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Abstract 

The paper deals with the description, development and validation of an equivalent FEM element assembly 

suitable for the simulation of very compliant knitted meshes like those used in elastic coatings, deployable 

antennas, medical applications and similar. The assembly is based on a network of lumped springs able to 

reproduce the orthotropic behaviour of the mesh when stretched along two directions. The parameters of 

the model have been identified by experimental tests using a dedicated biaxial testing device. The model has 

been implemented for two different types of tests in order to assess the validity for both in-plane and out-

of-plane displacements. The matching between numerical results and experiments is very good and the 

differences are bounded below 6% for deformations up to 50%.      
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Introduction 

Due to the increasing interest in smart materials, the role of very compliant knitted meshes is gaining an 

important attention in many different fields. A generic mesh is made of several knits, repeated in an ordinate 

and periodic structure. Knits may or may not present symmetries. Each knits is comprised of yarns of different 

pattern. These types of structure are increasingly used in different applications. For example, metallic knitted 

meshes can be used in the development of sensors and antennas [1]. Elastomeric meshes can be used for 

improving bandages [2], surgical devices [3] or biomedical coatings [4]. Mixed elastomeric and fabric meshes 



can be used as technical [5] or smart cloths [6]. In all these applications, it is important an accurate 

assessment of the elastic properties of the materials since they highly influence the performance of the final 

product. In most of the cases, due to the particular knitting pattern, the elastic behaviour is nonlinear and 

orthotropic and the meshes undergo very large displacements with consequent large deformations and 

rearrangement of all the internal knits. The characterization of these properties is not a simple task. In most 

of the cases, they are assessed with mono-axial stretching tests [7]. Due to the specific behaviour of the 

meshes [8], in some other cases, bi-axial test machines have been used [9-10]. The main difficulties in these 

measurements are represented by the very low global stiffness and very large displacement of the meshes 

that require specific modifications of the standard testing equipment. Moreover, due to the compliance of 

the knitting pattern, the clamping system may introduce boundary stiffening effects which alter the elasticity 

assessment [11].  

The complete assessment of the elastic properties is mandatory for the setup and characterization of a 

reliable mathematical model able to simulate and predict the complex behaviour of the mesh. Such a model 

can be useful for design purposes and optimizations.  

An analysis of the scientific literature reveals that the research has been mainly focused on fabric meshes. In 

many cases, the research is aimed toward an efficient model for simulating the dynamics of the garments 

but there is not a systematic approach to identify the physical parameter of the model [12-16]. Most of the 

investigations are focused on computationally efficient models which can yield a realistic behaviour not 

completely suitable for an engineering point of view. Furthermore, fabric meshes are subjected to lower 

stretching deformation and the achievement in modelling such component is often not suitable for very 

compliant behaviour.   

Other papers, more focused on engineering point of view, present more complex mathematical models of 

the mesh suitable for finite element implementation [17-19]. Some of them introduce interesting plate or 

laminate elements [20], which include material nonlinearities [21] and, in some cases, even geometrical 

nonlinearities [22]. The contribution of geometrical nonlinearities appear fundamental in meshes undergoing 

very large deformations due to the important deformation of the knits [23-24].  



In order to be suitable for engineering purposes, all these models have to be characterized by the 

identification of all their physical parameters. In general, complex plate elements are difficult to be 

characterized due to the interdependence of their parameters and it is not simple to take into account both 

material nonlinearity and geometrical deformation of the knits. For this purpose, some authors have 

proposed physical models made of lumped springs [25].  The advantages of these approaches are: 

 Model simplification; 

 Easy parameter identification; 

 Little computational effort required also for the case of large models. 

 Capability to introduce non-linearities on the stiffness properties of the lumped springs. 

As mentioned before, the measurement devices and protocols and the related mathematical models cannot 

be directly applied to very compliant mesh with a very low-stiffness. Many authors have proposed 

mathematical formulations based on the characterization of a plate element with specific material 

properties. This approach allows to include material nonlinearity, but neglects the geometrical nonlinearities 

due to the rearrangement of the knits [17].  

