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Abstract. The EPR—chameleon experiment has closed a long standing debate between the supporters of quantum nonlocality
and the thesis of quantum probability according to which the essence of the quantum pecularity is non Kolmogorovianity
rather than non locality.

The theory of adaptive systems (symbolized by the chameleon effect) provides a natural intuition for the emergence of
non—-Kolmogorovian statistics from classical deterministic dynamical systems. These developments are quickly reviewed and
in conclusion some comments are introduced on recent attempts to “reconstruct history”” on the lines described by Orwell in
“1984”
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AN HISTORICAL CHALLENGE

In the conclusions of his 1964 paper [11] Bell stated that:

“... In a theory in which parameters are added to quantum mechanics to determine the results of individual
measurements, without changing the statistical predictions, there must be a mechanism whereby the setting of one
measuring device can influence the reading of another instrument, however remote. Moreover, the signal involved
must propagate instantaneously, so that such a theory could not be Lorentz invariant. ... Of course, the situation is
different if the quantum mechanical predictions are of limited validity. ...”

To say that the predictions of a theory are “... of limited validity ...” is either a truism (and surely Bell was not a
trivial person) or an euphemism to mean that the theory is wrong, and the latter interpretation is the one commonly
adopted in the literature.

The theories which allow “... to determine the results of individual measurements ...” are the deterministic theories.

Thus the above statement of Bell is a very strong one and leaves no space for ambiguity: either quantum mechanics
is wrong or any deterministic completion of this theory which leads to the same experimentally measurable
predictions must be incompatible with the locality principle.

A few years later the deterministic theories, compatible with the locality principle, were called “local realistic
theories” and Bell’s result was synthesized in the statement: no local realistic theory can reproduce the EPR
correlations.

17 years after, in another widely quoted paper ([10], Sect. 3: “Difficulty with locality”), Bell strengthened his 1964
statement as follows:

“... certainly Einstein could no longer write so easily, speaking of local causality “... I still cannot find any fact
anywhere which would make it appear likely that locality will have to be abandoned.” ... ”

Thus, while in his 1964 paper Bell’s emphasis was on the impossibility of a local realistic completion of quantum
theory, in his 1981 paper the difficulties with locality are shifted from the completions of quantum mechanics (QM) to
QM itself.

This development is not surprising: after all, if one accepts as true the impossibility to reproduce the predictions of
QM by means of any local realistic theory, then it is natural to interpret this as an indication that QM should be either
“non realistic” or “non local”.

On the other hand, the experiments, which in 1981 begun to have a developed history, seemed to support the
“realism” assumption (cf. discussion below). In view of this Bell, being convinced that his 1964 argument was correct,
had all the rights to conclude that the experimental data, accumulated between 1964 and 1981, justified the above
mentioned radicalization of his position on the locality issue. The majority of physicists could not find convincing
critiques against these arguments and ended up to accept, although reluctantly, this “quantum non locality”: a term
that since those years has been recurrent in the literature. For example Stapp [32] says: “... it is widely accepted



today that some sort of nonlocal effect is needed to resolve the problem raised by the works of Einstein, Podolsky
and Rosen (EPR) and John Bell. ...” and, in a more specific way, by De Muynk [18]: * ... It has often been felt that
the most surprising feature of Bell experiments is the possibility (in certain sense) of a strict correlation between the
measurement results of the two measured observables, without being able to attribute this to a previous preparation of
the object (no ‘elements of physical reality’). ...”.

This De Muynk’s statement clearly explains why the experimental results were interpreted as evidence supporting
the idea of the existence of ‘elements of physical reality’, thus ruling out the “non reality” assumption and leaving
open only one possibility: “non locality”. The argument is already present on the EPR paper and can be summed up
as follows.

The strong correlations in the EPR type experiments are incompatible with the idea that the virtual values of the
polarization observables, coded into the singlet state, become real by virtue of a random mechanism, triggered locally
by the measurement apparatus (orthodox interpretation). Here the term “locally” means that random mechanisms,
acting in widely separated regions of space, are independent. This incompatibility is an elementary statistical fact:
if T toss two coins independently, I expect that, in many tosses, the fraction of coincidences in the results will
be approximately 1/2. But in the EPR type experiments these fractions can take all values between 0 and 1, thus
independence is ruled out. Dependence could rise only either from a “pre—determination”, as argued in the original
EPR paper, or by an instantaneous nonlocal “agreement” between the two particles (or the two apparata).

But, if Bell is right, “pre—determination” is ruled out by Bell’s inequality. Thus, if this is the case, we must, even
reluctantly, accept non locality.

QUANTUM PROBABILITY AND THE NON LOCALITY CHALLENGE

The huge interest in Bell’s inequality was motivated by the widespread belief that this inequality allows to prove
experimentally the incompatibility between the fundamental physical theory of our times (QM) and one of the
fundamental pillars of physics (the locality principle).

This was indeed an historical challenge and was recognized as such by a huge number of people including some of
the best minds in physics, philosophy, mathematics, ...

If an answer has to be given to this challenge, it must stated as clearly and strongly as the above reported statements
by Bell. Furthermore this clarity and strength must be the expression, as it was in the Bell case, of a rational
combination of theorems and experimental data.

Starting from 1979 the quantum probabilistic approach was developed as an answer to Bell’s challenge. Its main
conclusion, after a 25 year confrontation is exactly the opposite of the Bell statement reported at the beginnibg of this
section: there is no principle contradiction between quantum theory, locality and realism.

The quantum probabilistic point of view is supported by:

(i) new mathematical results (the statistical invariants, the theory of adaptive dynamical systems, ...)

(i1) a new physical intuition: adaptive dynamical systems (symbolized by the chameleon metafora) can produce, by
means of local, deterministic interactions, the non classical statistics which is the real core of inequalities such as the
two slit one, Bell’s one, etc. ... .

(iii) the construction of a classical, reversible, local deterministic, binary dynamical system which exactly repro-
duces the EPR correlations. There are no artificial post—selection assumptions in the statement of the theorem which
proves that the above mentioned model effectively reproduces the EPR correlations: everything is predetermined (in
the chameleon sense) at the source, exactly as required both by EPR and Bell!

(iv) an experiment realizing, with three independent computers, the deterministic model mentioned in (iii). Since the
thesis, advocated by Bell and his followers, is that no classical system can reproduce, by means of local independent
choices, the EPR correlations, the present experiment, although realized using computers, is not a simulation of an
experiment, but a real experiment, because the personal computers used in it are surely macroscopic classical systems.

In addition the protocol of the above experiment faithfully reproduces the protocol actually followed in all EPR type
experiments (meaning by this, all experiments in which the separation between the two particles is large enough to
guarantee that the independence assumption, crucial in any real EPR type experiment, is satisfied).

The physics community should rejoice because of these results. In fact they lead to a re—evaluation of the orthodox
interpretation by making it free of spurious metaphysical statements and by supporting it with new mathematical tools
and new physical ideas.

In some sense one might say that, just as von Neumann measurement theory was the first attempt to give a
mathematical context to Bohr’s idea on the role of the measurement apparatus in QM, the quantum probabilistic



approach explicitly introduces, in von Neumann measurement theory the appropriate mathematical formulation of the
notions of causality, locality and of “observable dependent interactions” (chameleon effect).

