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A simple and robust event-detection algorithm for
single-cell impedance cytometry

F. Caselli, P. Bisegna

Abstract—Microfluidic impedance cytometry is emerging as a
powerful label-free technique for the characterization of single
biological cells. In order to increase the sensitivity and the
specificity of the technique, suited digital signal processing
methods are required to extract meaningful information from
measured impedance data.

In this work, a simple and robust event-detection algorithm for
impedance cytometry is presented. Since a differential measuring
scheme is generally adopted, the signal recorded when a cell
passes through the sensing region of the device exhibits a typical
odd-symmetric pattern. This feature is exploited twice by the
proposed algorithm: first, a preliminary segmentation, based
on the correlation of the data stream with the simplest odd-
symmetric template, is performed; then, the quality of detected
events is established by evaluating their E2O index, that is, a
measure of the ratio between their even and odd parts.

A thorough performance analysis is reported, showing the
robustness of the algorithm with respect to parameter choice
and noise level. In terms of sensitivity and positive predictive
value, an overall performance of 94.9% and 98.5%, respectively,
was achieved on two datasets relevant to microfluidic chips with
very different characteristics, considering three noise levels.

The present algorithm can foster the role of impedance
cytometry in single-cell analysis, which is the new frontier in
“Omics”.

Index Terms—single-cell analysis, impedance cytometry, event
detection, odd-symmetry, correlation.

I. INTRODUCTION

S INGLE cell analysis will be critical in the future in a va-
riety of applications with extremely high socio-economic

impact, including early cancer diagnosis, pharmaceutics and
food analysis. However, a simple and cheap, yet high per-
formance, single-cell assay system is presently lacking. Stan-
dard methods like flow-cytofluorimetry-based assays require
complex equipment, costly fluorescent labeled antibodies and
skilled technicians. In the last two decades, microfluidic
impedance cytometry has emerged as a simple and label-
free alternative approach, exploiting electrical techniques to
provide cell characterization on the basis of differences in size
and dielectric properties [1].
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Fig. 1. Schematic diagram of a single-cell impedance analysis system. The
device consists of two sets of parallel facing electrodes fabricated inside a
microfluidic channel. AC excitation signals are applied to the top pair of
electrodes, and the difference in current flowing through the bottom two
electrodes is measured using a differential amplifier. Cells suspended in an
electrolyte flow through the microchannel one at a time, so that the circuitry
can determine the AC electrical properties of single cells.

The schematic and the working principle of an impedance
cytometer are illustrated in Fig. 1 [4]. Two pairs of parallel
facing microelectrodes are integrated into the wall of a fluid-
filled microchannel. An AC, possibly multifrequency, excita-
tion signal is applied to the top electrodes, and the differential
current flowing through the bottom electrodes is measured
by means of a differential amplifier. The output signal is
demodulated by a lock-in amplifier giving the in-phase and
out-of phase components for each frequency. Individual cells,
focused on the microchannel axis by means of sheath flow or
dielectrophoretic forces [5], [6], flow sequentially through the
microchannel. When a cell passes through the electrode region,
a variation of the differential signal is recorded, which exhibits
a typical odd-symmetric pattern (Fig. 2(a)). In fact, when the
cell passes position A, it begins to pose an hindrance to the
current drained by the left bottom electrode. Such an hindrance
is maximal when the cell is aligned with the center of the left
electrode pair (position B), where the signal peak amplitude is
recorded. The signal then progressively decreases and reaches
zero when the cell is in the middle of the sensing region
(position C), which corresponds to a symmetric configuration.
Past position C, a specular and reversed profile is recorded.
The overall profile is well described by means of a bipolar
Gaussian function [2]. Different electrode patterns can give
rise to bipolar profiles deviating from the Gaussian shape.
In particular, in case of the multi-electrode chip depicted in
Fig. 2(b) [3], a bipolar Mexican-hat profile is observed. In
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Fig. 2. Idealised differential signal seen when a particle focused on the
microchannel axis passes through the sensing region of the device. (a)
Standard four-electrode chip (e.g., [2]): the differential impedance signal
exhibits a bipolar Gaussian profile. (b) Multi-electrode chip [3]: the differential
impedance signal exhibits a bipolar Mexican-hat profile.

fact, when the cell passes position A, it initially offers an
hindrance to the current drained by the leftmost grounded
electrode, thus facilitating the current drained by the adjacent
measuring electrode.