Starting from this background, the purpose of the paper is to discuss a novel mathematical model suitable 

for finite element method implementation and aimed to describe the structural elasticity of a very compliant 

mesh. The model is identified through experimental measurements on a metallic mesh, performed on a 

custom-made testing machine. The machine can perform bi-axial tests while limiting the effect of boundary 

clamping. 

The paper is organized as follows. In a first part, the mathematical model of the mesh element assembly is 

introduced. Then, the experimental setup and measurements are discussed presenting typical 

force/displacement plots for very compliant metallic mesh. In a subsequent section, examples of applications 

and validation are presented focusing on the direct capability to successfully simulate out-of-plane 

behaviour.                 

 



Mathematical model 

The proposed model of a mesh is depicted in Figure 1. It includes four boundary nodes (1, 2, 3 and 4), four 

mid-side nodes (5, 6, 7 and 8), which are symmetrically connected by several spring elements. Ten springs 

account for the compliance along the main x and y directions (five springs for each direction). Four other 

springs are oriented diagonally and their contribution to the horizontal and vertical stiffness depends on their 

attitude angle (i.e. the ratio between x and y projections, angle   later in the paper). This arrangement 

portrays both generic compliance and non-linear geometrical behaviour due to the alignment of the fibres 

during the deformation. Following this approach, the element assembly is independent from the actual 

knitting pattern, but it can be suitable for describing a variety of possible solutions after the identification of 

all the elastic parameters.  

 

Figure 1. The proposed basic element assembly for the description of the knitted mesh 

 

The element assembly is symmetric, thus the independent stiffness parameters to be identified are the 

following: 

Hk  is the stiffness parameter of the elements along the horizontal direction (5 elements); 



Vk  is the stiffness parameter of the elements along the vertical direction (5 elements); 

Tk   is the stiffness parameter of the elements along the diagonal direction (4 elements); 

The deformation of the element assembly is characterized with the following four quantities: 
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    atan 1 , 1H H V Vl l      is the internal angle (attitude of the transverse springs) measured from 
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All the stiffness parameters can be identified by means of experimental biaxial-tests according to the 

procedure discussed in the following section. 

 

Experimental tests on the knitted mesh 

The experimental tests on different types of meshes have been performed with a custom made equipment, 

which has been designed and assembled in the department laboratory (Figure 2). The device includes a frame 

in which a portion of mesh can be mounted. The mesh is grabbed using adjustable hooks and each edge can 

slide within very low-friction rolling guides. The equipment is able to apply an enforced and independent 

displacement along x and y directions of the mesh and measure the corresponding resisting forces. The 



displacement is applied trough a wire and pulleys system connected to two stepper motors. Loads are 

measured by means of four load cell extensometers. The equipment is also controlled and monitored by a 

computer unit in order to apply the programmed testing conditions, manage the data logging and storage. 

 

Figure 2. The experimental bi-axial test rig 

The equipment is able to test different size of mesh from 10X10 mm to 400x400 mm and can produce large 

displacements (up to 400 mm each direction). If different types of mesh with different load capacity need to 

be tested, different load cells and a new calibration of the device is required. For the purpose of the paper, 

the investigation focuses on metallic meshes.  

Although the equipment is fully programmable, three types of tests have been performed on the meshes 

(see schematics in Figure 3). All the measurements start with an applied preload in both x and y directions 

able to reduce the vertical inflexion to 1/50 of the length of the mesh.  

The first two measurements are the controlled stretching along x and y directions, keeping the opposite one 

fixed. The enforced displacement consists of fixed-step increments performed slowly (about 1 mm per 

second) in order to avoid dynamic contributions. Both x and y reaction forces are collected during the 

measurements.  