DYNAMICAL SYSTEMS: PASSIVE AND ADAPTIVE
Definition 1 A classical, discrete time, deterministic (passive) dynamical system is a quadruple:

{@,0,P, T} 1)

where:

— Q is the state space (more precisely Q = (Q,.7 ) is a measurable space)

— O is a set of observables (measurable maps from Q to R)

— P is the preparation of the experiment (a probability measure on £ - initial distribution)
—T : Q— Qis adiscrete time dynamics (measurable map)

The system is called reversible if T ! exists (and is measurable P-a.e.).

We do not require that the statistics is invariant under the dynamics (i.e. that Po T~! = P). Thus, if (-) denotes
the expectation value at time 1 (if 1 is the instant of measurement, this is precisely what we measure), then for any
observable A € €, one has:

@)= [ATRaPw = [AWaPoT () = [ ATHpdx = [ ALy (T7(6)) dy @
p(x) is the probability density (denoted p(x) in Bell’s notations)

Definition 2 A classical deterministic adaptive dynamical system is a quadruple:

{Q, O, {Ps}aco ,{Ta}aco} ?3)

where:
— Q (the state space) and O (the observables) are as in Definition (1).
—foreach A € O:
(i) Py is a probability measure (the preparation of an experiment to measure A)
(ii) Ty : Q — Q is an F—measurable map (the adaptive dynamics given that A is measured)
The system is called reversible if T/(l exists and is measurable for each A € 0.

For adaptive dynamical systems formula (2) becomes

@) = [ATRR@) = [AG)aP T 0) = [ATopatods = [A0pa (I ) dy @)

The following examples illustrate the diffeences between formula (2) [passive] and (4) [adaptive].
Example (Common features) . In a box there are N objects. On each of these objects one can measure two binary
{%1}-valued observables A, B, so that the set of observables is

O :={(Ay),(By):n=1,2,...,N}
and one can choose the configuration space to be
Q:={+1}" = {functions @ : {1,...,N} — {#1}}

Example (Passive) . The objects are macroscopic balls and the observables A, B are:

Ay := the color of the n—th ball (n=1,2,...,N)

B, := the weight of the n—th ball (n =1,2,...,N)

It is possible to conceive an apparatus such that a measurement of weight does not alter color and conversely.
Therefore in this case it is reasonable to use formula (2).

Example (Active) . The objects are electrons and the observables A, B are:

A, := the spin of the n—th electron in directiona (n =1,2,...,N)



B, := the spin of the n—th electron in direction b (n = 1,2,...,N)

where a, b are vectors in 3—dimensional real space.

The spin of an electron in direction x (x = a, b) is defined in terms of the electron’s response to a magnetic field in
direction x (cf. [FeynLeSa66]).

Thus a question like: “what is the value, at time t, of the electron spin in direction b if at time t I have measured its
spin in direction a?” has the same meaning as the question “what is, at time t, the color on the leaf of a chameleon of
which we have measured the color on the wood? (to make a full analogy with electrons, we have to postulate that the
box contains an equal number of healthy and of mutant chameleons and that a mutant chameleon becomes brown on
the leaf and green on the wood). It is clear that, in this case, one has to use formula (4).

VON NEUMANN’S MEASUREMENT THEORY

Let us rephrase, following [4], von Neumann’s measurement theory so to make it neutral with respect to classical or
quantum physics.

Consider a dynamical system S (say, a particle) with state space S5 and an apparatus A with state space Sy;. The
state space of the composite system will then be

Q:=8s xSy

According to von Neumann’s measurement theory a measurement of the system S by means of the apparatus A will be
described by a reversible dynamical system

T :Q=S8Ssx Sy — Q=S5 xSy (5)
If time is discretized such a dynamics is described by a single map

T:Q=S8Ssx8Sy—Q=S8sxSu (6)
The preparation of the experiment is described by a probability measure P on Q = Sg X Sy

P € Prob (Q) = Prob (S x Sy) ™

because a preparation is needed both for system and apparatus.

LOCAL CAUSAL MEASUREMENTS

The two additional requirements of:

(i) locality
(ii) causality
were not discussed by von Neumann. Following [4], let us introduce these notions in von Neumann’s measurement
scheme. For reasons of space, we only recall the main definitions without explanaining why they effectively are the
mathematical expression of locality and causality. For this we refer to [4], [7].

Consider a classical dynamical system composed of two particles (1,2) with state space S, S, respectively and
two apparata A, A, with state spaces M1, M, respectively.

The state space of the composite system will then be

QZS[XSQXM[XMQ (8)

According to von Neumann’s measurement theory a measurement of the system(1,2) by means of the apparatus
(A1,A») is described, in discrete time, by a reversible dynamical system

T:Q—Q 9)
and the preparation of the experiment is described by a probability measure P on Q

P € Prob (Q) (10)



Definition 3 A dynamics T on the state space Q, given by (8), is called local if it has the form T =T @ T, where

T[IS[XM|—>S|XM1 (11)
TQISQXM2—>SQXM2 (12)

are dynamics. This means
Ti ®T2(G],l],62,3,2) =T|(G|,l|)T2(62,A,2) , O] ES[,A[ EM[,O’Q ESQ,AQEMQ (13)

Definition 4 A probability measure P on the space
Q=281 X8 x M x M (14
is called local and causal if it has the form
P(doy,doa,dA1,dAy) = Ps(doy,dos)Pi(01,dA1)Pr(02,dAs) (15)

where
— Ps(doy,doy) is a probability measure on S X Sy
— Pi(01,dAy) is a positive measure on My for all 61 € S
— Py (02,dA,) is a positive measure on My for all 6, € S
Such a probability measure is called trivial if one has (Ps—a.e.):

. Pl(Gl,dll)Zl (16)
M,

Py(0r,dA) =1 (17)
M,

Remark The distinction between trivial and non trivial local, causal probability measures was first pointed out
in [6] where it is proved that, using trivial probability measures it is impossible to violate Bell’s inequality. All the
no—go theorems for local hidden variables are based on the implicit postulate that a local causal probability measure
is necessarily trivial. The probability measure used in the EPR—chameleon experiment is local causal but non trivial.
In [7] it is described a general method to construct examples of non trivial, local, causal probability measures on the
space (8).

VIOLATION OF BI WITH FULL EFFICIENCY, NO REJECTION OF PARTICLES, NO
POST-SELECTION

This section is devoted to the discussion of the following question: “Can we build a natural physical intuition,
entirely based on classical physics and in full agreement woth the locality principle, of the EPR correlations?”’

We anticipate the answer to this question, which will emerge from the analysis below. The answer is: Yes, if we
understand the mechanism through which adaptive dynamical systems subject only to local interactions, can
produce non classical statistics (such as the EPR correlations). This is precisely the chameleon effect: it gives a
simple, intuitive picture of how local interactions may alter global statistics thus showing that the implicit mathematicl
assumption in Bell’s analysis (a single probability space to describe mutually incompatible experiments) is physically
untenable.

In order to be more precise let us first of all state the problem.

We will deal exclusively with clasical systems composed of two particles (1,2) and two apparata (M, M), which
measure binary observables, S((II) , Séz)), ..., labeled by indices a, b, . . . and called “spin” to emphasize the analogy with
the EPR type experiments.

The apparata can make local independent choices among these labels and we use the notation (M, M}) to mean that
apparatus M has made the choice a and apparatus M, the choice b.

We fix the notations and the assumptions of section (). In these notations a state of the global system is specified
by a quadruple (07, 02,A1,42) where (0, 02) describe the particle degrees of freedom and (A;,A;) the apparatus’



ones. These parameters specify tha state of our classical deterministic (reversible) system in the usual sense of phase
space, i.e. they are a minimal set of observables whose knowledge at a given time #g fully determines the values of all
other observables in all times, after or before #y. These could include observables such as position, momentum, spin,
polarization, . .., but their specific nature will not be relevant for the discussion that follows.