For cells in a highly conductive fluid, multi-frequency mea-
surements in the radio-frequency range (100 kHz – 10 MHz)
give multiparametric, high-content data that can be used to dis-
tinguish cell populations. At low frequencies (below 500 kHz),
the cell membrane, exhibiting a capacitive behaviour, offers
significant barrier to current flow and the signal amplitude
reveals the cell size. At intermediate frequencies (around
1 MHz), membrane polarization is reduced, and the signal
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Fig. 3. Impedance cytometry data at 0.5 MHz (courtesy of University of
Southampton), real part shown. (a) A portion of the data stream. Two events
are highlighted with a box, and zoomed in (b) and (c). Signal-to-noise ratio
is SNR = 22 dB in (b) and SNR = 5 dB in (c).

conveys information about membrane capacitance. At high
frequencies (above some MHz), the membrane is minimally
polarized, and measurements give information about cyto-
plasm conductivity and permittivity [1].

Recent work using microfabricated systems has demon-
strated the capability to analyze micro-organisms [7], [8],
erythrocytes [9], [10], leukocytes [11], platelets [12], and
animal and human cell lines [13], [14], [15], [16]. However,
microfluidic impedance cytometry has not yet reached full
maturity, since sensitivity, specificity and throughput still need
to be improved to cope with the most demanding applications.
In this regard, effort has focused on fabricating novel designs
of micro-device and developing new detection techniques (e.g.
[17], [18], [19], [20]), but there has been little attempt at
developing ways of extracting meaningful data from measured
signals using signal processing [2].

The first step in impedance cytometry data processing is
the event detection, that is the identification of a cell passing
through the sensing region of the device (Fig. 3). This step
provides the total cell count and is critical to the further
steps of feature extraction and classification. A reliable event-
detection strategy is especially important in case that rare cells
(e.g., circulating tumor cells) or small cells (e.g., platelets)
have to be detected.

Event detection represents an essential step in many biomed-
ical signal processing applications, such as QRS complex
detection [21], electrogram event detection [22], detection
of rapid-eye movements in sleep studies [23], heartbeat and
respiration detection [24], pulse peak determination in digital
volume pulse waveforms [25]. Accordingly, many different
methods have been developed, which most often rely on some
peculiar feature of the application at hand.

In the available literature on impedance cytometry, the event
detection is usually performed with proprietary algorithms or
custom-built programs, and quantitative performance analysis
is not reported. Frequently, simple peak-finding approaches
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are adopted [26], [27], [28], which however require a suitable
threshold choice, whose setting can be critical, and suffer
from sensitivity to noise, so that a preliminary denoising step
is often needed. A wavelet-based event detection has been
adopted in [12]. In [2] an approach has been described that
uses correlation of the signal with a bipolar Gaussian template
depending on three parameters (transit-time, peak width and
peak amplitude), whose optimal values were fitted with ref-
erence to beads of two different sizes. In general, the fitting
template may vary due to chip electrode configuration, which
influences the shape of the bipolar profile (e.g., Gaussian vs
Mexican-hat profile), or flow rate and cell off-centering, which
determine the transit-time. Extreme cell off-centerings can also
induce an altered shape (e.g., bipolar M-shaped profiles [29],
[30]). Finally, for non-spherical cells, the signal profile may
be affected by cell orientation [3].

In this paper, a simple and robust event-detection algorithm
is presented, which fruitfully exploits the odd-symmetric na-
ture of the measured differential signal. The algorithm acts in
two steps: a preliminary segmentation is followed by an event-
quality check. The segmentation is based on the correlation
of the data stream with the simplest odd-symmetric template,
which emphasizes the odd-symmetric structures present in the
data stream; the quality of a detected event is then established
by evaluating its E2O index, that is, a measure of the ratio
between its even and odd parts. If such an index is too high,
the event is rejected.

The paper is organized as follows: the algorithm is described
in Section II, performance evaluation is reported in Section III,
and conclusions are drawn in Section IV. A Matlab script
generating synthetic impedance cytometry data is provided as
supplementary material to the interested Reader.