The third measurement is the simultaneous controlled stretching along x and y directions, with equal and 

fixed-step increments. Again, both x and y reaction forces are collected during the measurements.     

 

Figure 3. Schematics of the three tests performed on the mesh 

The results of the tests can be plotted as surface graphs considering the deformations in x and y directions 

as the independent variables ( H  and V ) and the forces as the dependent one. Figure 4 reports an example 

of these graphs for a metallic knitted mesh.  

 

Figure 4. Force/deformation relationships for a metallic mesh. Blue dots are the experimental acquisitions; 

colour surface is the biquadratic surface approximation. Both refers to the first two types of measurement 

(stretching with constrained opposite direction). Horizontal force HF , for an horizontal stretching  is 

plotted on the left and vertical force VF  for a vertical stretching on the right. The anisotropic behaviour of 

the mesh is clearly visible.  



It can be observed that all the force/displacement relationships can be approximated by a biquadratic surface 

of the form ( ib  are the interpolation coefficients): 
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Errors in the approximation using biquadratic surface are within 3% and 5 % of the maximum load. 

Starting from the knowledge of the force functions ( , )H VF F   ,  it is possible to compute the stiffness 

functions by differentiation. In particular, the differential of the HF  (horizontal force) and VF  (vertical force) 
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HD  and VD are the horizontal and vertical displacements, respectively; 

ijK  is the generic stiffness function relating the direction of force and displacement. 

All functions stiffness/deformation are properly described by bilinear surfaces. Figures 5 and 6 show 

examples of the computation of these interpolation functions for the forces depicted in Figure 4. The 

interpolated surfaces have been compared to the experimental measurements obtained with incremental 

load application.  



 

Figure 5. HHK  (on the left) and VVK (on the right) stiffness/deformation relationships for a metallic mesh. 

Colour surfaces are obtained by differentiation according to Eq. (3) and the blue dots are the corresponding 

experimental acquisitions.  

 

 

Figure 6. VHK  (on the left) and HVK (on the right) stiffness/deformation relationships for a metallic mesh. 

Colour surfaces are obtained by differentiation according to Eq. (3) and the blue dots are the corresponding 

experimental acquisitions. According to the property of symmetry of the stiffness parameters the two 

functions are very close. 

From an experimental point of view, the VHK  and HVK  stiffness/deformation relationships may be 

computed with the third series of measurement involving the simultaneous controlled stretching along x and 

y directions, with equal and fixed-step incrementdD  (third type of measurement of Figure 3). In this case, 

the Eq. (2) can be written as: 
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Where the ,HH ISOK  and ,VV ISOK are the stiffness/deformation relationship measured with the simultaneous 

controlled stretching along x and y directions.  

The unknown values can be then computed as: 
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According to Eq.(5), the VHK  and HVK  can be computed by the subtraction between the stiffness 

parameters computed with the simultaneous x and y displacements and those computed by single direction 

displacements.  

 

Identification of the element assembly parameters 

The identification of the parameters Hk , Vk  and Tk  can be performed through the processing of the 

measurements obtained during the experimental tests. 

The test equipment is able to monitor the global increment of reaction forces ( HF   and VF ) of the mesh 

along the two main directions when incremental displacements ( HD  and VD ) are applied. Due to the 

symmetry of the mesh knitting, the incremental forces ( Hf  and Vf ) and displacements ( Hd  and Vd ) 

applied to the assembly can be computed as follows: 
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where 
0HL and 0VL  are the global horizontal and vertical length of the entire mesh, respectively. 

Similarly, the stiffness coefficients of a single element assembly are related to the stiffness coefficients of the 

global meshes by the same constant ratio /l L  of the corresponding direction.  