The causality principle requires that (o7, 02) do not depend on (a,b), because the particle cannot anticipate the
choice of the apparata. The locality principle requires that A; (resp. A;) does not depend on b (resp. on @) because one
apparatus cannot know the choice of the other one. But of course A; may depend on @ and A, on b (if I have to measure
spin in direction a, I will prepare a magnet in that direction).

The locality principle also requires that the only admissible constraints between the two particles should come
from conservation laws (such as the singlet law) and not from direct or mediated interactions and that the interaction
between apparatus M, (resp. M3) on particle 2 (resp. 1) are negligible (cf. [4] or [6] for a mathematical formulation).

The “large spacial separation” between the two particles and the two apparata is useful to assure that this condition is
verified with very good approximation even in a non relativistic theory and not by chance played a crucial role in both
the EPR and the Bell arguments. Any experiment, claiming to be relevant to the EPR problem, should convincingly
argue that this condition is verified (the reader familiar with recent experiments made with particles very close to each
other, or even constrined by various kinds of traps, will surely understand the motivation of this caveat).

Since in classical dynamical systems any probability measure is a convex combination of d—functions, what just
said for exact preparations also extends to statistical preparations and leads to the local causal structure described by
formula (15) (cf. [7] for more details).

(1) , 52

For each pair of particles, the experimentalists measure a pair of observables (S, ’,S;”). A crucial condition is
that each measurement is done on the same pair, otherwise it makes no sense to speak of conservation laws. In
other words, the empirical correlations are conditioned on the event that the measurement has been performed on two
particles belonging to the same pair.

The two experimentalists agree in advance that each of them will make M measurements. After that, they have to
join the collected data so to calculate the empirical correlations

We suppose that the two experimentalists are in widely separated laboratories and that they cannot follow the trajectory
of the single particles.

In these conditions, how can they join the data being sure that two, independently done measurements acted
on particles of the same pair?

The usual answer to this question (and apparently the only viable one, at the moment) is that the two experimen-
talists sincronize their clocks and decide that two particles belong to the same pair if and only if they are detected
simultaneously. In particular the formula, used in all the EPR type experiments including the EPR—chameleon one, for
the the empirical correlations is (cf. [8]):

Nyi(a,b)+N__(a,b)—Ni_(a,b) —N_1(a,b)
Nyi(a,b)+N__(a,b)+Ny_(a,b)+N_4(a,b)

(18)

where N, (a,b) is the number of measurements of type (M,, M;,) which gave the simultaneous result (+,+) (and
similarly for the others). Notice that this formula makes sense only for coincidences, so that the the denominator is the
total number os simultaneously detected pairs.

Now we will introduce several very strong idealizations and we invite the reader to check that, each time one drops
one of them, thus making the model more realistic, the number of time coincidences will decrease, thus making our
conclusion stronger.

We suppose that both experimentalists have ideal detectors, with no accidental losses, no spurious counts, no
blind times. In other words absolutely all particles of all pairs, and only them, are detected and no errors are
done in the measurement of the observables.

We want to prove that, even under these unrealistically strong constraints, the chameleon effect can guarantee
a violation of the Bell’s inequalities in full respect of locality.

The argument exploits the phase space picture of the dynamics of the measurement process and goes as follows:
The state of the global system at time ¢ is

o(t) := (01(1),0a(t), M1(t), A2(2))



The detector is made up of two parts, corresponding to the two measurements:
D= (Dy,D3)
By the locality principle D only reacts to the varaibles (o (¢),A1(¢)) and D, only to (02(2), A2(t)) so that:
D(w(t)) = (Di(01(t), M(t)), D2(02(1), A2(1)))

We can also add (and we will assume this in the following) the additional constraint that the two functions are identical
(i.e. that the two detectors are perfectly equal):

DI(GaA)ZDQ(GaA’):DO(GaA’) 5 VG,A/

There is a waiting time between the emission of the particle and the triggering of the detector. This means that the
detector is activated when the phase space trajectory of the subsystem (1,M) (resp. (2, M>)) hits a certain activation
region (or “window”), denoted A and depending only on Dy (so that it is the same for the two detectors). When
the phase space trajectory of the subsystem hits the activation region, the particle is absorbed and the detector is
instantaneusly (no blind time) ready for a new count. Let us denote

ta(o1(-),M(-)) 5 (resp. ta(o2( - ), A2( )

the first hitting time of the activation region A along the tajectory (o7 (1), A1(¢)) (resp. (02(2), A2(2))).

We postulate that the probability of a simultaneous arrival, in the activation region, of two or more particles from
different pairs either in the same detector or in two different ones, is zero. Moreover we require that the hitting time
for each sub—trajectory is finite (i.e. that before or later each particle activates the detector):

0<IA(61(-),A|(-))<+0° ) (resp. 0<IA(62(-),A,2('))<+°°)

Under these assumptions no particle is lost or artificially rejected.

These conditions are trivially implementable in any discrete time model (in particular in the EPR—chameleon model
of [6]) and in the corresponding simulation. By interpolation this implementation can be carried over to continuous
time.

In these notations the detector functions can simply be written in the form:

Di(01(1), M (1)) = xa (01 (1), 1a(1))S8” (01 (1), A (£))

D(02(t), (1)) = xa(02(1), 22(1))SE (02(1), Ao (1))

where ya(x) is zero if x ¢ A and 1 if x € A. This means that the detector does nothing until # becomes equal to the

first hitting time of A (along the given sub—trajectory). When this time is reached, it gives the correct value of Sgl)

(resp. Séz)) at that moment. At this time the measurement process stops and the apparatus becomes ready for the next
pair. [There is no problem in introducing a blind time between two consecutive detections. If this is smaller than the
emisssion time between two consecutive pairs, then no particle is lost. This more realistic assumption allows to avoid
a discontinuity in the detector function.]

At this point the chameleon effect enters crucially into the play: because of it the local dynamics depend on the
choice of the measurement. Therefore, corresponding to the choices (M,, M},) one will have:

(01(1), (1)) = T;(01(0),41(0))
(02(1), A2(1)) = T;(02(0), A2(0))

where T, T/ are the local adaptive dynamics. This means that the two hitting times may be different (cf. the figure
below) and, when this happens, the experimentalists will not detect a coincidence.

Conclusion: the early insistencde of quantum probability ([2], [3]) on the fact that every probability is a conditional
probability, is just a theoretical formulation of everyday experimental practice and does not require that any particle is
lost or artificially rejected.



THE SITUATION WITH QUANTUM NON LOCALITY

Let us summarize the the status of quantum non locality at the light of the four new ideas introduced by quantum the
probabilistic approach in the the foundation of QM (some of these critique ideas have now been stably accepted in the
foundation debate):

(1) the discovery that the Bell inequality belongs to the wider family of “two-slit type inequalities” and the
individuation of the common probabilistic root of all these inequalities [2].

(i1) the notion of “statistical invariant” and the first example of a statistical invariant for a quantum model (the
two-slit type inequalities are partial statistical invariants for the Kolmogorov model) [1].

(iii) the information-theoretical axiomatization of probability classical and quantum) and the first (apparently the
only one, at the moment) mathematical deduction of the quantum model from physically plausible axioms [Ac82c],
[Ac95a].

