>
<tr>
<td>rGO(N)/MnO$_x$-SP</td>
<td>-0.60</td>
<td>-0.07</td>
<td>0.05</td>
</tr>
</tbody>
</table>

To get deeper insights on the kinetic mechanism of ORR at the surface of the prepared catalysts, we performed RDE experiments at different electrode rotation rates. Fig. 6a and 6b shows LSV curves at electrode rotation rates from 100 to 1600 rpm, for Pt/C (taken as reference) and C(N)/MnO$_x$-SP (as a representative sample of the MnO$_x$-based catalysts).

Data were analyzed with the Koutecky–Levich (KL) theory according to which the measured current is given by eq. 1:

$$\frac{1}{J} = \frac{1}{J_K} + \frac{1}{J_D}$$ (1)

where J_K is the kinetic current density and J_D is the limiting current density (eq. 2):

$$J_D = 0.62nFCD^{2/3}v^{-1/6}\omega^{1/2}$$ (2)
where \(n \) is the number of electrons exchanged, \(F \) is Faraday’s constant, \(C \) is oxygen concentration, \(D \) is oxygen diffusivity, \(\nu \) is the kinematic viscosity of the electrolyte, and \(\omega \) is the electrode rotation rate (54). By plotting the inverse of the measured current density as a function of the inverse of the square root of the rotation rate, KL plots are obtained at \(E = -0.6 \) V and shown as an inset of Fig 6a and Fig.6b, and in Fig. 6d for the sake of comparison. KL plots show a good linearity for the two samples which indicates first-order kinetics of ORR. The electrochemical parameters extrapolated from the KL plots, such as the kinetic current density \((J_K) \) and the number of electrons exchanged \((n) \), are listed in Table 5, together with half-wave potential \((E_{1/2}) \) values taken from LSVs at 1600 rpm. The data in Table 5 demonstrated that ORR catalyzed by C(N)/MnO\(_x\)-SP mainly proceeds through a 4 electron pathway mechanism, as in the case of reference Pt/C. \(E_{1/2} \) of C(N)/MnO\(_x\)-SP is less positive than that of Pt/C and \(J_K \) is lower, but those values outperform the performance previously reported for typical MnO\(_2\)-based catalysts (55).
The comparison of LSVs at 1600 rpm for Pt/C, C(N)/MnO\textsubscript{x}-SP, and rGO(N)/MnO\textsubscript{x}-SP, shown in Fig. 6c, further confirms that C(N)/MnO\textsubscript{x}-SP performs similarly to Pt/C as ORR catalyst, while the performance of rGO(N)/MnO\textsubscript{x}-SP has the worst overall performance.

Table 5- Half-wave potential (E\textsubscript{1/2}), kinetic current density (J\textsubscript{K}), and the number of electrons exchanged (n) extracted from LSVs, at 1600 rpm and -0.6 V, respectively.

<table>
<thead>
<tr>
<th>Sample</th>
<th>E\textsubscript{1/2} / V</th>
<th>J\textsubscript{K} / mA cm-2 @ -0.6 V</th>
<th>n @ -0.6 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt/C</td>
<td>-0.02</td>
<td>13.5</td>
<td>4.0</td>
</tr>
<tr>
<td>C(N)/MnO\textsubscript{x}-SP</td>
<td>-0.28</td>
<td>7.5</td>
<td>3.9</td>
</tr>
</tbody>
</table>

The enhanced ORR performance of C(N)/MnO\textsubscript{x}-SP as compared to rGO(N)/MnO\textsubscript{x}-SP can be further analyzed by EIS analysis. Fig. 7 shows the Nyquist plots of C(N)/MnO\textsubscript{x}-SP and rGO(N)/MnO\textsubscript{x}-SP under static (Fig. 7a) and hydrodynamic (Fig. 7b) conditions. Potentiostatic EIS spectra were obtained at the half-wave potential of LSV curves, as described in 2.2 section (materials characterization).

The spectra shown in Fig. 7a consist of a tail in the low frequency range that is related to diffusion of both oxygen and ionic species through the diffusion layer at the electrode/electrolyte interface. At neutral pH and in static conditions the thickness of the diffusion layer is high, and mass transfer to/from this thick region is hindered. To limit this diffusion layer to a certain extent (finite) and reduce the effect of mass transfer, we carried out EIS under hydrodynamic condition at a electrode rotation rate of 1600 rpm (Fig. 7b). As a result, the diameter of the semicircle at high frequency decreased as compared to the case of Fig. 7a. EIS spectra in Fig. 7b were modeled by using the a Randles-type circuit depicted in Fig. 7c, suitable for modeling finite linear diffusion in heterogeneous materials (56-59). In the circuit model, the elements represent ohmic resistance (R\textsubscript{s}), charge transfer resistance (R\textsubscript{ct}), a constant phase
element related to double layer capacitance (CPE) and a short Warburg element (W_s), related to
depressed arcs at low frequencies which tend to intercept the X-axis. According to this model mass
diffusion is limited to a finite and narrow layer, while charge transfer plays a predominant role on the
overall electrode process (59-61).

![Figure 7. Nyquist plots for C(N)/MnO_x-SP and rGO(N)/MnO_x-SP in O_2-saturated neutral PBS a) under static (0 rpm) and b) hydrodynamic (1600 rpm) conditions.](image)

Table 6 shows the fitting results, limited to charge transfer parameters. C_{DL} values were calculated
according to eq. 3 (62):

\[
C_{DL} = \frac{1}{(R_{ct} \times CPE)^{\alpha}}
\]

(3)

where \(\alpha\) is the CPE index, accounting for deviations from ideality.