Considering a displacement increment Hd along the horizontal direction, we can write the balance of the 

forces in the assembly as: 

  22 2 cos
2

2 sin cos
2

H
H H H T

H

H
V T

d
f k d k

d
d

f k



 


    

  
   



       (10) 

For a displacement increment Vd along the horizontal direction, we can write: 
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Extracting the stiffness coefficients in both (10) and (11) we can write: 
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 Eq. (12) can be rearranged in a matrix form and then solved as: 
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Model Validation 

Three tests of validation have been performed by implementing and solving two different numerical models 

using ANSYS finite element computer program.   

The first one is about a planar rectangular mesh (see Figure 7), stretched in both x and y directions.  The mesh 

is composed of 400 element assemblies (20 each side) and the rectangular shape is obtained by a ratio

0
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Figure 7. Numerical finite element model for the validation of the proposed method with a rectangular 

mesh of 400 element assemblies. 

The numerical results have been compared to the corresponding experimental measurements performed at 

the bi-axial machine of Figure 2, in terms of horizontal and vertical forces. The results of the comparisons are 

reported in Figure 8. 

 

 



 

Figure 8. Comparison between numerical and experimental results on the rectangular mesh in terms of HF  

and VF . The surfaces with smaller facets and thinner edges are those obtained by the numerical model and 

those with larger facet and bold edges are obtained by the measurements.  

 

It can be noticed a satisfactory agreement for the entire range of stretching, both for linear and non linear 

ranges. Moreover, the not uniform behaviour along the two stretching directions is also well approximated. 

Maximum error is within the range of 5-6 %. 

A second validation test has been performed in order to investigate the behaviour of the model in presence 

of an out-of-plane displacement. It is about a fully three dimensional mesh, loaded with a rigid hemisphere 

in the middle (see Figure 8) [26-27]. 

 

Figure 8. Validation of the proposed method considering out-of-plane displacement. The experimental 

measurement (on the left) and the corresponding numerical model (on the right) 

The results of the model have been compared with those coming from a specific experimental campaign 

performed on a different device. The mesh is now rigidly fixed at the base to a frame. A spherically shaped 

rigid body is connected by means of a rigid wire to a mono-axial testing device able to acquire the 



force/displacement relationship (Figure 9). In particular, hemispheres with two different radii (25 and 35 mm) 

have been used in the tests. 

Only the reaction force of the sphere perpendicular to the plane of the mesh have been measured and 

compared. Figure 10 reports the comparison between the results of numerical model and those from 

experiments. In all the numerical tests, friction has been neglected. It is meaningful to observe that the two 

sets of results are very close, especially for large displacements where the differences are lower than 1%. In 

the range of small displacement, there are some differences probably due to the initial stabilization of the 

mesh and slip with friction of the knits.  Numerical results are consistent with measurements. 

 

   

Figure 9. The experimental setup for testing the out-of-plane displacement of the knitted mesh. 



 

Figure 10. Comparison between simulated and measured reaction forces on the hemisphere for the 

validation of the out-of-plane behaviour of the knitted mesh. 

 

Conclusions 

A node-spring finite element assembly for describing the elastic behaviour of a knitted mesh has been 

presented. The proposed model is able to describe the nonlinear orthotropic behaviour of the mesh with a 

limited complexity. The model includes a collection of four boundary nodes, four internal nodes and 14 

springs. Thanks to the specific arrangement of the springs, the model is also able to take into account the 

geometrical stiffening effect, typical of the deformation of the knits. A methodology for the identification of 

all the model parameters has been also discussed focusing on a custom made biaxial testing device designed 

for the specific purpose. The low-complexity of the model facilitate the implementation and solution of large 

finite element simulation with a good computational efficiency. The model has been characterized and 

assessed for a metallic mesh, considering both in-plane stretching and out-of-plane displacements. The 

consistency between numerical simulations and experimental tests is feasible for engineering purposes. Due 

to the typology of the model, it is also suitable for being applied to composite or elastic meshes with non-

linear structural stiffness. The parameters of such model can be identified using the same biaxial testing 

machine but choosing a different force-displacement interpolation surface. 
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