II. ALGORITHM DESCRIPTION

A. Segmentation

The frequency channel with the best signal-to-noise ratio
(SNR) is selected for the segmentation. The relevant signal,
comprising an in-phase (real) and out-of-phase (imaginary)
component, is denoted by s.

1) Cross-Correlation: In order to emphasize the odd-
symmetric structure typical of an event (Fig. 4(a)), the cross-
correlation c of the signal s with the odd-symmetric template
h depicted in Fig. 4(b) is computed, that is,

c = s⊗ h , (1)

with

h[n] =

 1 n = −L , . . . ,−1 ,
0 n = 0 ,
−1 n = 1 , . . . , L .

(2)

The half-length L of the template h is chosen as discussed in
Section II-A3. An event is characterized by the appearance of
a three-peak feature in the modulus |c| of the correlation signal
(Fig. 4(c)). In order to obtain a one-peak feature (Fig. 4(e)),
the signal |c| is cross-correlated with a Gaussian template of
standard deviation σg = L/2 (Fig. 4(d)), that is,

b = |c| ⊗ g , (3)
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Fig. 5. Peak finding. (a) Recorded data stream comprising three events: event
A is relatively small, events B and C are close to each other. The real part
of the signal at 0.5 MHz is shown. (b) After cross-correlation, modulus and
smoothing, events A, B and C are singled out by peak finding.

where

g[n] = exp (−n2/(2σ2
g)) , n = −L , . . . , L . (4)

The smoothed counterpart b of signal |c| is then aligned with
the original signal s.

2) Peak detection: The events are singled out from signal
b by peak finding (Fig. 5). In particular, the local maxima
pi exceeding a given threshold bth, and their locations Ci,
are provided by the Matlab function findpeak. Events ei are
defined by

ei[n] = s[Ci + n] , n = −L , . . . , L . (5)

An effective choice of the threshold bth, not requiring any in-
formation on signal amplitude, is given by a suitable percentile
bP of the samples of b. In order to avoid sensitivity loss, the
relevant percentage P is chosen to be lower than the expected
overall percentage of signal samples not interested by events
(with usually adopted dilutions, a value of P around 90–95%
is expected). Even lower values of P may be safely adopted in
case of very noisy signals, high specificity being guaranteed
by the event-quality check (Section II-B). The percentile ranks
ri of local maxima pi, to be used in Section II-A3, are also
recorded.

3) Template-length selection: The odd-symmetric template
h is maximally effective at emphasizing a bipolar event,
provided that its length is matched to the event length. The
latter is given by the product of sampling frequency fs and cell
transit-time T along the measuring zone, which is the ratio of
measuring-zone length l and cell-velocity v, i.e. T = l/v. In
turn, cell velocity depends on velocity profile and cell position
within the cross-section. Assuming laminar flow and steady
state conditions, cells flowing along the channel axis have the
highest velocity, vmax, that can be easily computed from the
flow rate and the channel dimensions [31]. Accordingly, the
minimum transit-time is

Tmin = l/vmax . (6)
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Fig. 4. (a) Example of signal recorded when a particle passes through the sensing region of the device shown in Fig. 2(b) (0.5 MHz excitation frequency).
Both real sR and imaginary sI parts exhibit a bipolar Mexican-hat profile. (b) The simplest odd-symmetric template h. (c) Modulus of the cross-correlation
signal c, exhibiting a three-peaks feature. (d) Gaussian smoothing template g. (e) Smoothed counterpart b of signal |c|, characterized by only one peak.
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Fig. 6. A measured event e (SNR = 6 dB) along with its even and odd parts,
eE and eO, respectively, upsampled at a rate R = 4. The relevant E2O index
is sufficiently small (E2O = 0.31), testifying the odd-symmetric pattern.

In order to catch fast (centered) as well as slow (off-centered)
cells, the segmentation steps described in Sections II-A1 and
II-A2 are therefore repeated by adopting the half-lengths of
the following set:

L ∈ ⌈fsTmin × (1.0, 1.1, 1.2, 1.5, 1.9, 2.4, 3.0)/2⌉ . (7)

Here cell velocities are assumed to be spread in the range
[vmax/3, vmax], and ceil brackets denote rounding to upper
integer. In case of bipolar Mexican-hat profiles, Tmin in (6)
is preferably computed by referring to the reduced length
l′ ≈ 3l/5 (Fig. 2(b)), thus leaving out the two extremal zones
where the signal sign is opposite to that of the adjacent main
peak, though the full length l is adopted for the event-quality
check (Section II-B).

