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SUMMARY
This paper estimates food Engel curves using data from the first wave of the Survey on Health, Aging
and Retirement in Europe (SHARE). Our statistical model simultaneously takes into account selectivity
due to unit and item nonresponse, endogeneity problems, and issues related to flexible specification of
the relationship of interest. We estimate both parametric and semiparametric specifications of the model.
The parametric specification assumes that the unobservables in the model follow a multivariate Gaussian
distribution, while the semiparametric specification avoids distributional assumptions about the unobservables.
Copyright  2011 John Wiley & Sons, Ltd.

1. INTRODUCTION

Starting with the pioneering work of Engel (1857), the link between household food expenditure
and household income, or food Engel curve, has been one of the most investigated economic
relationships. The study of Engel curves, however, is subject to a number of problems that are
still unsettled.

First, there are theoretical and empirical reasons for avoiding the assumption that observed
household income is exogenous. According to economic theory, household income is an outcome
of the utility maximization problem faced by the household because it reflects choices, such as
labor and saving decisions by its members, that are jointly made with consumption expenditure
decisions (see, for example, Blundell et al., 2007). Problems of endogeneity also arise because
measuring household income is not easy and may be subject to error (Hausman et al., 1991; Newey,
2001). In either case, estimation of the parameters of an Engel curve requires the availability of
a suitable set of instruments to control for endogeneity bias.

Second, recent developments in the nonparametric literature have emphasized the importance
of relaxing strong parametric assumptions about the shape of Engel curves. Popular models of
consumer demand, such as the Almost Ideal Demand System (AIDS) of Deaton and Muellbauer
(1980) and the Translog of Jorgenson et al. (1982), force budget shares to be linear in the logarithm
of household income. The Quadratic AIDS (QUAIDS) of Banks et al. (1997) generalizes the above
systems by allowing the effect of household income to be nonmonotonic but still parametric.
More recent studies by Blundell et al. (2003, 2007) and Imbens and Newey (2009) focus on
nonparametric methods to capture the observed patterns of consumer behavior for certain categories
of consumption expenditure.

A third problem that plagues empirical studies based on survey data is nonresponse. It is
important to distinguish between two types of nonresponse. The first—unit nonresponse—occurs
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when eligible sample units fail to participate in a survey because of noncontact or explicit refusal to
cooperate. The second—item nonresponse—occurs when responding units do not provide useful
answers to particular items of the survey instrument. This is often the case with household income
and expenditure, as both variables are typically collected through a number of open-ended and
retrospective questions that are sensitive and difficult to answer precisely.

The distinction between unit and item nonresponse is important for data users because they may
improve model specification by exploiting the different information available, at least in principle,
for the two types of nonresponse. For unit nonresponse this information is necessarily confined to
that obtained from the sampling frame or the data collection process, whereas for item nonresponse
one can use the additional information collected during the interview.

The distinction is also important at the survey design stage, where resources have to be allocated
efficiently to reduce the various sources of nonsampling error. Well-designed surveys aim to reduce
unit nonresponse by appropriately choosing fieldwork procedures, interview modes, interviewer
training and incentive schemes. Several studies (see, for example, Groves and Couper, 1998;
Groves et al., 2002; Riphahn and Serfling, 2005) show that these characteristics help predict the
response rates attained in a survey. For item nonresponse, aspects of questionnaire design (e.g.
length of the interview, wording and reference period for the questions, etc.) may also be important.

This paper is mainly concerned with problems of nonresponse in the first wave of a panel
survey, where nonresponse rates are typically much higher than in subsequent waves. Despite its
relevance, nonresponse in the first wave of a panel has received little attention in the literature
relative to panel attrition, largely because of the lack of information on unit nonrespondents and
on the interview process. The data analyzed in this paper, namely the first wave of the Survey on
Health, Aging and Retirement in Europe (SHARE), represent an important exception because of
the richness of the information provided on both unit nonrespondents and the interview process.

