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Abstract Due to its crucial role in pathophysiology,
erythrocyte deformability represents a subject of in-

tense experimental and modeling research. Here a com-

putational approach to electro-deformation for erythro-

cyte mechanical characterization is presented. Strong

points of the proposed strategy are: i) an accurate com-
putation of the mechanical actions induced on the cell

by the electric field, ii) a microstructurally-based con-

tinuum model of the erythrocyte mechanical behavior,

iii) an original rotation-free shell finite element, espe-
cially suited to the application in hand. As proved by

the numerical results, the developed tool is effective and

sound, and can foster the role of electro-deformation in

single-cell mechanical phenotyping.

Keywords Electro-deformation · Maxwell stress
tensor · erythrocyte mechanics · homogenization ·
finite elements · corotational formulation

1 Introduction

The mechanical properties of cells have been shown to

be useful markers of cell state by the biophysics commu-

nity. In particular, there is growing evidence that cell

deformability may provide a label-free biomarker for de-
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termining e.g. metastatic potential, degree of differen-
tiation, or cell activation [16]. Within the cell mechan-

ics literature, the erythrocyte or red blood cell (RBC)

is probably the most studied cell type. As discussed

in [15], this prominent role is ascribable to the simple

structure of the erythrocyte, which is essentially a bi-
concave liquid capsule enclosed by a membrane, as well

as to the importance of RBC deformability in patho-

physiology. In fact, erythrocyte deformability is crucial

to microvascular function and becomes altered e.g. in
malaria, sickle cell anemia, diabete mellitus, and car-

diovascular disease [30].

Because of the increased interest in cell mechanics

and its relation to pathology, a range of approaches

have been developed for single-cell mechanical pheno-
typing (see, e.g., the reviews [32,44,1] and the refer-

ences therein). Among them, microfluidic techniques

are especially attractive, due to their potential for auto-

mated and high-throughput analysis [28,54]. In particu-
lar, electrically-induced cell deformation in microfluidic

systems is receiving increasing attention and has been

successfully applied to the mechanical characterization

of protoplasts [52], mammalian cells [40], cancer cell

lines [11,29], erythrocytes [20,21], and platelets [36].

In order to identify the optimal design of an as-

say for single-cell mechanical characterization, as well

as in order to assist the interpretation of experimental

results, an important role is played by modeling and

simulation strategies. In particular, in case of electro-
deformation systems, they can provide i) an accurate

estimate of the mechanical forces induced on the cell

by the electric field, and ii) the consequent deforma-

tion on the basis of the cell mechanical behavior. In [52,
40,21], field-induced actions were estimated by resort-

ing to the Clausius-Mossotti factor under the effective

dipole moment assumption, whereas the more general
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Maxwell stress tensor approach [46] was adopted in [11,

36]. In those papers, the actual deformed configuration

of the cell was not fully accounted in the computation of

field-induced actions. Moreover, simple phenomenologi-

cal models were adopted to describe the cell mechanical
behaviour. In particular, elastic models based on the

Young modulus [11,36] or the shear modulus [21], and

viscoelastic standard linear solid or power law models

[40] were considered.

With respect to erythrocyte mechanical behaviour,

refined microstructurally-based constitutive models are

available in the literature, taking into account the prin-

cipal mechanical constituents of the RBC, i.e., the lipid

membrane and the underlying spectrin network. De-
tailed modeling of RBCs at the spectrin level [18,37] is

much limited by the high computational cost, and sev-

eral mesoscopic coarse-grained models have been devel-

oped to improve computational efficiency [24]. Micro-
structurally-based models have been applied to simu-

late micropipette aspiration [18], optical tweezers ex-

periments [37], and erythrocyte behaviour in shear or

Poiseuille flow [24].

In this paper, a computational approach to simulate
in silico electro-deformation experiments is presented.

In particular, a finite-element based simulation tool is

developed, composed of two coupled modules, namely,

the electrical module and the mechanical one. The for-
mer is devoted to the computation of the mechanical

actions induced by the electric field on the RBC (for

a given geometry), whereas the latter computes the

RBC deformation under a prescribed (electric) load.

A fixed-point iteration scheme is adopted to implement
the electro-mechanical coupling. This ensures that, at

convergence, field-induced actions are relevant to the

actual deformed configuration, where equilibrium is en-

forced.

Some noticeable features of the proposed strategy
can be highlighted, that make it unique and effective.

In the electrical module, field-induced actions are rig-

orously computed by means of the Maxwell stress ten-

sor theory (Section 2.1). Moreover, in order to evalu-
ate the electric field distribution (Section 2.2), the cell

membrane is treated as a two-dimensional imperfect in-

terface, so that the computational cost is significantly

reduced [2,9,10]. As a byproduct, an accurate compu-

tation of the Maxwell stress tensor is achieved (Sec-
tion 4.1). In the mechanical module, a microstructurally-

based constitutive law is adopted for the cell membrane,

along with a simple homogenization procedure (Sec-

tion 3.2). This way, model parameters have a precise
physical meaning, instead of being of phenomenolog-

ical nature, and at the same time the computational

efficiency of a continuum approach is enjoyed. Further-

more, in the finite element implementation of the me-

chanical problem, an original and effective rotation-free

shell element is adopted (Section 4.2.2), whose devel-

opment profitably exploits a corotational formulation

(Appendix A).

Careful validation of both modules has been con-
ducted. In particular, the benchmark problem of a coated

ellipsoid in a uniform electric field has been considered

for the electrical module (Section 5.1). On the other

hand, the validation of the mechanical module has been

performed by reproducing experiments of RBC defor-
mation by optical tweezers, available in the literature

(Section 5.2). The soundness and the efficacy of the

proposed coupled approach is shown by means of an

application-driven in-silico experiment of erythrocyte
electro-deformation (Section 5.3).

The paper is organized as follows. Section 2 and Sec-
tion 3 describe the electrical and the mechanical mod-

ule, respectively. Details on the relevant numerical pro-

cedures as well as their coupling strategy are provided

in Section 4. In-silico experiments are reported in Sec-
tion 5. Finally, conclusions are drawn.

2 Electrical module

A RBC suspended in a fluid is here considered. In pres-

ence of an applied electric field, electric charges are

induced on the cell membrane, and the interaction of
the field with those charges gives rise to mechanical

actions responsible for various frequency-dependent be-

haviours, such as orientation, translation (dielectrophore-

sis), rotation, and deformation. The purpose of the elec-
trical module is the computation of these mechanical

actions.

The investigation of field-induced actions has long

been subject of research (see e.g. [12,47,50,49]) and

different strategies have been proposed for their eval-

uation. Here the Maxwell stress tensor formulation is
adopted, which is regarded in the literature as the most

general and rigorous approach [51].

2.1 Mechanical actions induced by the electric field

As pictured in Figure 1, the electrical domain is mod-

eled as the union of two homogeneous conducting re-
gions Ω1 and Ω2, representing the intracellular space

and the suspending fluid, respectively. Their complex

conductivities σ∗

1 and σ∗

2 are given by σ∗

k = σk+iωεkεv,

k = 1, 2, where εv is the vacuum permittivity, and σk
and εk are the conductivity and relative permittivity

of the media, respectively; moreover, i is the imagi-

nary unit, and ω denotes the circular frequency. The
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Fig. 1 Domain of the electric problem (schematic 2D rep-
resentation): Ω1, intracellular space; Ω2 suspending fluid; Γ ,
cell membrane; ∂Ωne, boundary not covered by electrodes;
∂Ωei

, i-th electrode; n normal unit vector

cell membrane, which is a thin phospholipid bilayer,

is treated as a two-dimensional interface Γ with con-
ductance G and capacitance C per unit area, respec-

tively given by the electric conductivity σm and per-

mittivity εm of the lipid bilayer, divided by its thickness

[4]. Therefore, the interface admittance per unit area is

Y = G + iωC. In the radio-frequency range Y ≈ iωC,
since G ≪ ωC [26], and hence the cell membrane es-

sentially behaves like a capacitor. The finite interface

admittance causes the electric potential to jump across

the cell membrane [4]. The boundary of the domain
is divided into an insulating part (∂Ωne), and a part

covered by electrodes (∂Ωe) which generate the electric

field.