Repeating the analysis with several template half-lengths
may lead to multiple detection of the same event. Therefore,
the overall event collection {ei} is further processed as fol-
lows: if two events em and en are closer than a small tolerance
∆, i.e. if |Cm−Cn| ≤ ∆, only the one with higher percentile
rank r is retained. The tolerance ∆ is not critical, e.g. 30% of
the sum of the events half-lengths is appropriate.

B. Event-quality check: the E2O index

In order to reject false positives, the quality of the detected
events is assessed. To this end, the events are preliminarily
cleansed of the local baseline. Then, for each event e (the i-
subscript being omitted for ease of notation), the even and odd
parts are computed

eE =
e+ + e−

2
, eO =

e+ − e−

2
, (8)

where e− and e+ denote the left and right portions of the
event with respect to its center

e−[n] = e[−n] , e+[n] = e[n] , n = 0 , . . . , L . (9)

In order to check the event quality, the following index is
introduced

E2O =
||eE||
||eO||

, (10)

where || · || denotes the Euclidean norm of the enclosed vector.
Any sampling error on the computation of the E2O index may
be reduced by preliminarily upsampling eE and eO.

Due to typical odd-symmetric pattern, the even part eE of a
true event is expected to be small with respect to its odd part
eO, thus yielding a small value of the E2O index. Conversely,
a large value of the E2O index reveals a false positive, thus
prompting event rejection. As shown in Section III, a threshold
TE2O = 0.4 is effective.

As an example, Fig. 6 shows an event e (SNR = 6 dB) along
with its even and odd parts, upsampled at a rate R = 4.
The relevant E2O index is sufficiently small (E2O = 0.31),
testifying the odd-symmetric pattern of a true event.

III. PERFORMANCE EVALUATION

The performance of event-detection algorithms is evaluated
on the basis of the fraction of false positives and missed events.
In particular, sensitivity and positive predictive value are
usually taken as metrics (e.g., [24], [23]). In order to carry on a
quantitative assessment of the latter, a ground truth is needed.
Unfortunately, no impedance cytometry dataset with labeled
events is publicly available. A gold standard signal processing
method is not available either. On the other hand, manual an-
notation by an expert technologist, besides being a tedious and
time-consuming task, therefore limiting the number of events
analyzed, is also prone to errors and subjectivity. In order to
achieve an objective and reproducible performance analysis, in
this work effort has been devoted to build reference datasets
of synthetic impedance cytometry data, which reproduce with
high fidelity experimentally measured data (Section III-A).
The Matlab script developed for data synthesis is provided as
supplementary material for the interested Reader, as a resource
for developing and testing novel digital signal processing
methods for impedance cytometry.
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A. Data description

Two datasets relevant to microfluidic chips with very differ-
ent characteristics have been built. Dataset 1 reproduces data
reported in [2], whereas Dataset 2 mimics data measured in
the framework of the DIMID FP7 Project [3].

1) Dataset 1: The experimental data shown in [2] have
been acquired with a 20 µm × 20 µm channel equipped with
two pairs of parallel-facing electrodes (Fig. 2(a)). Electrodes
width w and spacing s were 20 µm both, yielding a measuring
zone length l ≈ 100 µm. Polystyrene beads of 5.49 µm or
7.18 µm diameter were measured at 0.5 MHz, and the in-phase
(real) part of the relevant differential signal was reported, with
sampling frequency fs = 1 kHz. In correspondence with the
passage of a bead, the signal exhibited a bipolar Gaussian
profile well described by the following function of time t [2]:

f(t) = A(eg1(t) − eg2(t)) , (11)

with

g1(t) = − (t/δ + 1/2)2

2(σ/δ)2
, g2(t) = − (t/δ − 1/2)2

2(σ/δ)2
. (12)

In the previous equations, δ is the peak-to-peak transit-time,
the ratio σ/δ is a shape parameter governing the peak width,
and A controls the amplitude. The optimal fitting parameters
were δopt = 20 ms, (σ/δ)opt = 0.18, Aopt = 12.4 mV, for the
5.49 µm diameter bead, and δopt = 20 ms, (σ/δ)opt = 0.275,
Aopt = 32.1 mV, for the 7.18 µm diameter bead (Ref. [2],
Figure 5). For the given geometry, a transit-time of 20 ms
yields a bead velocity of 2 mm/s.