![Table 6. EIS parameters for C(N)/MnO_x-SP and rGO(N)/MnO_x-SP (from fitting of EIS spectra at 1600 rpm).](table)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Parameters</th>
<th>C(N)/MnO_x-SP</th>
<th>Error %</th>
<th>rGO(N)/MnO_x-SP</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_s (Ω)</td>
<td>16.31</td>
<td>0.50</td>
<td></td>
<td>16.23</td>
<td>0.95</td>
</tr>
<tr>
<td>R_{ct} (Ω)</td>
<td>292.80</td>
<td>1.96</td>
<td></td>
<td>366.70</td>
<td>4.04</td>
</tr>
<tr>
<td>α</td>
<td>0.96</td>
<td>1.53</td>
<td>0.99</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>CPE (Ss$^{\alpha}$)</td>
<td>1.54x10$^{-3}$</td>
<td>2.79</td>
<td>7.90x10$^{-5}$</td>
<td>5.23</td>
<td></td>
</tr>
<tr>
<td>C_{DL} (mFcm$^{-2}$)</td>
<td>1.39</td>
<td>-</td>
<td>0.08</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

R_S, which accounts for the solution resistance, was the same for both electrodes, while R_{CT} was lower for C(N)/MnO$_x$-SP than rGO(N)/MnO$_x$-SP, as a further indication of enhanced ORR for this material, in good agreement with CV and LSV analysis. Also, C_{DL} of C(N)/MnO$_x$-SP was higher than that of rGO(N)/MnO$_x$-SP. The higher double layer capacitance can be related to a comprehensive effect of texture and roughness on the electrode surface of C(N)/MnO$_x$-SP sample, arising from the nanostructural properties of the materials. Values of CPE index (α) very close to 1 have been previously reported for rough interfaces (63).

C_{DL} values obtained by EIS (hydrodynamic conditions) are higher than those calculated by CV (quiet conditions). This finding can be ascribed to the lower thickness of the double layer in EIS experiments under hydrodynamic conditions, as previously reported (64, 65).

In view of good catalytic activity toward ORR, as elucidated by the materials characterization, C(N)/MnO$_x$-SP was selected to be assembled at the air-breathing cathode of a single-chamber MFC, and its performance, in terms of voltage and power generation, was compared to that of a reference Pt/C cathode.

As illustrated in Fig. 8a, in spite of higher open circuit voltage (OCV) of Pt/C (0.71 V) with respect to C(N)/MnO$_x$-SP (0.37 V), the maximum power density the MFC assembled with C(N)/MnO$_x$-SP is 467 mWm$^{-2}$, which is higher than that of Pt/C (446 mWm$^{-2}$). Moreover, C(N)/MnO-SP also shows higher current density at 0.2 V (2583 mAm$^{-2}$) than Pt/C (1128 mAm$^{-2}$), as a further improvement. These results suggest that the overall polarization of C(N)/MnO$_x$-SP cathode resulted in enhanced power generation as compared to the Pt/C cathode.
Taking into account different cell configuration and different operative conditions, electricity and power generation are consistent with existing literature reporting the performance of MFCs assembled with cathodes based either on MnOx or PGM-free catalysts (35, 36, 66-68).

Figure 8- a) Polarization and power density (PD) curves of MFCs assembled with C(N)/MnOx-SP and Pt/C cathodes fed with 1mgL⁻¹ sodium acetate in neutral phosphate buffer, b) Voltage cycles under a 1 kV external resistance as a function of time.

Stability tests were also performed, by acquiring voltage generation cycles in long-term operation mode. Fig. 8b indicates that both MFCs, assembled with C(N)/MnOx-SP and Pt/C as cathode, allowed achieving constant and reproducible voltage cycles, denoting that the C(N)/MnOx-SP catalyst has a good stability, being able to generate constant voltage over 450 h working as an MFC cathode.
Additionally, with a rough cost estimation on the basis of a lab-scale procedure for materials synthesis, C(N)/MnO\textsubscript{x}-SP has an average cost of 2 €g-1, which is much lower than the cost of commercial Pt/C (25 €g-1). The joint analysis of performance and costs points at C(N)/MnO\textsubscript{x}-SP as a promising catalyst to replace Pt for MFC application, also considering the possibility of further cost reduction in scaling-up the process of materials synthesis.

4 Conclusions

In this work we developed a novel, facile, and low-cost solid phase synthesis to prepare multivalent MnO\textsubscript{x} supported on nitrogen-doped nanostructured carbon as oxygen reducing catalyst. Either nitrogen-doped carbon black (C(N)) or nitrogen-doped reduced graphene oxide (rGO(N)) were selected as carbon support for MnO\textsubscript{x}. Among the prepared materials, MnO\textsubscript{x} supported on C(N) showed the highest catalytic activity toward the oxygen reduction reaction due to a good combination between surface chemistry and morphology. When assembled at the cathode side of a lab-scale prototype of microbial fuel cells (MFCs), C(N)/MnO\textsubscript{x}-SP generated high electrical power and stable voltage, outperforming commercial Pt/C cathode, taken as the reference catalyst. Hence, this catalyst can be identified as an appropriate alternative to Pt-based cathode for MFC applications.

Acknowledgements

The present work was carried out with the financial support of the Post Graduate Office of the University of Tabriz and the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil, under the grant n.200631 - 2015/2. Also, the valuable technical support of Mrs. C. D’Ottavi is gratefully acknowledged.

5 References