Field-induced actions can be derived by computing

the variation of the electrostatic energy Eel resulting

from a virtual variation of configuration [46,34], i.e.,

δEel =
∫

Ω1∪Ω2

−f · δs dV +

∫

Γ

−fΓ · δs dA , (1)

where f and fΓ denote volume and surface forces, re-

spectively, and δs is a virtual displacement compactly
supported in Ω1 ∪ Ω2. The variation δEel is performed

keeping constant the potential on the electrodes. Ac-

cordingly, the following energy functional is considered

Eel =
∫

Ω1∪Ω2

1

2
ε e ·e dV +

∫

Γ

1

2
C[[ψ]]2 dA−

∑

i

Qiψi , (2)

where e is the electric field, ψ is the electric poten-

tial, and Qi and ψi denote the charge and the electric

potential on the i-th electrode, respectively. Moreover,

ε = εkεv in Ωk, k = 1, 2, the symbol · denotes the
scalar product, and [[·]] denotes the jump of the enclosed

quantity across the membrane. The quasi-static approx-

imation, e = −∇ψ, is assumed, where ∇ denotes the

gradient operator. By resorting to the notion of config-

urational derivative [33,53], it can be shown that

δEel =
∫

Ω1∪Ω2

T : ∇̂δs dV +

∫

Γ

tΓ (divτ δs) dA . (3)

Here ∇̂ and divτ denote the symmetric gradient and

the tangential divergence operators, respectively, T is
the Maxwell stress tensor

T = ε

[

e⊗ e− 1

2
|e|2I

]

, (4)

where | · | denotes modulus and I is the identity tensor,

and tΓ is given by

tΓ = −1

2
C[[ψ]]2 . (5)

The latter term, being dual to local area variations,

can be regarded as a hydrostatic membrane stress, and

does not induce any deformation due to the local area

conservation hypothesis (see Section 3.2.1).
Upon integration by parts, the first term in (3) can

be rewritten as
∫

Ω1∪Ω2

T : ∇̂δs dV =

∫

Ω1∪Ω2

− divT · δs dV +

∫

Γ

−[[Tn]] · δs dA , (6)

yielding the volume forces f and the surface forces fΓ

induced by the electric field as

f = divT , fΓ = [[Tn]] , (7)

where div denotes the divergence operator and n is the

normal unit vector to Γ pointing into Ω2. It is a simple

matter to show that [46]

f = −1

2
(∇ε)e · e . (8)

As a consequence, under the assumption of constant

permittivities, volume forces vanish and only the sur-

face forces fΓ acting on the cell membrane have to

be considered as load in the mechanical module (Sec-
tion 3). From (7)2 and (4), their computation requires

the knowledge of the electric field distribution (see Sec-

tion 2.2). Moreover, in case of time-harmonic electric

field

e = A cos(ωt+ ϕ) , (9)

the time-averaged counterpart of the Maxwell stress

tensor has to be adopted [51,49], given by

<T >=
1

4
ε
[

(E ⊗E +E ⊗E)− |E|2I
]

, (10)

where E = Aeiϕ is the electric field phasor and the

overline denotes complex conjugation.
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2.2 Electric field distribution

In the Fourier domain, the electrical problem is stated

as follows:

− div(σ∗∇Ψ) = 0 , in Ω1 ∪Ω2 ; (11)

[[σ∗∇Ψ · n]] = 0 , on Γ ; (12)

Y [[Ψ ]] = σ∗∇Ψ · n , on Γ , (13)

where Ψ is the electric potential phasor and σ∗ = σ∗

k in

Ωk, k = 1, 2. Equation (11) governs the electric conduc-

tion in the cell cytoplasm and in the fluid; (12) accounts
for the continuity of the current flux density through

the cell membrane; (13) describes the membrane elec-

tric behavior.

An insulating boundary condition is applied on the

boundaries not covered by electrodes

σ∗∇Ψ · n = 0 , on ∂Ωne . (14)

On the i-th electrode (∂Ωei), the following electrode

equation holds [45]

Ye(Ψi − Ψ) = σ∗∇Ψ · n , on ∂Ωei , (15)

where Ye = Ge + iωCe is the electrode double-layer ad-

mittance per unit area, expressed in terms of the con-

ductance Ge and capacitance Ce per unit area; Ψi is

the prescribed electrode potential; the right-hand side is
the current density through the electrode. In the radio-

frequency range, Ge is usually negligible with respect

to ωCe.

Problem (11)–(15) is recast into the following weak

formulation
∫

Ω1∪Ω2

σ∗∇Ψ · ∇Φ dV +

∫

Γ

Y [[Ψ ]][[Φ]] dA

+
∑

i

∫

∂Ωei

YeΨ Φ dA =
∑

i

∫

∂Ωei

YeΨi Φ dA , (16)

where Φ is an arbitrary test function. Exploiting this

formulation, the potential distribution Ψ induced by

prescribed electrode potentials Ψi can be uniquely de-
termined [45], whence the electric field follows

E = −∇Ψ . (17)

As detailed in Section 4.1, particular care is taken in

the implementation of the latter relationship.

3 Mechanical module

3.1 Mechanical problem

The structure of a RBC can be characterized as a liquid

capsule enclosed by a biologic membrane. This mem-
brane is composed of a phospholipid bilayer and an un-

derlying spectrin network, the cytoskeleton, coupled to

each other by integral membrane proteins (Figure 2(a)).

(a)

(b) (c)

Actin junction

complexes

Spectrin

links

Triangular

plaquette

Fig. 2 (a) Schematic drawing of the RBC membrane struc-
ture (not to scale), reprinted with permission from [14]. (b)
Idealised regular triangular network. (c) Representative tri-
angle

From a mechanical point of view, the spectrin net-
work accounts for the in-plane shear stiffness of the

membrane. On the other hand, the lipid bilayer resem-

bles a fluid-like membrane, and is responsible of mem-

brane bending stiffness and total surface area conserva-
tion [37]. Moreover, assuming that the connection be-

tween spectrin network and lipid bilayer is dense enough,

the stricter constraint of local surface area conservation

can be enforced [24]. Finally, the nearly incompressible

cytosol inside the RBC determines the total volume
conservation constraint [18].

Such arguments motivate the definition of the fol-
lowing energy potential, which governs the quasi-static

mechanical evolution of the RBC [18,37,24]:

E =Win-plane +Wbend +Wvol + Eext , (18)

where Win-plane and Wbend denote the membrane in-
plane and bending energies, respectively, Wvol is a vol-

ume penalty energy term imposing the total volume

conservation constraint and Eext is the potential of ex-

ternal loads. The local surface area conservation con-

straint is included in the potential (18) as a contribu-
tion to the in-plane energy Win-plane.

Introducing the in-plane energy density win-plane per
unit reference area [17,5,18,35] and the bending energy

density wbend per unit current area [31], it follows that:

Win-plane =

∫

A0

win-plane dA , Wbend =

∫

A

wbend dA ,

(19)

where A0 [resp. A] is the surface area in the reference

[resp. current] configuration. Expressions of win-plane
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and wbend are discussed in Section 3.2. The volume

penalty energy term is defined as [18]:

Wvol =
1

2
kvol

(V − V0)
2

V0
, (20)

where V0 [resp. V ] is the total cell volume in the refer-
ence [resp. current] configuration and kvol is a suitable

penalty parameter.

3.2 Constitutive behaviour

Following the formulation presented in Section 3.1, the
definition of the RBC membrane constitutive law con-

sists in the selection of in-plane and bending energy

densities. In particular, starting from the so-called spec-

trin network model [17,5,18,35], the in-plane energy

density win-plane is obtained by means of homogeniza-
tion of the Helmholtz free energy of the microstruc-

ture, as detailed in Section 3.2.1. Moreover, the bend-

ing energy density wbend is assumed to obey the Helfrich

model [31], as described in Section 3.2.2.