(iv) the mathematical formulation of the theory of adaptive systems (chameleon effect) [4] and the experimental
proof that adaptive systems can violate Bell inequalities by local interactions [6], [7] and without rejection of particles
(cf. section () below) .

The common probabilistic root of the “two-slit type inequalities” and of “Bell type inequalities” is the implicit
assumption, in both cases, that the statistical data, coming from three mutually incompatible experiments, can be
described by a single classical (Kolmogorovian) probabilistic model. The experimental data, in both cases, contradict
this assumption.

Once made explicit this implicit assumption, the problem becomes: is it true that classical physics, starting from the
same conditions of quantum physics, i.e. mutually incompatible experimental preparations, cannot reproduce the EPR
statistics in full respect of the locality principle?

Stated otherwise: is the emergence of non Kolmogorovian statistics a specific feature of the quantum world or it is
a deeper, more general phenomenon, of universal applicability?

The analysis of [4], schematically summarized in section () shows that the classical physics of adaptive systems can
produce non Kolmogorovian statistics, not as a consequence of artificial, ad hoc models, but of a general principle
which should be included in any serious theory of (classical or quantum) measurement. This principle was baptized
“the chameleon effect”.

The general analysis of [4] was substantiated in a concrete model in the paper [6] (in [7] some notational misprints
in the proof were corrected) and the simulation of this model on independent classical computers provided an
experimental proof of the local nature of the model.

The conclusion to be drawn from the above considerations is that Bell’s analysis, which is correct when applied
to passive systems, is wrong when applied to adaptive systems, where the chameleon effect plays a crucial role.
Furthermore, it is wrong for fundamental reasons, not for complicated and artificial mechanisms.

The conclusion of this analysis is that:

the present experimental data cannot distinguish between quantum non locality and an underlying classical,
deterministic chameleon effect.

A POSSIBLE LOOPHOLE TO SAVE QUANTUM NON LOCALITY

The analysis of section () is based on the idea that the local interactions with the apparata induce local modifications
of the phase space trajectories which alter the global statistics of coincidences and produce non Kolmogorovian
correlations.

Now let us imagine (or dream) a situation in which, in the notations of section (), all the phase space trajectories,
for all possible choices of the spin directions a, b, hit simultaneously the activation window of the two apparata. In
this case the conditioning on coincidences will be trivial because all pairs give a coincidence. Therefore the intuitive
picture of section (), explaining the emergence of non Kolmogorovian correlations, would not be applicable.

In fact it is not necessary to have 100% coincidences: a sufficiently high percent is all what is needed to exclude the
EPR correlations.

From the point of view of classical physics this is impossible, because different interactions will have generically
different hitting times while the above situation would imply that all the hitting times are equal, independently of the
interactions, with the exception of a small percent.

This is a very weird behavior, but can one exclude it in principle? Of course not. The only thing that we can say is
that at the moment there is neither experimental evidence of such an unplausible behavior nor any theoretical argument



which suggest a plausible scenario for such an occurrence.

But let us even suppose that in the future such a behavior will be effectively detected or such a scenario — proposed.
Would this invert the present situation, where quantum nonlocality is totally unnecessary with respect to the classical
physics alternative?

Again the answer should be not, because the discussion of section () is only one possible intuitive picture of the
emergence of non Kolmogorovian correlations and there is no proof that this interpretation is the only one compatible
with the mathematics of adaptive systems.

On the contrary, and this point seems to have been underestimated by some people although it was already empha-
sized in [6], the model constructed in that paper contains no assumptions at all on coincidences, conditioning,
.... As the reader can check looking at () this matematical model is just a classical deterministic, reversible, adaptive,
local dynamical system reproducing the EPR correlations.

Summing up: the present experimental data are perfectly compatible with the locality principle and the supporters
of quantum non locality have yet a long way to go if they want to find arguments which appeal to scientific rationality
rather than to mutual consensus.

THE CONSPIRACY OF DETECTORS: WHY A QUARTER OF CENTURY OF
SILENCE?

What later was called “the detection loophole” was first considered in an article by Pearle in 1970 [29], possibly
anticipated by some comments due to Shimony et al. in 1969 [14]. The main idea of this paper is well expressed by its
title (Hidden-variable example based upon data rejection) and by the words of the author:

If “... the experimenter rejects these data (in the belief that the apparatus is not functioning properly and that, if it
had been functioning properly, the data recorded would have been representative of the accepted data) .... ”, then a
local hidden-variable model for the EPR correlations can be built.

Pearle’s paper is surely mathematically correct, although somewhat involved, however it is a fact that, from 1970 to
the early 1990’s (i.e. after more than ten years of insistence, from the QP—approach on the role of conditioning), the
paper by Pearle, although well known to the experts, is hardly ever quoted.

It is difficult to undertand if the meticulous care with which the experimentalists, after 1970, discuss the efficiency
problem and compare the counts with and without polarizers (cf. e.g. [8]) is an indirect trace of the influence of this
paper or if comes from other sources.

Certainly the “data rejection” argument would suggest that the denominator in (18) depends on a,b and this
dependence was carefully checked in the experiments with the surprising result that no trace of such a dependence was
found. This was interpreted as an evidence in favor of the fact that the experimental data were “a fair sample”, i.e. in
Pearle’s words: “representative of the accepted data”.

A second objective fact is is the exponential explosion, in the period from 1970 to the early 1990’s, of publications
on the Bell inequalities: not only from authors supporting Bell’s non locality statement, but also from fierce opponents
supporting other statements such as the nonvalidity of QM, ... .

A third objective fact emerging from the published literature is that neither side considered Pearle’s proposal as
a serious alternative. If they had, one should expect that the majority of physicists should have concluded against
quantum non locality, namely: ... let us wait for more efficient detectors before abandoning such a fundamental
notion as locality ... . After all Pearle even gave an estimate of how efficient the detectors should be to prevent his
“data rejection” argument: 86%.

A fourth objective fact, easily documented from the existing literature, is that exactly the opposite happened: a large
majority of very good physicists, without taking into serious consideration Pearle’s proposal, were convinced that the
experimental evidence was in support of Bell’s analysis Why this possibility was discarded ? Why such a silence
for so many years?

I believe that the best answer to this natural question can be found in the final remarks of Pearle’s 1970 paper where
he explicitly and fairly declares that:

“... it is difficult to take this hypothesis seriously as a physical principle capable of extension to a large group
of phenomena ...”

In 1981 Bell made a list of the four alternative possibilities that he conceived as possible outcomes of the challenge
mentioned in section () ([10], Sect. 8: “Envoi” [the boldface is not in the original text])

“... First ... quantum mechanics must be wrong in sufficiently critical situations ...



... Secondly ... it is not permissible to regard the experimental settings a and b in the analyzers as independent
variables ...

... Apparently separate parts of the world would be deeply and conspiratorially entangled and our apparent free will
would be entangled with them. ...

... Thirdly ... to admit that causal influences do go faster than light.

... Fourthly ... there is no reality below some “classical” “macroscopic” level.

It is quite plausible, although difficult to prove or disprove, that the second alternative refers to the “data rejection”
hypothesis. Bell’s comment on it is a clear indication of his feelings: the idea that two random inefficiencies, in
two widely separated and independent apparata, should always (i.e. in thousands different measurements) be so
“conspiratorially entangled” to reproduce always the same result (i.e. exactly the EPR correlations), seemed to be
so absurd and implausible that for more than 20 years nobody found it fruitful to investigate further this possibility.