By adopting equation (11), a synthetic data stream contain-
ing about 1500 events was generated. Half of the events were
built using the parameters of the 5.49 µm bead, the other half
using the parameters of the 7.18 µm bead. In particular, for
each of the two populations, a normally distributed amplitude
A with mean value Aopt and standard deviation 0.3Aopt
was considered. The event transit-times δ were generated by
considering a laminar velocity profile [31] with peak-value of
2 mm/s (yielding a flow rate ϕ = 0.023 µL/min), and assum-
ing a normally distributed off-centering with zero mean and
standard deviation 30% of channel size, along each transversal
direction. Finally, a normally distributed shape parameter σ/δ
with mean value (σ/δ)opt and standard deviation 0.02 was
used.

For each population, a concentration of 400 particles/µL
was considered. Denoting by c the overall concentration, the
average number of events per sample of data stream was
λ = ϕ c/fs = 3.1× 10−4 sample−1. In order to generate the
event locations, occurrence of the cell counts was assumed
to be a Poisson process [32]. Accordingly, the sequence
of inter-arrival times is exponentially distributed with mean
1/λ ≈ 3300 samples. The expected fraction of coincidences
(i.e., two cells simultaneously present in the sensing region)
is approximately given by ν ≈ c V , where V is the volume
of the measuring zone. With the present settings it turns out
ν ≈ 3.2%. A slightly higher value ν = 4.5% was obtained in
the synthetic data, due to variability of particle velocities.

Additive white noise was imposed, with standard deviation
σN = 1 mV, which mimics the experimental data in Figure 5
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Fig. 7. Examples of synthetic events. (a) SNR = 22 dB and (b) SNR = 6 dB.

TABLE I
2D-GAUSSIAN DISTRIBUTION OF (COMPLEX) EVENT AMPLITUDES: µ,

MEAN VALUE; α, SLOPE OF LARGEST EIGENVALUE OF REAL AND
IMAGINARY PART COVARIANCE MATRIX; σR , STANDARD DEVIATION OF
REAL PART; ρ, REAL AND IMAGINARY PART CORRELATION COEFFICIENT.

µ [mV] α σR [mV] ρ

RBCs −8.22− 2.65i 0.316 3.47 0.846
Beads −7.70− 3.17i 0.460 2.33 0.784

of [2]. Noise level was amplified while testing the algorithm
(see Section III-B2).

2) Dataset 2: The data were collected at the University
of Southampton by Prof. H. Morgan’s group. Microfluidic
channel dimensions were 40 µm × 40 µm. Multiple parallel-
facing electrode-pairs were integrated into the channel [3], as
in Fig. 2(b). The electrode width and spacing were w = 30 µm
and s = 10 µm, respectively, yielding a measuring zone length
l ≈ 200 µm. The excitation frequency was 0.5 MHz, whereas
the sampling frequency was fs = 57.5 kHz. The analyzed
sample consisted of a mixture of red blood cells (RBCs)
and 6 µm diameter polystyrene beads, dispersed in phosphate
buffered saline. For each population, real and imaginary peak
amplitudes relevant to about 3500 events were fitted with
a 2D-Gaussian distribution (Table I). The events exhibited
bipolar Mexican-hat profiles, whence a reference template was
obtained by averaging, upon rescaling to the same amplitude
and duration.

A synthetic data stream of about 1500 events was then
generated assuming a flow rate of 20 µL/min and a concen-
tration of 50 particles/µL (both for beads and RBCs). Event
transit times and locations were generated as for Dataset 1.
Event amplitudes were drawn from the distributions reported
in Table I. Corresponding scaled copies of the reference
template were adopted to generate event profiles. A fraction
of coincidences ν = 4.2% was observed in the synthetic data.