3.2.1 In-plane behavior

The in-plane behavior of the RBC membrane is deter-

mined by the spectrin network and the local surface
area conservation constraint imposed by the lipid bi-

layer. According to the spectrin network model [17,

5,18,35], the former is modeled as an idealised regu-

lar triangular network, comprising an assembly of actin

junction complexes connected to each other by spectrin
links (Figure 2(b)). The model is completed with the as-

sumption that the triangular plaquettes bounded by a

triplet of mutually connected actin junction complexes

are attached to the lipid bilayer (Figure 2(c)). Conse-
quently, the equilibrium condition of the actin junction

complexes under the attractive forces exerted by the

spectrin links and the repulsive ones arising from the

lipid triangular plaquettes, determines the surface area

of the network in its natural state. Modifications of such
surface area are locally prevented by the lipid bilayer.

On the basis of the Helmholtz free energy stored

in each constituent, a microstructurally-based homog-
enized constitutive law, expressing the relationship be-

tween macroscopic stress and strain measures, is de-

rived here for such composite medium. To this end, the

contributions to the Helmholtz free energy arising from

each constituent are investigated:

i. the total entropic free energy stored in the spectrin

proteins is estimated by means of the worm-like

chain model [41,6]. Accordingly, the contribution

from a single spectrin link is:

WWLC =
kBTLmax

4p

3x2 − 2x3

1− x
, x = L/Lmax , (21)

where x is the current dimensionless chain length,

i.e. the current length L normalized by the con-

tour length Lmax of the chain, p is the persistency
length, kB is the Boltzmann constant and T is the

absolute temperature. Introducing the chain stretch:

λ = L/L0 , (22)

where L0 denotes the chain length in the unde-

formed (stress-free) lattice, the dimensionless length

x can be recast as:

x = λx0 , x0 = L0/Lmax , (23)

in which x0 represents the dimensionless chain length

in the undeformed lattice. As a consequence of equa-

tion (23), the worm-like chain free energy WWLC

results to be a function of the stretch λ undergone
by the spectrin link under consideration:

WWLC =
kBTL

2
0

4pLmax

(3Lmax − 2λL0)λ
2

Lmax − λL0

; (24)

ii. the contribution from a single triangular plaquette

to the hydrostatic elastic energy stored in the lipid

membrane, is evaluated as [18]:

Whydr =
Cq

aq
, (25)

where a is the current area of the plaquette, q is a

suitable exponent and Cq is a constant to be deter-

mined by prescribing the undeformed configuration

of the lattice. Introducing the areal stretch:

α = a/a0 , (26)

where a0 denotes the area of the plaquette in the

undeformed lattice, the hydrostatic elastic energy
can be recast as:

Whydr =
Cq

(αa0)
q . (27)

It is noted that, because the hydrostatic elastic en-
ergy Whydr depends only on the areal stretch α,

there is no contribution of the lipid membrane to

the RBC shear stiffness;
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iii. the local surface area conservation constraint im-

posed by the lipid bilayer is accounted for by con-

sidering an additional contribution to the Helmholtz

free energy of the RBC membrane, namely [18]:

Wsurf =
1

2
ksurf

(a− a0)
2

a0
, (28)

where ksurf is a penalty parameter. In terms of the

areal stretch α, the surface energy Wsurf is conve-

niently recast as:

Wsurf =
1

2
ksurf a0 (α− 1)2 . (29)

In order to determine the homogenized energy of

the RBC membrane, the triangular spectrin network

depicted in Figure 2(b) is considered. Accordingly, a
single equilateral triangle can be assumed as representa-

tive element. The triangle is assumed to undergo an in-

plane strain described in terms of the Green-Lagrange

strain tensor E. Such strain measure has to be inter-
preted as a macroscopic variable representative of the

average microstructural deformation. Because no strain

fluctuation due to local inhomogeneities arises in a reg-

ular lattice, the microstructural stretch λ along a given

direction e and areal stretch α are given by:

λ =
√
1 + 2Ee · e , α =

√

det (I + 2E) . (30)

Assuming that the triangle has the three sides (spectrin

links) lying along the directions defined by the polar

angles θ = {0, 2π/3, 4π/3}, as shown in Figure 2(c), the

resulting homogenized free energy density turns out to

be:

win-plane =
1

a0

[

∑

θ

1

2
WWLC(θ) +Whydr +Wsurf

]

.

(31)

Here the summation is extended to the three spectrin

links, each belonging to two adjacent triangles, and
equations (24), (27), (29) and (30) have to be used.

Consequently, the macroscopic second Piola-Kirchhoff

stress tensor S results in:

S = ∇Ewin-plane . (32)

Finally, the constant Cq, involved in the computa-

tion of the hydrostatic elastic energy (27) stored in the

lipid membrane, is determined by imposing that the
RBC membrane is stress-free for a vanishing applied

strain tensor E. Exploiting equation (32), it is a simple

matter to check that [14]:

Cq =
3

16

kBTa
q
0Lmax

pq

x20
(

6− 9x0 + 4x20
)

(1− x0)
2

. (33)

3.2.2 Bending behavior

The bending behaviour of the RBC membrane, com-

pletely attributable to the lipid bilayer, is described by

means of the Helfrich energy [31]:

wbend =
kc
2
(J − J0)

2
+ kgK , (34)

where J and K respectively denote total and Gaus-

sian curvature in the current configuration, J0 is the

reference total curvature, and kc, kg are bending elas-

tic moduli. It is recalled that, in terms of the princi-
pal curvatures {k1, k2} of the surface membrane, total

and Gaussian curvatures result to be J = k1 + k2 and

K = k1k2, respectively (e.g., see [19]).

4 Numerical procedure

In this section, the numerical procedure adopted in the

electrical and mechanical modules as well as their cou-

pling strategy are described.

4.1 Electrical module

Formulation (16) is implemented into the commercial

finite element code COMSOL Multyphysics. A trian-
gular mesh of the cell membrane Γ is generated and

used as boundary mesh in the creation of tetrahedral

meshes of the intracellular and fluid domains (respec-

tively, Ω1 and Ω2). Treating the cell membrane as a
two-dimensional interface avoids the need of extra-fine

tetrahedral meshes as required in a three-dimensional

description of a thin region [2,9,10]. Weak Form PDE

Physics is adopted, and quadratic Lagrangian elements

are used to interpolate the electric potential Ψ .
The electric field E on both sides of the membrane

Γ is computed by the numerical approximation of Ψ . In

particular, introducing the projector P τ = I − n ⊗ n

on the membrane tangent plane, E is decomposed as

E = Eτ + Enn , (35)

where Eτ = P τE is the tangential field and En de-
notes the normal component. The former is computed

by means of the COMSOL operator dtang, implement-

ing the tangential derivative of the vector field Ψ ; the

latter is calculated by means of a wise exploitation of
(13), i.e.,

En = −Y [[Ψ ]]

σ∗
. (36)

It is worth mentioning that the direct computationEn =

−∇Ψ · n, involving the gradient of the interpolated
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quantity, would yield significantly less accurate results.

The field-induced forces acting on the cell membrane,

that represent the input to the mechanical module, are

computed from E via (10) and (7)2.

4.2 Mechanical module

4.2.1 Finite element formulation

A finite element formulation of the mechanical problem

introduced in Section 3.1 is here discussed. To this end,

given a triangulation
⋃Ne

e=1 A
e
0 of the RBC surface in the

reference configuration A0, the unknown displacement
field u at a typical point p is approximated by:

u(p) ≈
Ne

∑

e=1

χeue(ae, p) . (37)

In equation (37), ue denotes the interpolation of the

displacement field over the element Ae
0, depending on

element nodal displacements ae and point p, and χe is

the characteristic function associated to the same el-
ement. Using such representation formula for the dis-

placement field u, it is straightforward to derive:

E = E(a, p) ,

J = J(a, p) , K = K(a, p) ,

V = V (a) ,

(38)

that is, a consistent approximation of Green-Lagrange

strain tensor, of total and Gaussian curvatures, and of

cell volume, in terms of nodal displacements a. Accord-
ingly, the potential energy (18) can be computed by:

E =

Ne

∑

e=1

{

W e
in-plane +W e

bend + Ee
ext

}

+Wvol , (39)

where (·)e denotes the element counterpart of the rele-

vant quantity.