An additional reason of the diffidence generated by the “data rejection” idea is that Bell’s challenge was a principle
and conceptual one, pointing to a principle contradiction between the two basic theories of contemporary physics.
Pearle’s proposal was not of a principle nature, but contingent to the efficiency level of detectors in a given time.

Moreover this alternative did not open new perspectives with respect to the Bell alternative, discussed in section ().
In fact the already quoted statement in [29]: “... the experimenter rejects these data (in the belief that the apparatus is
not functioning properly and that, if it had been functioning properly, the data recorded would have been representative
of the accepted data) .... ”, when applied to the EPR correlations, brings beck to the already mentioned Bell alternative,
namely:

(1) the experimenter’s “belief” is correct. But in this case the rejection procedure is useless because, without
rejection, one would find the same statistics which, according to Bell’s analysis, if experimentally confirmed, implies
non locality.

(i1) the experimenter’s “belief” is not correct. But in this case the rejection procedure is a falsification of the real
statistics. Consequently the agreement would not be between a local hidden variable theory and QM, but between an
arbitrary deformation of a local hidden variable theory and QM. Since, by arbitrarily rejecting empirical data one can
cook any type of relative frequencies, this result is not particularly interesting.

EFFICIENCY AND THE CHAMELEON EFFECT: THE REBIRTH OF THE
ORTHODOX INTERPRETATION

As shown in the previous section, the “inefficiency loophole” fell into oblivion for decades because it was not able to
provide a convincing physical intuition of what was behind the quantum correlations. It was perceived as an ad hoc
stratagem rather than (to use again Pearle’s words) “... a physical principle capable of extension to a large group of
phenomena ...”.

It is precisely this natural physical intuition, this general “physical principle capable of extension to a large
group of phenomena’ that was provided by the idea of adaptive system, symbolized by the chameleon [4].

To illustrate what is new, in the chameleon effect, with respect to the data rejection hypothesis let us begin with
a contemporary formulation of this hypothesis given in the paper [23]: “... The detection loophole is based on the
following fact: in real experiments the efficiencies of the detectors are such that the number of detected events is
significantly smaller that the set of tested quantum systems.

One has to assume that the sample over which the statistics is measured is a fair sample. ...”

This is a rephrasing of the already twice quoted statement of Pearle and shows how remarkably stable has been the
interpretation of this hypothesis in more than 30 years.

Starting from this statement let us show how the notion of “fair sample” turns out to be the key one to distinguish the
new, quantum probabilistic intuition from the classical (Kolmogorovian) one. This notion has a standard interpretation
since centuries: if in a box there are 1 << N balls and of these 3/4 are green and 1/4 are brown, a “fair sample”
of this system is a set of 1 << M << N balls of which approximately 3/4 are green and approximately 1/4 brown.
If, instead of a single observable (color) we consider several observables (color, weight, material, ...), labeled with
indices a, b, c, ... and denoted S,, Sy, S, . . . respectively, then we can extend the above definition by considering joint
properties. The corresponding joint relative frequencies constitute the common preparation of the experiment, denoted
C. Since the act of measurement does not change the prepared values (passive systems), denoting M,, M, M., ... the
event that we measure property a, b, c, ... respectively, one has:

P(Sq = s4|My) = P(Sq = 54|C)



where s, denotes any value of S,. This situation of a single common conditioning corresponds to the uniqueness of the
probability space.

Suppose now that in the box there are adaptive systems and that only one observable at a time can be measured
(incompatibility). The observables are now response observables and they have to be understood in the sense: if I will
interact with the apparatus M, my response will be s,. In this case the preparation of the ensemble will be described
by the conditional probabilities

P(Sq = 541My)

but now there is no necessity, neither logical nor physical, that these conditional probabilities are compatible with
a single conditioning. Yet the experimental measurements can be completely “fair”, in the sense that they correctly
reproduce the probabilities P(S, = s,|M,) (which are the only observable ones).

Summing up: in the intuition of classical probability (which is the one implicitly underlying the statements of
Bell and followers) “fair sample’ is meant as a synonim of “‘single classical probability space’. In the intuition
of adaptive systems, a sample can be fair without admitting a single probability space description. Since the non
existence of a single probabiity space is the main point of the violation of the various two—slit type inequalities, we
see how the idea of adaptive systems is helpful in building a natural physical intuition of the quantum correlations.

Up to now all what we said is applicable to single as well as to composite systems (e.g. pairs). Now let us come
back to the definition of “efficiency” of a detector in the context of pair measurements.

It is common practice, in the calibration of instruments, to separate random from systematic errors. In view of this,
in the standard definition of efficiency as

___ nr. of coincidences

ny+np

where n; (resp. ny) is the total number of photons revealed by apparatus 1 (resp. 2), it should be made explicit that,
for the parameter 1 to be meaningful, one should filter out from the denominator all spurious counts which have a
deterministic origin (systematic errors).

For example, suppose that two basketball players throw simultaneously a ball, with the same velocity, towards two
vertical tables at equal distance from each of them. Suppose there is a counter with a clock, connected to each table,
and that these counters are used to set up a statistics of coincidences. Suppose that the two players are not equally good
and one of them hits the target, say 1/2 of the times, while the other one always hits the target. Then, if we use the
above formula to measure the efficiency of the detector, we conclude that the combined detector has efficiency (less or
equal to) 1/2 even if all the hits have been counted, i.e. even if the real efficiency is 1.

Experimentalists are well aware of this caveat and give it for granted. Some theoreticians are less aware of this
fact and this has lead to an amusing confusion between chamaleon effect (which is sytematic and deterministic) and
inefficiency of detector (which is what remains when the deterministic effects have been filtered away).

The difference between these two notions is a principle one which can experimentally evidentiated as proved in
section (6) of [6].

PHILOSOPHY OF SCIENCE AND HISTORY OF SCIENCE

Philosophy of science is the modern development of the old “theory of knowledge”. It deals, among other problems,
with the mutual coherence among different levels of description of the natural world (theories). In this sense the
problem of the mutual coherence between QM and relativity, from a principle not only technical point of view has
been for several years one of the core problems of the philosophy of science.

One of the questions, investigated by history of science, is how different parts of the scientific community react to
scientific discoveries and new ideas leading to solutions of old problems.

This is a field where history and sociology of science intersect, sometimes in a really instructive way. In the following
we bring some examples.

Euclid invented non Euclidean geometries, . .. of course

One of the most interesting aspects of new scientific discoveries is that they allow to look from new perspectives to
established results and old ideas.



For example nowadays the date of birth of non Euclidean geometries is generally recognized in Gauss’ intuition
that the geometry of surfaces is intrinsic, i.e. it can be distinguished from flat geometries by means of measurements
not requiring the knowledge of the fact that the surface is or can be embedded into a higher dimensional space.

This intuition was substantiated by Gauss in his “Theorema egregium”:

a+pB+y=2n+xKA

where a, 3,7 are the inner angles of the triangle, A its area and Kk a real constant, now called Gaussian curvature,
which was the first example of geometrical invariant.

This is not only a generalization of the old famous Euclid’s result concerning the sum of the inner angles of a
triangle, but also a radical change of perspective in the consideration of this result. After Gauss’ theorem, Euclid’s
relation

a+pB+y=2n

could no longer be considered a general property of all (physical) triangles but as a compatibility condition among
the inner angles of a triangle which guarantees the possibility of an “euclidean model” for this triangle.