Unfortunately, despite the preventive measures adopted in many sample surveys, response rates
are rarely close to 100%. This may explain why most of the survey nonresponse literature focuses
on statistical methods for ex post adjustments (see Lessler and Kalsbeek, 1992; Little and Rubin,
2002). These adjustments typically require assumptions about the nature of the missing data
mechanism. Following Rubin (1976), we say that data on an outcome of interest are missing
completely at random (MCAR) if missingness depends on neither the observed outcome nor the
observed covariates, are missing at random (MAR) if after conditioning on the observed covariates
there is no relation between missingness and the observed outcome, and are not missing at random
(NMAR) if missingness and the observed outcome are related even after conditioning on the
observed covariates.

The MAR assumption is the basis of most common ways of handling unit and item nonresponse.
Weighting procedures, which involve assigning weights to sample respondents to compensate for
systematic differences relative to nonrespondents, have typically been used to deal with unit
nonresponse. Imputation procedures, which fill in missing values to produce a completed dataset,
have typically been used to deal with item nonresponse. Although weighting and imputation
procedures represent the standard practice, they are not immune from criticism. First, relying on
the MAR assumption when the underlying missing data mechanism is NMAR may lead to invalid
inference about the population parameters of interest. The MAR assumption may be particularly
restrictive in the case of unit nonresponse because of the limited information available to construct
sample weights. Second, as pointed out by Heckman and Navarro (2004), the available procedures
offer little guidance on how to pick the covariates that should account for sample selection and
are not robust to the choice of the conditioning set.

Our paper differs from previous studies in several respects. First, we consider problems of
selectivity due to both unit and item nonresponse, and we analyze these problems jointly. Second,
we allow the missing data mechanism underlying the two types of nonresponse to be NMAR.
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Third, we simultaneously address issues of flexible specification of the regression function of
interest and problems of nonresponse and endogeneity by using an extended sample selection
model where a partially linear specification of the food Engel curve is subject to selectivity
due to unit and item nonresponse and endogeneity of household income. Our model is closely
related to the sample selection model analyzed by Das et al. (2003) (henceforth DNV). The main
difference with respect to DNV is partial observability of one of the selection indicators, as item
response behavior cannot be observed for those who are unit nonrespondents. We focus attention
on two alternative specifications of the model, one parametric and the other semiparametric.
The parametric specification is easy to estimate but relies on the strong assumption that the
unobservables in the model follow a multivariate Gaussian distribution with zero mean and
nondiagonal covariance matrix. The semiparametric specification is more appealing, for it avoids
distributional assumptions.

The remainder of this paper is organized as follows. Section 2 describes our data. Section 3
presents the statistical model that we use to estimate the food Engel curve under endogeneity
of household income and selectivity due to unit and item nonresponse. Section 4 describes our
empirical results. Finally, Section 5 offers some conclusions.

2. DATA

Our data are from Release 2.1 of the first wave of the Survey of Health, Aging and Retirement
in Europe (SHARE), a multidisciplinary and cross-national biannual household panel survey
coordinated by the Mannheim Research Institute for the Economics of Aging (MEA). The survey
collects data on health, socio-economic status, and social and family networks for nationally
representative samples of elderly people in the participating countries.

The first wave, conducted in 2004, covers about 19,500 households and about 28,500 individuals
in 11 European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, the
Netherlands, Spain, Sweden and Switzerland). The target population consists of people aged 50
and older living in residential households, plus their (possibly younger) spouse/partner. National
samples are selected through probability sampling, but sampling procedures are not completely
standardized across countries. We only consider the countries (Denmark, Italy, the Netherlands,
Spain, and Sweden) for which the sampling frame contains basic information on the individuals
selected for interview, namely their gender and year of birth. The interview mode adopted by
SHARE is computer-assisted personal interviewing (CAPI), supplemented by show-cards and a
self-administered paper-and-pencil questionnaire. Except for Denmark, all national samples consist
of a main sample (on average about 80% of the total sample) and a vignette sample (the remaining
20%).1 For the vignette sample, who were interviewed later than the main sample, a section of
the self-administered questionnaire was replaced by one with anchoring vignette questions.2