Imposing the stationary condition of the discretized

potential energy (39), it follows that the nodal displace-

ments a satisfy the equilibrium equation:

0 =
Ne

A
e=1

{qe
ext − qe

int} − qvol , (40)

in which A denotes the standard assembly operator

of the finite element method, qe
int [resp. qe

ext] are the
nodal internal [resp. external] forces work-conjugated to

element nodal displacements ae, and qvol are the nodal

reactions due to volume constraint, work-conjugated to

the nodal displacements a. In particular, the element

nodal internal forces qe
int are defined by:

qe
int · δae = δW e

in-plane + δW e
bend

=

∫

Ae
0

δwin-plane dA

+

∫

Ae
0

{δwbendα+ wbendδα} dA ,

(41)

where α is the areal stretch defined in equation (30)2,

the element nodal external forces qe
ext satisfy:

−qe
ext · δae = δEe

ext , (42)

and the nodal reactions due to volume constraint qvol

follow from:

qvol · δa = δWvol = kvol
V − V0
V0

δV . (43)

The derivation of structural consistent stiffness ma-

trix, needed e.g. by Newton’s method of solution of
global equilibrium equations, requires the linearization

of equations (41)–(43) with respect to the nodal dis-

placements a. With regard to the element nodal inter-

nal forces qe
int, it turns out that:

Kqe
int
∆ae · δae := ∆qe

int · δae

=

∫

Ae
0

∆δwin-plane dA

+

∫

Ae
0

{∆δwbendα+ δwbend∆α} dA

+

∫

Ae
0

{∆wbendδα+ wbend∆δα} dA ,

(44)

where∆ denotes the linearization operator. Analogously,
the linearization of the element nodal external forces

qe
ext yields:

Kqe
ext
∆ae · δae := ∆qe

ext · δae . (45)

However, in the present work, the coupling between
electrical and mechanical modules is treated through

the fixed-point iteration scheme discussed in Section 4.3,

and such stiffness contribution need not be accounted

for. On the other hand, its computation would be nec-

essary for a monolithic solution strategy of the coupled
problem adopting Newton’s method. Furthermore, the

linearization of the nodal reactions due to volume con-

straint qvol gives:

Kqvol
∆a · δa := ∆qvol · δa

= kvol
∆V

V0
δV +

V − V0
V0

∆δV .
(46)

Finally, a standard finite element assemblage of stiff-

ness matrices reported in equations (44)–(46), yields

the desired structural consistent stiffness matrix.
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4.2.2 Element formulation

According to equations (37)–(38), the computation of

a consistent approximation of Green-Lagrange strain
tensor, and of total and Gaussian curvatures, requires

a suitable interpolation of the displacement field at the

element level.

The element formulation turns out to be greatly

simplified when developed within a corotational frame-
work, able to handle large element rigid-body motions.

In particular, the corotational procedure can be visual-

ized like a two-way filter that i) removes the rigid-body

contribution from the element nodal displacements be-

fore the finite element kernels use them, and ii) brings
back to the overall level the quantities returned by the

element routine [25]. A brief description of the corota-

tional framework is given in Appendix A.

With a slight abuse of notation and dropping out the

element index e, the element displacement field and el-
ement nodal displacements resulting after filtering out

the rigid-body contribution, are still denoted by u and

a, respectively. In particular, the vector a can be ar-

ranged as:

a = {u1;u2;u3} , (47)

where ui, i = 1, 2, 3, is the displacement vector of the

typical node Vi in the reference configuration, and the

semicolon symbol denotes column stacking. As a conse-
quence, the transformation to be handled at the finite

element level maps the reference element nodes Vi into

the current points V̄i = Vi + ui.

For convenience, an orthonormal frame with ori-

gin O at the element centroid, and axes:

g1 =
V2 − V1

‖V2 − V1‖
, g2 = g3×g1 , g3 =

g1×(V3 − V1)

‖g1×(V3 − V1)‖
,

(48)

is introduced. Furthermore, the position vector in the

reference configuration is denoted by X = (X,Y, Z).

The rigid-body motion filtered out by the corota-

tional filter is here chosen such that the reference trian-
gle V1V2V3 and the deformed triangle V̄1V̄2V̄3 are made

coplanar and share their centroid (see Appendix A).

Accordingly, it turns out that:

z1 = z2 = z3 = 0 ,
∑3

i=1 xi =
∑3

i=1 yi = 0 , (49)

where x = (x, y, z) denotes the position vector in the

deformed configuration.

The in-plane components of the displacement field u,

u(X,Y ) = u(X) · g1 , v(X,Y ) = u(X) · g2 , (50)

V
1

V
2V

3

V
4

V
5

V
6X

Y

Z

Fig. 3 Patch associated to element V1V2V3 in the reference
configuration

are approximated with the constant strain triangle (CST)
interpolation [48] of the nodal in-plane displacements:

um = {u1; v1;u2; v2;u3; v3} , (51)

in which:

ui = ui · g1 , vi = ui · g2 , i = 1, 2, 3 . (52)

Hence, the Green-Lagrange strain tensor E can be de-

rived by:

E =
1

2

(

F
T
F− I

)

, F = I+H , H = ∇X(u, v) , (53)

where F and H are deformation and displacement gra-

dient, respectively.

In order to estimate the curvature tensor χ, and

consequently the total curvature J and the Gaussian

curvature K, an original rotation-free formulation is

here proposed. Differently from the standard finite ele-
ment format, rotation-free formulations are character-

ized by a distinction between integration and interpo-

lation domains (e.g., see [43,55]). In particular, the in-

tegration domain is the element under investigation,
namely the triangle V1V2V3, whereas the interpolation

domain is assumed to be the patch also comprising the

three adjacent triangles V1V6V2, V2V4V3 and V3V5V1
(see Figure 3). Accordingly, the interpolation param-

eters coincide with the patch nodal displacements:

ub = {u1; . . . ;u6} . (54)

Relying on conditions (49), the deformed patch can be

effectively approximated by means of the paraboloid:

z = c1 + c2x+ c3y + c4x
2 + c5y

2 + c6xy , (55)

the constants ci, i = 1, . . . , 6, being determined by the

following interpolation conditions:

z(xi, yi) = zi =
(

V̄i −O
)

· g3 , i = 1, . . . , 6 . (56)

The curvature tensorχ over the deformed triangle V̄1V̄2V̄3
is then estimated by the curvature of the paraboloid

at the origin. Provided that coefficients c2 and c3 are
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Electrical problem:

find electric potential Ψ

with current geometry Γ

Compute field-induced

mechanical load f
Γ

via Maxwell stress tensor

Mechanical problem: 

find deformed geometry Γnew

under load f
Γ

Convergence?

| Γnew – Γ | < δ

START

END

Update geometry

Γnew = Γ

No

Yes

Fig. 4 Flow chart of electro-mechanical coupling (see text
for explanation)

sufficiently small (condition met in the limit of an in-

creasingly finer mesh), the latter can be approximated

with the Hessian of the function (55), whence:

χ = ∇∇xz(O) , J = trχ , K = detχ . (57)

It is worth pointing out that the corotational frame-

work simplifies the differentiation of total and Gaus-
sian curvatures with respect to element nodal displace-

ments, as needed in the element computations, i.e. in

equations (41) and (44). In fact, the interpolation (55)

remains effective also for a variation of the deformed
configuration, being any rotation of the paraboloid axis

accounted for (and purged out) by the corotational fil-

ter.