Now let us imagine a modern geometer who, with the hindsight coming from Gauss’ theorem, would argue as
follows:

It is obvious that the non euclidean geometries go back to Euclid. In fact he was the first who wrote a compatibility
condition which gives the necessary and sufficient condition for three given angles to be the inner angles of an
“euclidean triangle”.

It is obvious that Gauss did not discover anything new. People like Mercator were using spherical triangles 300
years before him, to design maps of the earth. And what to say of Pascal, who 200 years before Gauss was already
working with projective geometry, which is the first historical example of a non trivial manifold ...!

None of the episodes recalled in the above statement is false, but who would agree that the above statement is
globally correct?

Any reasonable (and fair) person knows that the (geometric) compatibility conditions, before the “theorema
egregium”, where considered inside a single model. Only after this theorem the conscience emerges that these condi-
tions can be generalized and this generalization used to discriminate between a multiplicity of models.

Similarly, in probability, the compatibility conditions have a long history which begins with the very birth of this
discipline, in the seventeenth century, and culminates with the Kolmogorov consistency theorem, of which all these
compatibility conditions are corollaries.

The situation with the mathematical formalism of quantum mechanics, before quantum probability, was the proba-
bilistic analogue of the use of spherical trigonometry or projective geometry before the birth of noneuclidean geometry:
it was empirically clear that these new models were not fitting with the usual ones, but the precise mathematical for-
mulation of this difference had to wait for centuries in the case of geometry and for decades in the case of probability.

The birth of non Kolmogorovian probability (of which the quantum probabilistic one is a fundamental, but particular
case) begins when:

(1) these “compatibility conditions” are no longer considered as results inside a probabilistic model, but as statistical
invariants, distinguishing the different models. In perfect analogy with what happened in geometry.

(ii) the first example of full statistical invariant for a non trivial (i.e. non Kolmogorovian) model is computed [1].

It is wrong, it is impossible, ... I mean ... it is true and I already knew it

When an old standing open scientific problem is solved the first reaction of a fraction of the academic community is
to say: everything is wrong then, when the theoretical and experimental evidence in favor of the new thesis has become
so large to make it impossible to continue to hide it under the carpet, the same people say: we had always known !

The history of science is full of examples of the above situation, but it is always a source of fun to discover new
ones.

The interested reader, may compare the (present) web page of Reinhard Werner with the following statement, taken
from a letter of Werner to Luigi Accardi of 23 Feb 2001, i.e. about one year before the paper [6] which proves the
statement below to be flatly wrong.

After this comparison (possibly done before a new feed back change), the eventual interested reader can decide by
his/her own if the title of the present subsection is appropriate to the situation or not.



“ ... Regarding locality there are two possibilities now, and the choice is not a matter of taste, but is part of the
physical model, which has to be judged on physical grounds:
(A) The modification of dynamics [due to the chameleon effect (this clause is mine (ILA)] remains local

That is the change of dynamics introduced introduced by Bob’s choice of device does not affect Alice’s part of the
system and vice versa.

Clearly, this will always be only an approximation, but it is often a good one. In fact, it can often be controlled by an
estimate showing that the small interactions present will not suffice to explain are highly significant correlation data.

So if the dynamical change remains local, we can summarize the Level 1 description into a specification of the
Level 0 observables, and these will remain local. Hence the inequalities will hold. ... ”

APPENDIX I: THE EPR-CHAMELEON DYNAMICAL SYSTEM

The EPR—chameleon dynamical system is a local, deterministic, reversible, classical dynamical system reproducing
the EPR correlations. It was first constructed in [6].
In this construction one considers 4 classical deterministic local dynamical system

(1, Ma,2, M) 19)

— 1 and 2 are called particles
— M, and M}, are called measurement apparata
In the following 1,2 will be labels for particles and a, b labels for apparata. We suppose that

a,b €0,27] (20)
— the state space of both composite systems (1,M,) and (2, M}) is
[0,27] xR 21
— therefore the state space of the whole system (1,M,,2,M}) is
[0,27]> x R? (22)

Each of the composite systems (1,M,) and (2, M},) has a local adaptive dynamics

T140,T2p @ [0,27] x R—[0,27] xR (23)
defined by
V2 —a)lA
Tia(01, M) i= (Gl; n'“’s(f' a) ') € [0,27] xR (24)
TQJ,(GQ,AQ) = (0'2, \V2mAy) € [0,27‘[] x R (25)
Notice that the inverse transformation is:
47
T\ (o1, M) := (o1, 26
1a (01, 41) := (01 \/ﬁ|cos(0'1—a)|) (26)
_ A
T, 1(02,42) := (02, \/—2—7[) (27)
For any x € [0, 27], we define the +1-valued maps (observables)
stV 5@ 2 10,27 x R — {£1} (28)

so that, Vo € [0,27] and Vi € R

S&l)(c,u) :Sﬁl)(c) = sgn(cos(0 —a)) (29)



1
sy (0,1) = 5§ (o) = sgn(cos(o — b)) = =5, (0, ) (30)

Sg) is an observable of particle 1; Sﬁz) an observable of particle 2.

Finally we have to give the initial distribution P of the whole system (1,M,, 2, M,).

Since the dynamics T = T, is invertible to give P is equivalent to give P o 7!

Moreover, since the dynamics is local and deterministic, we know that P o T ! is local and causal if and only if P is
such.

We define PoT~! to be the probability measure on [0, 27]? x R:

ps(01,02)p1.a(01, M) p2y(02,A2)do1G2d A d Ay = (31)
1
ES(O’[ - GQ)dO'[dGQ (32)
3,2 312
o ,—— ) —mg)dA 0 ,——) —mp)dA; 33
((0-2 m) m) 1 ((0-2 m) mb) 2 (33)

where m,, my, are arbitrary real numbers and
(0'1 ,0p € [0,27’[] s 11,3,2 S R) (34)

Remark (1) Notice the local structure of the initial probability measure.

ps(doy,doy) is the initial preparation, i.e. at time ¢ = 0, of the composite system (1,2) and, by the causality
principle, it cannot depend on the setting of the apparatus.

In fact at time ¢ = O the particles cannot know which will be the setting of the apparatus at time ¢t = 1 (the first time
of interaction with it).

P1,a(01,dA1) and p; ,(02,dA;) are the initial preparations of the local apparata. They are typical “response—type”
preparations and must be interpreted in the adaptive sense, i.e.:

if, at time ¢ = 1, the particle will arrive to me in the state

ox(= 01,02) (33)
then my contribution to the statistics wil be determined by the factor:
Pix(0xdAy)  (x=1,2) (36)
Theorem

Theorem 1 The above described dynamical system reproduces the EPR correlations, i.e.

/SS) (Tl,a(Gl,M)Séz) (Tr,4(02,42) - ps(01,02)do1d O 37
P1,a(01, M) p2p(02,A2)dAd Ay = —cos(a—b) (38)
Proof . Under our assumptions the left hand side of (38) (i.e. the correlations) become
1=////Sz(zl)(ﬁl)sf)(cz)l?s(cl,Gz)pla(Gl,ll)pzb(cz,lz)dcldﬁzdlldlz= (39)
[ 1
Z//dﬁldGQS;(Gl)Si(O'Q)E 6(61 —0'2) (40)
" 40, > " ( A >
A2 g / s (22 - 41
/ ! <\/27r|cos(c71 —a) " *"\Var " @b
Using the identity

/6(al —m)d = 1/5(/1 ~™yan 42)
a a



one obtains

1= /‘S;(G[)Si(GQ)ﬁ 6(61 — GQ)dG]dGQ . @ |COS(O'1 —a)| . \/2_717: (43)
= % /S;(cl)SQ(clﬂcos(al —a)|do; = (44)

= —;L / sgn cos(o] —u)|cos(o; —a)| - sgn cos(oy] —b)do; = 45)

= _411 /cos(O'I —a) sgn cos(o] —b)do; = —cos(b—a) (46)

There is no artificial post—selection in the assumptions of the theorem (no “cospiracy of the detectors”): only the
chameleon effect plays a crucial role. An experiment realized with classical macroscopic objects (classical computers)
realizes the above mentioned dynamical system.