Additive white noise affecting both the in-phase and the
out-of-phase signal components was imposed, with standard
deviation σN = 1.7(1 + i) mV mimicking the experimental
data. Noise level was amplified while testing the algorithm (see
Section III-B3). In the recorded data, a wandering baseline b
was also present, which is well described by

b(t) = q +mt , (13)

with off-set q = (0.15 − 0.3i) mV and slope m = (−6 +
12i) µV/s. That baseline has been imposed to the synthetic
data stream.
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Fig. 8. Mean value and two-sigma confidence bound of E2O index relevant
to (false) events caught in a white noise stream, for different template half-
lengths.

As an example, Fig. 7 shows two syntectic events, with (a)
SNR = 22 dB and (b) SNR = 6 dB.

B. Results

1) Preliminary examination: Before testing the algorithm
on the two aforementioned datasets, a preliminary investiga-
tion has been conducted to assess the algorithm performance
with respect to noise and parameter choice. As metrics, sen-
sitivity (S) and positive predictive value (PPV) were adopted,
defined as:

S =
TP

TP + FN
, PPV =

TP
TP + FP

, (14)

where TP, FN and FP are the number of true positives, false
negatives, and false positives, respectively.

First, a data stream containing no events, consisting of
white noise with uncorrelated real and imaginary parts, has
been processed. Template half-lengths L ranging from 5 to 45
samples were adopted. The segmentation procedure described
in Section II-A caught some (false) events, whose E2O index
statistics are reported in Fig. 8 as a function of L. Though
the cross-correlation with odd-symmetric templates h tends to
favor E2O index values lower than 1, a mean value higher than
0.7 is found for L > 15. Even shorter template lengths, that
may catch nearly odd-symmetric patterns randomly occurring
in short sequences, provide a mean E2O index greater than
0.55. This result does not significantly depend upon noise stan-
dard deviation, number of samples in data stream and centile
percentage. Since true events are generally characterized by
smaller values of the E2O index due to their odd-symmetric
pattern, false events caught by the segmentation procedure
(Section II-A) can be rejected by means of the quality check
procedure described in Section II-B.

Second, a data stream containing 170 equal-amplitude
bipolar-Gaussian events, generated according to equation (11),
was processed under several noise levels. The shape parameter
of the events was that of the 5.49 µm diameter bead in [2].
Event durations and locations were built as in Dataset 1.
Coincidences were purged out from the data stream. Different

TABLE II
SENSITIVITY AND POSITIVE PREDICTIVE VALUE.

Noise S[%] PPV[%] S∗[%] PPV∗[%]

1× 96.8 98.6 99.5 99.3
Dataset 1 2× 95.9 98.6 98.7 99.2
ν = 4.5% 3× 93.7 98.7 96.6 99.2

1× 97.0 98.2 99.7 98.9
Dataset 2 3× 95.6 98.2 98.3 98.8
ν = 4.2% 5× 90.6 98.5 93.1 99.1

Mean 94.9 98.5 97.7 99.1

algorithm parameter settings were investigated. In particular,
centile percentages P ranging from 90% to 99.9%, and thresh-
olds TE2O ranging from 0.25 to 0.75 were considered.

Fig. 9 shows algorithm sensitivity and PPV for SNRs of 5,
10, or 15 dB as a function of P and TE2O. As expected, PPV is
favored by low values of TE2O. For all considered noise levels
and centile percentages, TE2O ≤ 0.5 yielded full PPV. On the
other hand, sensitivity is favored by high values of TE2O and
low values of P . For SNR = 15 dB and SNR = 10 dB, TE2O ≥
0.25 provided full sensitivity at P ≤ 95%, whereas TE2O ≥ 0.4
was needed for SNR = 5 dB. In the range 0.4 ≤ TE2O ≤ 0.5,
the value of P is by no means critical, because for P ≤ 95%
sensitivity and PPV are independent of P .

2) Test on Dataset 1: The algorithm was then tested
on Dataset 1. With the reference noise level (σN =
1 mV), the statistics of the event SNRs turned out
to be SNR = 15.6± 3.4 dB for the 5.49 µm beads and
SNR = 24.5± 3.0 dB for the 7.18 µm beads. As a matter of
fact, the method gives a good SNR, because the energy in the
excitation signal is concentrated at discrete frequencies and the
lock-in amplifier rejects all other noise sources [2]. However,
in order to simulate worse conditions, the standard deviation of
the noise was amplified by a factor 2× or 3×, thus decreasing
the mean SNR value by 6 dB or 9.5 dB, respectively.