4.3 Electro-mechanical coupling

The coupling between the electrical and mechanical mod-

ules is implemented by means a fixed-point iteration

scheme (Figure 4). For given applied electrode poten-

tials Ψi, the electric problem (16) is initially solved on

the domain defined by the reference configuration of
the cell membrane Γ . The corresponding field-induced

actions fΓ are then computed as the jump of the trac-

tions generated by the time-averaged Maxwell stress

tensor on the cell membrane (equations (7)2 and (4)).
The latter surface forces define the potential of the ex-

ternal load Eext in the mechanical problem (18), whose

solution provides an updated cell-membrane geometry

Table 1 Electric parameters adopted for cell and electrodes
[27], and for extracellular fluid [21]

σ1 (S/m) ε1 C (mF/m2) Ce (mF/m2) σ2 (S/m) ε2

0.5 60 10 144 0.05 80

Γ new. If the distance between Γ and Γ new is lower than

a prescribed tolerance δ, the numerical procedure stops,

otherwise, a new iteration is performed starting from

the updated cell-membrane geometry Γ new. In partic-

ular, in the convergence check, the norm of the relative
difference between the nodal coordinates of Γ and Γ new

is considered, with a tolerance δ = 0.001.

If the solution cannot converge within a reasonable

number of iterations, or if intermediate solutions given

at uniform intervals of the applied electrode potentials

Ψi are desired, the latter are subdivided into multi-
ple potential-increment steps. At the end of each in-

crement, a converged intermediate solution is obtained,

which in turn is used to start the fixed-point iteration

for the solution of the next potential increment. This

reduces the degree of nonlinearity from an intermedi-
ate solution state to another and enhances the chance

of obtaining the ultimate solution under the electrode

potentials Ψi.

5 Numerical results

In this section, numerical results are reported. First, the

independent validation of the electrical and mechanical
modules is performed. In particular, the problem of a

coated ellipsoid in a uniform electric field and the de-

formation of a RBC by optical tweezers are considered,

respectively. Then, an in-silico experiment of erythro-

cyte electro-deformation is presented, showing the ef-
fectiveness and soundness of the proposed approach.

5.1 Electrical module validation: coated ellipsoid in

uniform electric field

The problem of an ellipsoidal particle with semidiame-

ters a > b > c, coated with a membrane having finite

admittance, and embedded in a uniform electric field

E∞ established in the infinite space, is considered. Its
analytical solution, reported in Appendix B, was used

as a benchmark for the numerical results supplied by

the electrical module. In particular, an ellipsoid with

diameters 2a = 14.1 µm, 2b = 4.64 µm, 2c = 2.44 µm
was considered. Those values were chosen to mimic the

deformed configuration of a RBC under applied elec-

tric field (see Section 5.3). The ellipsoid was located at
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optical

trap

glass (moving)

x

z

axial

diameter

transverse

diameter

x

y

polar

diameter

x

z

(a) (b)

Fig. 5 Schematic representation of optical tweezers experi-
mental set-up. (a) Initial cell geometry and definition of axial,
transverse and polar diameters. (b) Stretch test: one bead is
optically trapped, while the other one is anchored to the sur-
face of a moving glass slide

Table 2 Parameters of the RBC meridional section [22]

R (µm) C0 C1 C2

3.91 0.207161 2.002558 -1.122762

the center of a parallelepipedic domain whose sides are
80 times the ellipsoid semiaxes. It was subject to an

electric field parallel to its major axis, with intensity

E∞ = 0.125 V/µm and frequency 500 kHz. The electric

field was generated by an applied voltage between the

parallelepiped faces orthogonal to the ellipsoid major
axis, whereas insulating condition was applied on the

other faces. The electric parameters used in the com-

putation are reported in Table 1. Due to symmetry,

one-eight of the system was studied.
The relative errors, in the L2 norm, of the electric

potential Ψ and of the surface force density fΓ turned

out to be, respectively, 7.1 × 10−3 and 6.7 × 10−2 for

a coarse mesh (7,089 nodal points, 34,494 linear tetra-

hedral elements, 444 linear triangular elements on the
ellipsoid surface), and, respectively, 4.5×10−4 and 2.1×
10−2 for a fine mesh (510,051 nodal points, 2,916,394

linear tetrahedral elements, 14,101 linear triangular el-

ements on the ellipsoid surface). These errors can be
mainly ascribed to the difference in the boundary con-

dition between the analytical and numerical solutions.

The magnitude of the opposite resultant forces act-

ing upon the two semi-ellipsoids on either side of the

plane z = 0 was computed and turned out to be 231 pN.

5.2 Mechanical module validation: large deformation
of the RBC by optical tweezers

Deformation imposed by optical tweezers provides a

useful means for the study of single cell mechanics un-

der a variety of well-controlled stress-states [42]. While

y
x

z

(a)

y
x

z

(b)

Fig. 6 Numerical simulation of the large deformation of
a RBC using optical tweezers. (a) Reference configuration.
(b) Deformed configuration under maximum load (Fmax =
200 pN)
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Fig. 7 Diameters versus stretching force during the large
deformation of a RBC using optical tweezers. The present
numerical results are compared with the experimental data
reported in [42] (not including the polar diameter)

early studies involved primarily small elastic deforma-
tion at low applied forces, the possibility of inducing

large elastic deformation in human RBCs using optical

tweezers was demonstrated in [15,39,38,42]. In those

papers, forces as high as about 193± 20 pN were esti-

mated to result in strains of the order of 100% in the
cell. The experimental procedure adopted to stretch the

cell is as follows (Figure 5). Two silica microbeads are

non-specifically attached to the RBC at diametrically

opposite points. One bead is anchored to the surface of a
glass slide, the other one is trapped using a laser beam.

While the trapped bead remains stationary, moving the

slide with the anchored bead stretches the cell.
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Table 3 Parameters defining the constitutive behaviour of RBC membrane. [24,23]

Here β = (kBT )−1, kB is the Boltzmann constant, a0 = L2
0

√
3/4 , V0 = 75.3 µm3 (reference RBC volume)

Lmax (nm) L0 (nm) p (nm) q T (K) βkc kg/kc βa0ksurf βV0kvol

166.1 75.5 18.7 1 296 48.9 −4/3 263.3 1.34 × 108

In the in-silico experiment, the biconcave RBC geo-

metric model (Figure 6(a)) was obtained by revolution

of the meridional section [22]:

f(r) =
R

2

√

1−
( r

R

)2
[

C0 + C1

( r

R

)2

+ C2

( r

R

)4
]

,

(58)

whose parameter values are reported in Table 2. The
RBC mechanical behaviour was modelled as described

in Section 3.2. Parameters adopted in the simulations

are reported in Table 3. A detailed discussion of their

values along with the experimental fitting procedures
leading to their determination can be found in [18,37,

24,23]. The load imposed by each silica bead was simu-

lated as a force F distributed on a circular contact area

of diameter D = 1.1 µm. Equal z-displacement was

imposed at the interested nodes. Sixteen uniform load-
steps, with internal adaptive sub-stepping, were consid-

ered, up to a maximum force level Fmax = 200 pN. Due

to symmetry, one-eight of the cell was studied, with a

mesh of 524 elements.

Figure 6(b) shows the deformed configuration of the

RBC under maximum load. The behaviour of trans-

verse, axial and polar diameters as functions of the ap-

plied force is shown in Figure 7, where the experimental

data provided in [42] are also reported for comparison.
Excellent agreement is found for the axial diameter,

whereas a small discrepancy is noticed between simu-

lated and experimental transverse diameters, with ex-

perimental data providing lower values. As suggested
in [24], this is probably a consequence of the optical

measurements being performed from only a single ob-

servation angle, that may result in under-prediction of

the maximum transverse diameter in presence of rota-

tion of the RBC during the stretch test. However, the
simulation results remain within the experimental er-

ror bars. The behaviour of the polar diameter, not re-

ported in the experimental data, highlights a progres-

sive change from the cell biconcave shape to a more
rounded shape. Generally, a hardening behaviour with

increasing force is noticed, mainly due to the nonlinear

constitutive properties of the spectrin network.