APPENDIX II: TWO-SLIT TYPE INEQUALITIES

This secion is introduced only because during the conference there was some discussion on the hyerarchy between the
Bell inequality and the CHSH one.

The conclusion is that the BI is more general but to be appliczable to to the EPR correlations requires the
counterfactual argument. The CHSH is a corollary of Bell’s but doen’t require it explicitly.

Lemma 1 For any two numbers a,c € [—1,1] the following equivalent inequalities hold:
latc| <1zac (47)
Moreover in (1) equality holds if and only if either a = +1 or c = %1.

Proof. The equivalence of the two inequalities (1) follows from the fact that one is obtained from the other by changing
the sign of ¢ and c is arbitrary in [—1, 1].
Since for any a,c € [—1,1], 1 £ac >0, (1) is equivalent to

latc|*=a* +c* +2ac < (1+ac)® = 1 +a*c* +2ac (48)

and this is equivalent to
a(1-cH)+c* <1 (49)

which is identically satisfied because 1 — ¢% > 0 and therefore
a2(1—c2)+c2§1—c2+c2:1 (50)

Notice that, in (50), equality holds if and only if a*> = 1 i.e. a = +1. Since, exchanging a and ¢ in (47) the inequality
remains unchanged, the thesis follows.

Theorem 2 For any 4 numbers a,b,c,d € [—1, 1] the following inequalities hold:

|ab—cb| <1—ac (51)
lab+cb| <1+ac (52)
|ab+cb|+ |ad —cd| <2 (53)
|ab+cb+ad—cd| <2 (54)
Proof. For b € [—1,1],
lab+cb|=|b|-|latc|<|atc] (55)

so the inequalities (51) and (52) follow from Lemma (1).
Replacing b by d in (52) and adding this to (51) one finds (53). (54) holds because its left hand side is < than the
left hand side of (53).

Corollary 1 Ifa,b,c,d € {—1,1}, then equality holds in all the inequalities (51), (52), (53), (54).



Proof. The left hand side of (54) is

|b(a+c)+d(a—c) (56)
In our assumptions either (a+ c¢) or (a — c¢) is zero, so (56) is either equal to
|b(a+c)|=la+c|=2 (57)
or to
|dla—c)|=|a—c|=2 (58)
Thus equality holds in (54). Then it must old in (53) because
2=|ab+cb+ad—cd| <|ab+ch|+ |ad—cd| <2 (59)

Therefore it must hold in both (51) and (52) because, if any of these two inequalities is strict, then we obtain the
contradiction:
2=lab—cb|+|ad+cd| < (1—ac)+(1+ac)=1 (60)

Thus the equality sign holds in all the inequalities and this ends the proof.

The Bell inequality

Corollary 2 (Bell inequality) Let A, B,C, D be random variables defined on the same probability space (Q,.% , P) and
with values in the interval [—1,1]. Then the following inequalities hold:

|[E(AB—BC)| <1—E(AC) (61)
|E(AB+BC)| <1+E(AC) (62)
and imply
|E(AB—BC)|+|E(AD+DC)| <2 (63)
|[E(AB—BC)+E(AD+DC)| <2 (64)

where E denotes the expectation value in the probability space of the four variables. Moreover (61) is equivalent to
(62) and, if either A or C has values *1, then the three inequalities (61), (62), (63) are equivalent.

Proof. Theorem (2) implies the following inequalities (interpreted P—a.e. on Q):

|AB—BC| <1-AC (65)
|AB+BC| < 1+AC (66)
|AB—BC|+|AD+DC| <2 (67)

from which (61), (62), (63), (64) follow by taking expectation and using the fact that |E(X)| < E(|X]|) and E(1) = 1.
If (63) holds and A has values £1 then, choosing D = A, (67) becomes

[AB—BC|<2—|14+AC|=2—-1—-AC=1-AC (68)
from which (61) follows by taking expectations. Finaly (62) follows from (61) by changing C into —C.

Theorem 3 Let Sgl) , SEI), Séz) , S‘(f) be random variables defined on a probability space (Q,.7 , P) and with values in
the interval [—1,+1]. Then the following inequalities hold:

st s~ BsUs)| <1 - Ess) (69)
(s~ E(ssPh] <1 EsVs) (70)

and imply
‘E(Sgl)Sf)) —E(SE')S,(f))‘ + ‘E(S&')ng)) +EsOs)] <2 (71)

Proof. The thesis is obtained from Corollary (2) by choosing:

A=s . B=s? ; c=s" ; p=sP (72)



Implications of the Bell’s inequalities

Lemma 2 In the ordinary two—dimensional euclidean plane there exist sets of four unit length vectors a, b, ¢, d, such
that it is not possible to find a probability space (Q, % , P) and four random variables

s s s sy (73)

defined on (Q,.% , P) and with values in the interval [—1,+1], whose correlations are given by:

ESY Py =g, pa-b (74)
E(SY Py =g c-b (75)
ESY - s%) =g, 4a-d (76)
ESY . sP) =g, 4c-d (77)
where
€ab s Ecb s €ad » Ecd €{—1,+1} (78)

are arbitrarily chosen and where, if x = (x1,x2), y = (y1,¥2) are two vectors in the plane, x -y denotes their euclidean
scalar product, i.e. the sum x1y1 +x22.

Proof. Suppose that, for any choice of the vectors x = a, b, c,d as above, there exist random variables S/(vj ) as in the

statement of the Lemma.
Then by Theorem (3) they must satisfy the inequality (71) which, in view of (74), (75), (76), (77), becomes

|£a,ba-b—ec,;,c-b|+|£a,da-d+ec,dc-d| <2 (79)

Factorizing €, , in the first term and ¢, 4 in the second, and denoting €' := &, €. p; € := €, 4€ 4 the above inequality
becomes equivalent to
la-b—¢'c-b|+|a-d+ec-d| <2 (80)

Therefore to prove the statement it will be sufficient to produce four unit vectors x = a, b, ¢, d whose scalar products
violate the inequality (71) for any choice of €, €’ € {£1}.
To this goal we choose a = d so that (80) becomes

la-b—¢€c-b|+|1+ea-c[<2 (81)

If the three vectors a, b, ¢ are chosen to be in the same plane and such that b is perpendicular to ¢ and a forms an
angle 6 with b, as in Figure (1) below,

then the inequality (81) becomes:

|a-b|+|1+€a-c|=]|cosO|+|1+€esinO] = |cosO|+1+€sinb <2 (82)



According to the sign of cos 0 this leads to consider the two functions:

cosO+1+esing = f(6) : O¢ [—%,J%] (83)
. . T
cos(0)+1+€sin(@ —7) =cos(0)+1—¢€sin(0) RS [—5, +5] (84)

itis sufficient to study (83). The derivative of f(8) is zero for7g(0) = € € {£1} and the maxima correspond to positive
cos(0)ie 6 =%

Therefore, for 6 close to +7/4 or to £7/4 — 7, according to the sign of &, the left-hand side of (80) will be close
to 1 + /2 which is strictly larger than 1.