According to the results of the preliminary investigation,
a centile percentage of 90% along with an E2O threshold
of 0.4 were selected. Table II reports sensitivity and positive
predictive value, for the three considered noise levels. The
values obtained by purging out the coincidences from the data,
denoted by S∗ and PPV∗, are also reported for comparison.

3) Test on Dataset 2: Finally, the algorithm was tested on
Dataset 2. With the reference noise level (σN = 1.7(1 +
i) mV), the statistics of the event SNRs turned out to be
SNR = 23.4± 4.6 dB for the RBCs and SNR = 23.2± 3.0 dB
for the 6 µm beads. The standard deviation of the noise was
amplified by a factor 3× and 5×, in order to simulate worse
conditions.

As in the previous case, a centile percentage of 90% along
with an E2O threshold of 0.4 were selected. Table II reports
sensitivity and positive predictive value, for the three noise
levels, along with the values obtained after purging out the
coincidences.

C. Discussion
Impedance cytometry is emerging as a powerful and ef-

fective tool for single-cell analysis. A great effort is presently
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Fig. 9. Sensitivity (S) and Positive Predictive Value (PPV) as a function of algorithm parameters (centile percentage, P , and E2O index threshold, TE2O),
for different noise levels (SNR = 5, 10, 15).

being devoted to the identification of the most sensitive designs
and technologies. However, along with hardware enhancement,
software enhancement is required. There is the need for
robust yet simple signal processing methods, able to effec-
tively extract high-content information from measured data.
In particular, the first processing step, pivotal to the following
ones, is the event detection.

The original event-detection algorithm proposed in this
work enjoys a number of valuable features. First of all, the
algorithm is not strictly dependent on an event profile-shape,
which in turn depends on factors like chip configuration, or cell
off-centering and shape [30], [3]. Instead, event odd-symmetry
is exploited, which is the common feature among different
chips/cells, as long as a differential measurement scheme is
adopted. Few parameters are involved in the algorithm, whose
setting is non-critical. Preliminary denoising is not required.
Algorithm implementation is quite simple and computational
complexity is limited. As an example, the analysis of Dataset
1 required about 50” for each noise level, with a non-
optimized Matlab code running on a Intel Core i7-4930K
CPU@3.40GHz processor with 16 GB RAM.

The performance analysis of the algorithm showed very
good sensitivity and positive predictive value. The latter
metrics can be further improved by limiting the number of
event coincidences, e.g. optimising the process parameters
(cell concentration, flow rate, sensing volume) or by using hy-
drodynamic or inertial focusing [33], [34]. On the other hand,
ad hoc coincidence-detection and feature-extraction algorithms
could also be pursued.

To the best of Authors’ knowledge, for the first time
in digital signal processing of impedance cytometry data a
rigorous performance analysis has been presented, and two
synthetic datasets, accurately mimicking experimental data,
have been provided. One feature of experimental data which
is not accounted for in the synthetic data is the correlation
between cell off-centering and cell amplitude/shape, which,
however, should have no impact on the algorithm performance.

Absolute measurement schemes, instead of differential ones,
are sometimes adopted in microfluidic impedance cytometry

(e.g., [8]), generally yielding even-symmetric event patterns.
The proposed algorithm may be adapted to those situations
by replacing the odd-symmetric template h with a rectangular
window, and exchanging the role of the even and odd parts in
the quality check procedure.

The present version of the algorithm uses only one fre-
quency channel. In case more than one channel is available,
inter-channel correlations could be exploited.

The algorithm can be also source of inspiration for other
fields, where odd-symmetric (or even-symmetric) event pat-
terns can be expected.

IV. CONCLUSIONS

A simple and robust event-detection algorithm suited to
impedance cytometry data has been presented. The algorithm
profitably exploits the odd-symmetric feature of the measured
profile, arising from a differential measurement scheme. Very
good overall performances are achieved (94.9% sensitivity and
98.5% PPV). Further work will be devoted to coincidence
detection strategies.
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