Fig. 8 In silico electro-deformation experiment: a RBC, sus-
pended in a conducting medium, is placed between two facing
electrodes, and a voltage is applied between them. (COMSOL
geometric model)

y
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z

(a)

y
x

z

(b)

Fig. 9 Electro-deformation of a RBC. (a) Deformed config-
uration under maximum applied potential (Ψmax = 2.5 V
@500 kHz). (b) Visualization of field-induced mechanical ac-
tions

5.3 Electro-deformation of a RBC

A RBC, suspended in a conducting medium, was placed
between two 50 µm × 50 µm facing electrodes, that are

20 µm apart from each other (Figure 8). A voltage Ψ

at 500 kHz was applied between the electrodes. The

electric parameters adopted in the computation are re-
ported in Table 1. As typical in electro-deformation ex-

periments, a poorly conductive extracellular fluid was

considered [21]. The RBC mechanical behaviour was
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Fig. 10 Diameters and half-cell resultant force versus ap-
plied potential during the electro-deformation of a RBC

modelled as in Section 5.2. Due to symmetry, one-eight

of the system was studied.

In order to obtain an efficient implementation of

the electro-mechanical coupling, the same mesh was

adopted to discretize the cell surface in the electri-
cal and mechanical modules. It was composed by 524

triangular elements. Starting from this mesh, a mesh

composed by 397,851 quadratic tetrahedral elements

was generated to discretize the electric domain. Eight

applied-potential steps were considered, with quadratic
spacing, up to a maximum value Ψmax = 2.5 V, cor-

responding to a field intensity of 0.125 V/µm in the

absence of the cell.

The average number of fixed-point iterations in each

load step, needed to reach convergence in the electro-

mechanical coupling scheme, was 3.4.

Figure 9(a) shows the deformed configuration un-

der maximum applied potential, while the mechanical

actions induced by the electric field are visualized in

Figure 9(b). The magnitude of the resultant force on

the top and bottom half cells is shown in Figure 10 as
function of the applied voltage Ψ . The same figure also

reports the axial, transverse, and polar diameters of

the deformed RBC. Under the maximum applied volt-

age, a force magnitude of 252 pN was computed, yield-
ing a deformed RBC configuration with diameters of

14.1 µm, 4.64 µm, and 2.44 µm, respectively. Though

the electrodes are only 20 µm apart from each other,

the obtained force magnitude is comparable with the

one evaluated in Section 5.1 with reference to an ellip-
soid with the same diameters in a uniform electric field

at infinity.

Electro-deformation has been recently employed in
conjunction with microfluidic systems for biomechan-

ical measurements of RBCs and other cell types [52,

40,11,29,20,21,36]. An estimate of the applied resul-

tant force on half cell is usually computed and related

to the experimentally-measured deformation, whence

phenomenological indicators of the cell mechanical be-

haviour are derived. In this context, the modeling and

simulation framework here developed represents a valu-
able tool. In fact, it provides an accurate estimate of

the distribution of field-induced actions for cells with

arbitrary geometry and without simplifying assump-

tions on the electric field distribution. This feature can
be of aid in the design of optimal electro-deformation

systems (e.g. in terms of geometry, medium properties

and frequency). Moreover, thanks to the adoption of a

microstructurally-based constitutive law, it can be used

for the quantitative characterization of microstructural
biomechanical properties, by means of an inverse anal-

ysis approach.

6 Conclusions

In this work, a computational approach for in-silico ery-

throcyte electro-deformation has been presented. The

proposed strategy relies on the Maxwell stress tensor

formulation for the accurate computations of the me-
chanical actions induced by the electric field. In addi-

tion, special care is adopted in modeling the cell mem-

brane, that plays a crucial role both from the electri-

cal and the mechanical point of view. In particular, in

the electrical module the cell membrane is described
as a two-dimensional imperfect interface, by virtue of

the capacitive behavior exhibited by the lipid bilayer.

This choice avoids the need of extra-fine meshes as re-

quired in a three-dimensional description of a thin re-
gion, and furthermore allows an efficient computation

of the normal component of the electric field. In the

mechanical module, a microstructurally-based descrip-

tion of the membrane is adopted, taking into account

the costitutive properties of the lipid bilayer and of the
underlying spectrin network. As a consequence, the me-

chanical parameters of the model have a clear physical

interpretation. In order to achieve computational effi-

ciency, a homogenization procedure is exploited, under
the assumption of regular triangular spectrin network.

Finally, a custom rotation-free shell element is adopted,

which takes advantage from a corotational formulation

for the computation of membrane curvature and its

variation.
Several enhancements of the developed tool are en-

visaged, e.g. accounting for random spectrin network,

time-dependent constitutive behaviour, and stiffness con-

tribution arising from configuration-dependent forces.
In addition, extension to other cell-lineages is possi-

ble, requiring a modification of the constitutive model

adopted in the mechanical module.



Effective computational modeling of erythrocyte electro-deformation 13

As proved by the presented in-silico experiments,

the proposed strategy is effective and sound, and consti-

tutes a promising tool towards the development and op-

timization of microfluidic electro-deformation systems.

A Corotational framework

The derivation of the corotational approach presented in [7,
8] is here briefly reviewed for triangular elements. Let ui, i =
1, 2, 3, denote the displacement vector of the typical node Vi

in the reference configuration. The element nodal parameters
are collected into the 9 × 1 vector:

a = {u1;u2;u3} , (A.1)

where the semicolon symbol denotes column stacking. More-
over, let u(p) be the element displacement field at point p in
the reference configuration. In the derivation of corotational
finite elements, the deformation f(p) = p + u(p), is multi-
plicatively decomposed as follows:

f = r ◦ f , (A.2)

where r is a rigid transformation, characterized by a reference
point G, a translation vector t, and a rotation tensor R:

r(p) = G+ t+R [p−G] . (A.3)

Hence, the transformation f , implying the same deforma-
tional motion as f , is obtained from the latter after filter-
ing out the rigid motion r. Denoting by ū(p) = f(p)− p the
filtered displacement field, equations (A.2) and (A.3) yield:

u = G+ t+R [p+ ū−G]− p . (A.4)

Then, a suitable interpolation is chosen for ū, characterizing
the displacement-based core-element formulation:

ū = ū(ā, p) , (A.5)

where ā is the filtered counterpart of the element nodal pa-
rameters a:

ā = {ū1; ū2; ū3} . (A.6)

Accordingly, the following correspondence rule has to be in-
tended in the notation adopted in Section 4.2:

u → ū , a → ā , (A.7)

amounting at the replacement of element nodal displacements
with their filtered counterparts. In particular, the filtered
nodal displacements ūi are obtained by imposing the inter-
polation conditions u(Vi) = ui and ū(Vi) = ūi in (A.4),
whence:

ūi = RT [Vi + ui − (G+ t)]− (Vi −G) . (A.8)

The core-element computations, i.e. equation (41), provide
the nodal internal-force vector q̄int work-conjugated to the
filtered modal parameters ā. Since the rigid body motion does
not contribute to the elastic energy gained by the element, the
following virtual work equivalence holds true:

qint · δa = q̄int · δā , (A.9)

defining the internal-force vector qint work-conjugated to the
overall parameters a. The linearization of the virtual work
equivalence (A.9) yields:

∆ (qint · δa) = ∆(q̄int · δā) . (A.10)

Introducing the consistent tangent stiffness tensor and its
core-element counterpart (denoted as Kqe

int
in equation (44)),

respectively:

Kint =
∂qint

∂a
, K̄int =

∂q̄int

∂ā
, (A.11)

and recalling that ∆δa = 0, equation (A.10) can be developed
in:

Kint∆a · δa = K̄int∆ā · δā+ q̄int ·∆δā . (A.12)

In order to obtain the overall counterparts qint and Kint of
the core-element quantities q̄int and K̄int, the crucial ingre-
dient is the so-called projector operator Π, able to extract
the deformational part from incremental displacements:

δā = Πδa . (A.13)

In fact, substituting (A.13) in (A.9) it turns out that

qint = Π T q̄int . (A.14)

Analogously, the substitution of equation (A.13) in (A.12),
yields:

Kint = Π T K̄intΠ +KΠ T [q̄int] , (A.15)

where:

KΠ T [v]∆a = ∆
(

Π T v
)

∣

∣

∣

v=const
. (A.16)

The latter represents a geometric stiffness arising from the
dependence of the projector operator from the nodal parame-
ters a. In fact, from (A.8), the projector operator depends on
the rigid motion r (A.3), which in turn depends on the nodal
parameters a. In particular, in order for the corotational ap-
proach to be effective, the rotation tensor R characterising r
must be chosen such that f is free of large rigid rotations. In
the present work, R is identified with the rotation tensor of
the polar decomposition of the gradient of the homogeneous
transformation mapping the element nodes Vi into their cur-
rent positions V ′

i = Vi + ui [13]. The reference point G and
the translation vector t are, respectively, the element cen-
troid and the mean of the nodal displacements ui [25]. In
particular, such choices ensure conditions (49) to be satisfied.
Further details, including the derivation of Π and KΠ T are
provided in references [7,8].