Therefore for such a choice of the unit vectors a, b, ¢, d, random variables Sgl) , Sgl) , Séz), Sglz) as in the statement of
the Lemma cannot exist.

Corollary 3 In the notations of Lemma (1), there exist sets of four vectors a, b, ¢, d, such that it is not possible to find
a probability space (Q,.F , P) and four random variables

(85)

defined on (Q,.F , P) and with values in the interval [—1,41], whose correlations are either of the form (singlet type)

)
E(S,(vl) . §-2)) =—x-y ; X,y =a,b,c,d or of the form (anti—singlet type) E(S,(vl) . §-2)) =x-y ; x,y=
a,b,c,d

Proof. The singlet type would contradict Lemma (1) with
Eab =& p=8&d=Ed= -1 (86)
The anti—singlet type would contradict Lemma (1) with

Eab =& p=E&d=Ed= 1 87)

REFERENCES

1. L. Accardi and A. Fedullo, “On the statistical meaning of complex numbers in quantum theory”, Lettere al Nuovo Cimento,
34, 161-172 (1982), University of Salerno preprint May (1981).

2. L. Accardi, “Topics in quantum probability”, Phys. Rep., 77 pp. 169-192 (1981).

3. L. Accardi, The probabilistic roots of the quantum mechanical paradoxes, In: The wave—particle dualism, S. Diner, G. Lochak,
and F. Selleri (eds.) Reidel, Dordrecht (1984) pp. 297-330.

4. L. Accardi, Einstein-Bohr: one all, in: The interpretation of quantum theory: where do we stand? Acta Enciclopedica, Istituto
dell’Enciclopedia Italiana (1994) pp. 95-115, Volterra preprint No. 174 (1993).

5. L. Accardi and M. Regoli, Locality and Bell’s inequality, in: QP-PQ XIII, Foundations of Probability and Physics, A.
Khrennikov (ed.), World Scientific (2002) 1-28 Preprint Volterra, N. 427 (2000) quant-ph/0007005.

6. L. Accardi, K. Imafuku and M. Regoli, “On the physical meaning of the EPR—chameleon experiment”, Infinite dimensional
analysis, quantum probability and related topics, 5, N. 1, pp. 1-20 (2002), quant-ph/0112067 Volterra Preprint N. 494
December (2001).

7. L. Accardi, K. Imafuku and M. Regoli, Adaptive dynamical systems and the EPR—chameleon experiment, in: Proc. Conf.
“Foundations of Probability and Physics-2”, Vaxjo, June 2-7 (2002), Vaxjo University Press, Ser. Math. Modelling in Phys.,
Engin., and Cogn. Sc., vol. 5 (2003) pp. 11-36.

8. A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett. 49, 91 (1982).

9. P.Ball, Exorcising Einstein’s spooks, Nature 29 November (2001).

10. J.S. Bell, “Bertlmann’s Socks and the Nature of Reality”, Journal de Physique, 42, Colloque suppl. C2, pp. 41-61 (1981).

11. J.S. Bell, On the Einstein Podolsky Rosen Paradox”, Physics, 1 no. 3, pp. 195-200 (1964).

12. G. Brassard, R. Cleve and A. Tapp, The cost of exactly simulating quantum entanglement with classical communication,
quant-ph/9901035.

13. T. Brody, (Springer 1994): Compilation Ed. by De La Pena and P. Hudson Real and imaginary non localit in: Brody T., De La
Pena Nuovo Cimento, 58B, p. 455 (1979), [citato da A. Rizzi].

14. J.F. Clauser, M.A. Horne, A. Shimony and R.A. Holt, Phys. Rev. Letters, 49, pp. 1804—1806 (1969), in: “J. S. Bell, Speakable
and unspeakable in quantum mechanics”, Cambridge Univ. Press (1987).

15. M. Czachor, “On classical models of spin”, Foundations of Physics Letters, vol. 5 n. 3 (1992).



16.

17.

18.
19.

20.
21.
22.
23.
24.

25.
26.

27.

28.

29.

31.
32.

33.
34.

M. Czachor, “On some class of random variables leading to violations of the Bell inequality”, Physics Letters A, vol. 129, n. 5
6 (1988).

W. De Baere and W. Struyve, Subquantum nonreproducibility and the complete local description of physical reality, Preprint
(2001).

W.M. de Muynck, Interpretations of quantum mechanics, and interpretations of violation of Bell’s inequality, Preprint 2001.
W.M. de Muynck, W. De Baere and H. Martens, “Interpretations of quantum mechanics, joint measurement of incompatible
observables, and counterfactual definiteness”, Foundations of Physics, 24, (12) pp. 1589-1663 (1994), Discussed in: [32].
R.P. Feynmann, R.P. Leighton and M. Sands, Lectures on Physics, 1I1l, Addison—Wesley (1966).

L.E. Szabo and A. Fine, A local hidden variable theory for the GHZ experiment, quant-ph/0007102.

R.D. Gill, quant-ph/0301059 Time, Finite Statistics, and Bell’s Fifth Position, Richard D. Gill in: Proc. of “Foundations of
Probability and Physics-2”, Ser. Math. Modelling in Phys., Engin., and Cogn. Sc., vol. 5/, Vixjo Univ. Press (2003) pp.
179-206.

N. Gisin and B. Gisin, “A local hidden variable model of quantum correlation exploiting the detection loophole”, Phys. Lett.
A, 260, pp. 323-327 (1999), Quant-ph/9905018 6 may 1999, version of April, 22 (2001).

K. Hess and W. Philipp, “A possible loophole in the Bell’s theorem and the problem of decidability between the views of
Einstein and Bohr”, PNAS, 98, 25, pp. 14228-14233 (2001).

K. Hess and W. Philipp, “A possible loophole in the theorem of Bell”, PNAS, 98, 25, pp. 14224-14227 (2001).

A.Yu. Khrennikov, Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models, Kluwer
Acad.Publ., Dordreht (1997).

A. Khrennikov, O.G. Smolyanov and A. Truman, Kolmogorov probability spaces describing Accardi models of quantum
correlations, to appear in: Open Systems and Information Dynamics (2004).

T. Miyadera and M. Ohya, On Chameleon effect and Bell’s inequality, communication at the: International Conference:
Quantum Information 2003, mathematical, physical engineering and industrial aspects (ICQIO3IIAS), November, 5-7, (2003),
to appear.

P. Pearle, “Hidden—variable example based upon data rejection”, Physical Review D vol. 2 (8) pp. 1418-1425 (1970).

S. Notarrigo, “A Newtonian separable model which violates Bell’s inequality”, I/ Nuovo Cimento, 83B, (2) pp. 173-187
(1984).

M. Steiner, Towards quantifying non-local information transfer: finite-bit non-locality, quant-ph/9902014.

H.P. Stapp, “Comments on “Interpretation of quantum mechanics, joint measurement od incompatible observables, and
counterfactual definitess”, Foundations of Physics, 24 (12) (1994).

A. Tartaglia, “Is the EPR paradox a paradox?”, Eur. J. Phys., 19, p. 307 (1998).

G. Weigh, T. Jennewein, C. Simon, H. Weinfurter and A. Zeillinger, “Violation of Bell’s inequalitiy under strict Einstein
locality conditions”, Phys. Rev. Lett., 81, pp. 5039-5043 (1998).