B Coated ellipsoid in uniform electric field

The problem of an ellipsoidal particle with semidiameters a >
b > c, coated with a membrane having finite admittance, and
embedded in a uniform electric field E∞ established in the
infinite space, is here considered.

Let {O; x, y, z} be a Cartesian reference system having
the origin O at the ellipsoid center and the coordinate axes
parallel to the ellipsoid axes. The problem at hand is conve-
niently treated using an ellipsoidal coordinate system {ξ, ζ, η}
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(e.g., see [46]). In particular, the parameter ξ describes a fam-
ily of confocal ellipsoidal surfaces:

z2

a2 + ξ
+

x2

b2 + ξ
+

y2

c2 + ξ
= 1 , (A.17)

and ξ = 0 is the particle boundary. In the notation of Sec-
tion 2, the ellipsoid and the outer media respectively corre-
spond to the regions Ω1 and Ω2, with complex conductivi-
ties σ∗

1 and σ∗

2 , whereas the particle surface coincides with
the two-dimensional interface Γ , with admittance Y per unit
area. For the problem to have a simple analytical solution, Y
is assumed to vary over Γ according to the equation:

Y = Y0

h0

h
, (A.18)

where Y0 is the average admittance per unit area over Γ and:

h =
1

2

√

(ξ − η) (ξ − ζ)
√

(a2 + ξ) (b2 + ξ) (c2 + ξ)
,

h0 =

(

1

|Γ |

∫

Γ

1

h
dA

)

−1

,

(A.19)

with |Γ | denoting the measure of Γ . In passing, it is observed
that h is one of the metric coefficients associated to the el-
lipsoidal coordinate system [46]. A similar problem, concern-
ing an ellipsoidal particle coated with a shell of non-uniform
thickness, is considered in [3].

The electric field E∞ can be assumed, without loss of
generality, to be parallel to the z-axis, with intensity E∞

(the other two components can be treated analogously, and
the linearity of the problem allows to sum the contributions
[46,3]). Accordingly, the resulting electric potential Ψ solves
the problem stated in equations (11)–(13), supplemented with
the following boundary condition at infinity:

Ψ = Ψ∞ , for ξ → +∞ , (A.20)

where the potential Ψ∞ is given by:

Ψ∞ =−E∞z =−E∞

√

(a2 + ξ) (a2 + η) (a2 + ζ)
√

(a2 − b2) (a2 + c2)
. (A.21)

This problem can be solved in the same fashion explored in
[46]. To this end, it is convenient to introduce the function:

A(ξ)=
abc

2

∫

+∞

ξ

[

(

a2 + s
)3(

b2 + s
)(

c2 + s
)

]

−
1

2 ds , (A.22)

and the following quantities:

c1 =
σ∗

1 − σ∗

2

σ∗

2

, c2 =
1

2

σ∗

1

Y0h0a2
,

c3 = c1 − c2 , c4 = [1 + c2 + c3A(0)]−1 .

(A.23)

Then, the potential Ψ turns out to be:

Ψ =

{

Ψ∞c4 , ξ < 0 ,

Ψ∞ [1 − c3c4A(ξ)] , ξ > 0 ,
(A.24)

and, consequently, its jump across Γ is given by:

JΨK = c2c4 Ψ∞|ξ=0 . (A.25)

The electric field on both sides of Γ is computed ex-
ploiting the decomposition (35). More specifically, the nor-
mal component En immediately follows from equations (36)

and (A.25), whereas the tangential projection Eτ is derived
from equation (A.24). In particular, the latter computation
is simplified by the fact that the tangential gradient on Γ
of any function of the only coordinate ξ identically vanishes.
Accordingly, the electric field on the ellipsoid surface Γ takes
the form:

E = Eτ + Enn , (A.26)

where:

Eτ =

{

E∞c4P τk , ξ < 0 ,

E∞ [1− c3c4A(0)]P τk , ξ > 0 ,
(A.27)

and k is the unit vector parallel to the z-axis. Finally, exploit-
ing equations (10) and (7)2, the surface forces fΓ induced by
the electric field can be expressed as:

fΓ = fτ + fnn , (A.28)

where:

fτ =
1

4

r
ε
(

EτEn +EτEn

)

z
,

fn =
1

4

q
ε
(

|En|2 − ‖Eτ‖2
)y

,

(A.29)

respectively represent the tangential projection and the nor-
mal component of fΓ .

References

1. Ahmad, I.L., Ahmad, M.R.: Trends in characterizing sin-
gle cell’s stiffness properties. Micro Nano Syst Lett 2(8)
(2014). DOI 10.1186/s40486-014-0008-5

2. Asami, K.: Effectiveness of “thin-layer” and “effec-
tive medium” approximations in numerical simula-
tion of dielectric spectra of biological cell suspensions.
Jpn J Appl Phys 49(12R), 127,001 (2010). DOI
10.1143/JJAP.49.127001

3. Asami, K., Hanai, T., Koizumi, N.: Dielectric approach
to suspensions of ellipsoidal particles covered with a shell
in particular reference to biological cells. Jpn J Appl
Phys 19(2), 359–365 (1980). DOI 10.1143/JJAP.19.359

4. Bisegna, P., Caselli, F.: A simple formula for the effec-
tive complex conductivity of periodic fibrous composites
with interfacial impedance and applications to biological
tissues. J Phys D: Appl Phys 41, 115,506 (2008). DOI
10.1088/0022-3727/41/11/115506

5. Boey, S.K., Boal, D.H., Discher, D.E.: Simulations of the
erythrocyte cytoskeleton at large deformation. I. Micro-
scopic models. Biophys J 75(3), 1573–1583 (1998). DOI
10.1016/S0006-3495(98)74075-5

6. Bustamante, C., Bryant, Z., Smith, S.B.: Ten years of
tension: single-molecule DNA mechanics. Nature 421,
423–427 (2003). DOI 10.1038/nature01405

7. Caselli, F., Bisegna, P.: Polar decomposition based coro-
tational framework for triangular shell elements with dis-
tributed loads. Int J Numer Methods Eng 95(6), 499–528
(2013). DOI 10.1002/nme.4528

8. Caselli, F., Bisegna, P.: A corotational flat triangular el-
ement for large strain analysis of thin shells with appli-
cation to soft biological tissues. Comput Mech 54(3),
847–864 (2014). DOI 10.1007/s00466-014-1038-9



Effective computational modeling of erythrocyte electro-deformation 15

9. Caselli, F., Bisegna, P., Maceri, F.: EIT-inspired mi-
crofluidic cytometer for single-cell dielectric spectroscopy.
J Microelectromech Syst 19(5), 1029–1040 (2010). DOI
10.1109/JMEMS.2010.2067204

10. Caselli, F., Shaker, M., Colella, L., Renaud, P.,
Bisegna, P.: Modeling, simulation, and performance
evaluation of a novel microfluidic impedance cytome-
ter for morphology-based cell discrimination. J Mi-
croelectromech Syst 23(4), 785–794 (2014). DOI
10.1109/JMEMS.2014.2325979

11. Chen, J., Abdelgawad, M., Yu, L., Shakiba, N., Chien,
W.Y., Lu, Z., Geddie, W.R., Jewett, M.A.S., Sun, Y.:
Electrodeformation for single cell mechanical characteri-
zation. J Micromech Microeng 21, 054,012 (2011). DOI
10.1088/0960-1317/21/5/054012

12. Chiabrera, A., Nicolini, C.A., Schwan, H.P. (eds.): Inter-
actions between electromagnetic fields and cells. NATO
ASI. Series A: Life sciences. Plenum Press, New York
(1985)

13. Crisfield, M.A.: Non-linear Finite Element Analysis of
Solids and Structures, vol. 2: Advanced Topics. John
Wiley & Sons Ltd, Chichester (1997)

14. Dao, M., Li, J., Suresh, S.: Molecularly based analysis
of deformation of spectrin network and human erythro-
cyte. Mater Sci Eng C-Mater Biol Appl 26(8), 1232–1244
(2006). DOI 10.1016/j.msec.2005.08.020

15. Dao, M., Lim, C.T., Suresh, S.: Mechanics of the hu-
man red blood cell deformed by optical tweezers. J
Mech Phys Solids 51(11–12), 2259–2280 (2003). DOI
10.1016/j.jmps.2003.09.019

16. Di Carlo, D.: A mechanical biomarker of cell state in
medicine. J Lab Autom 17(1), 32–42 (2012). DOI
10.1177/2211068211431630

17. Discher, D.E., Boal, D.H., Boey, S.K.: Phase transitions
and anisotropic responses of planar triangular nets under
large deformation. Phys Rev E 55(4), 4762–4772 (1997).
DOI 10.1103/PhysRevE.55.4762

18. Discher, D.E., Boal, D.H., Boey, S.K.: Simulations of
the erythrocyte cytoskeleton at large deformation. II.
Micropipette aspiration. Biophys J 75(3), 1584–1597
(1998). DOI 10.1016/S0006-3495(98)74076-7

19. Do Carmo, M.P.: Differential geometry of curves and sur-
faces. Prentice Hall, Englewood Cliffs, NJ (1976)

20. Doh, I., Lee, W.C., Cho, Y.H., Pisano, A.P., Kuypers,
F.A.: Deformation measurement of individual cells in
large populations using a single-cell microchamber ar-
ray chip. Appl Phys Lett 100(17) (2012). DOI
10.1063/1.4704923

21. Du, E., Dao, M., Suresh, S.: Quantitative biomechanics
of healthy and diseased human red blood cells using di-
electrophoresis in a microfluidic system. Extr Mech Lett
1, 35–41 (2014). DOI 10.1016/j.eml.2014.11.006

22. Evans, E., Fung, Y.C.: Improved measurements of ery-
throcyte geometry. Microvasc Res 4(4), 335–347 (1972).
DOI 10.1016/0026-2862(72)90069-6

23. Fedosov, D.: Multiscale modeling of blood flow and soft
matter. Ph.D. thesis, Division of Applied Mathematics,
Brown University, USA (2010)

24. Fedosov, D.A., Caswell, B., Karniadakis, G.E.: A multi-
scale red blood cell model with accurate mechanics, rheol-
ogy, and dynamics. Biophys J 98(10), 2215–2225 (2010).
DOI 10.1016/j.bpj.2010.02.002

25. Felippa, C.A., Haugen, B.: A unified formulation of small-
strain corotational finite elements: I. Theory. Comput
Meth Appl Mech Eng 194(21–24), 2285–2335 (2005).
DOI 10.1016/j.cma.2004.07.035

26. Foster, K.R., Schwan, H.P.: Dielectric properties of tis-
sues and biological materials: a critical review. Crit Rev
Biomed Eng 17(2), 25–104 (1989)

27. Gawad, S., Cheung, K., Seger, U., Bertsch, A., Renaud,
P.: Dielectric spectroscopy in a micromachined flow cy-
tometer: theoretical and practical considerations. Lab
Chip 4, 241–251 (2004). DOI 10.1039/b313761a

28. Gossett, D.R., Tse, H.T.K., Lee, S.A., Ying, Y.,
Lindgren, A.G., Yang, O.O., Rao, J., Clark, A.T.,
Di Carlo, D.: Hydrodynamic stretching of single cells
for large population mechanical phenotyping. Proc
Natl Acad Sci 109(20), 7630–7635 (2012). DOI
10.1073/pnas.1200107109

29. Guido, I., Jaeger, M.S., Duschl, C.: Dielectrophoretic
stretching of cells allows for characterization of their me-
chanical properties. Eur Biophys J 40(3), 281–8 (2011).
DOI 10.1007/s00249-010-0646-3

30. Haque, M.M.: Elastic theory for the deformation of a
spherical dielectric biological object under electro-optical
trapping. RSC Adv 5(55), 44,458–44,462 (2015). DOI
10.1039/C5RA06125C

31. Helfrich, W.: Elastic properties of lipid bilayers: theory
and possible experiments. Z Naturforsch C 28(11), 693–
703 (1973)

32. Kim, D.H., Wong, P.K., Park, J., Levchenko, A., Sun,
Y.: Microengineered platforms for cell mechanobiology.
Annu Rev Biomed Eng 11, 203–233 (2009). DOI
10.1146/annurev-bioeng-061008-124915

33. Kirsch, A.: The domain derivative and two applications
in inverse scattering theory. Inverse Prob 9(1), 81–96
(1999). DOI 10.1088/0266-5611/9/1/005

34. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Contin-
uous Media, Course of Theoretical Physics, vol. 8, second
edn. Pergamon, Amsterdam (1984)

35. Lee, J.C.M., Wong, D.T., Discher, D.E.: Direct measures
of large, anisotropic strains in deformation of the ery-
throcyte cytoskeleton. Biophys J 77(2), 853–864 (1999).
DOI 10.1016/S0006-3495(99)76937-7

36. Leung, S.L., Lu, Y., Bluestein, D., Slepian, M.J.:
Dielectrophoresis-mediated electrodeformation as a
means of determining individual platelet stiffness. Ann
Biomed Eng pp. 1–11 (2015). DOI 10.1007/s10439-015-
1383-7

37. Li, J., Dao, M., Lim, C.T., Suresh, S.: Spectrin-level mod-
eling of the cytoskeleton and optical tweezers stretching
of the erythrocyte. Biophys J 88(5), 3707–3719 (2005).
DOI 10.1529/biophysj.104.047332

38. Lim, C.T., Dao, M., Suresh, S., Sow, C.H., Chew,
K.T.: Corrigendum to “Large deformation of living
cells using laser traps” [Acta Mat 52(7), 1837–1845
(2004)]. Acta Mat 52(13), 4065–4066 (2004). DOI
10.1016/j.actamat.2004.05.016

39. Lim, C.T., Dao, M., Suresh, S., Sow, C.H., Chew,
K.T.: Large deformation of living cells using laser
traps. Acta Mat 52(7), 1837–1845 (2004). DOI
10.1016/j.actamat.2004.05.016

40. MacQueen, L.A., Buschmann, M.D., Wertheimer, M.R.:
Mechanical properties of mammalian cells in suspen-
sion measured by electro-deformation. J Micromech
Microeng 20(6), 065,007 (2010). DOI 10.1088/0960-
1317/20/6/065007

41. Marko, J.F., Siggia, E.D.: Stretching DNA. Macro-
molecules 28(26), 8759–8770 (1995). DOI
10.1021/ma00130a008

42. Mills, J.P., Qie, L., Dao, M., Lim, C.T., Suresh, S.: Non-
linear elastic and viscoelastic deformation of the human



16 Nicola A. Nodargi et al.

red blood cell with optical tweezers. Mech Chem Biosyst
1(3), 169–180 (2004)
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