Like most other sample surveys, the first wave of SHARE is affected by substantial unit
nonresponse. Table I presents summary statistics on survey participation. Of the 15,895 households
selected for interview, only 8750 agreed to participate, corresponding to an unweighted household
response rate of 55%. Household response rates vary considerably by country and sample type,
ranging from a minimum of 47% for the Swedish main sample to a maximum of 67% for the
Danish main sample. As for the reasons for household nonresponse, refusal to participate represents
about three-quarters of the cases, noncontact about one-quarter.

1 In Sweden, the main sample also included a supplementary sample which was fielded to increase the number of completed
interviews.
2 Additional methodological details about survey organization, sampling design, response rates, weighting and imputation
strategies can be found in Börsch-Supan and Jürges (2005).
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Table I. Summary statistics on household survey participation by country and sample type

Country Sample type Eligible Interviewed Response rate Noncontact rate Refusal rate

DK Main 1748 1174 0.67 0.05 0.28
ES Main 2620 1339 0.51 0.19 0.30

Vignette 683 414 0.61 0.13 0.26
IT Main 2502 1376 0.55 0.10 0.35

Vignette 677 374 0.55 0.12 0.33
NL Main 2517 1563 0.62 0.09 0.29

Vignette 657 391 0.60 0.10 0.31
SE Main 3951 1850 0.47 0.14 0.39

Vignette 540 269 0.50 0.11 0.40
All Main 13 338 7302 0.55 0.12 0.33

Vignette 2557 1448 0.57 0.11 0.32
Total 15 895 8750 0.55 0.12 0.33

For the households that agreed to participate in the survey, the SHARE interview collects
data on household consumption expenditure through retrospective open-ended questions on three
consumption categories (food at home, food outside home, and phone) and on total nondurable
consumption. These questions are asked of a single ‘household respondent’, namely the eligible
person who is most knowledgeable about housing matters. We focus on the food share, namely
the ratio of household food expenditure to total household income.3 Both the numerator and the
denominator of the ratio are generated variables; that is, they are not asked directly but are obtained
by aggregating a number of separate components. Food expenditure in the numerator is obtained
by adding up household expenditure on food at home and outside home, whereas total household
income in the denominator is obtained by aggregating 19 income components collected at the
individual level and six income components collected at the household level. Table II summarizes
the complex process underlying item nonresponse by providing the unweighted item response rates
on food expenditure, total household income, and food share by country and sample type. These
generated variables are regarded as missing if any of their components is missing. Based on this
definition, the cross-country average of item nonresponse rates is 18% for food expenditure, 64%
for household income, and 68% for the food share, with considerable variation across countries. In
particular, the item nonresponse rate on food share ranges from a minimum of 57% in Denmark to
a maximum of 77% in Spain. Overall, the complete-case subsample consists of 2805 households.

The most important reason for missing data on food share is item nonresponse to questions
about income components. This reflects two problems. The first is simply the large number of
income components considered in SHARE. The second arises because, according to the SHARE
fieldwork rules, a household with two spouses is considered as interviewed if at least one of them
agrees to participate. If the other does not, then household income must be imputed because the
incomes of the nonresponding spouse are missing. This ‘missing spouse problem’, which affects
26% of the households in the survey, induces a negative correlation between the indicators of unit
and item nonresponse.

The public-use SHARE data include a set of weights to account for unit nonresponse and a set
of imputations to account for item nonresponse. The weights are constructed using the calibration
methodology of Deville and Särndal (1992), while the imputations are constructed using the
multivariate iterative procedure of Buuren et al. (2006), which attempts to preserve the correlation

3 We do not divide food expenditure by total nondurable consumption expenditure because this variable is likely to be
severely understated (Browning and Madsen, 2005). Browning et al. (2003) and Winter (2004) argue that ‘one-shot’
retrospective questions do not provide reliable measures of consumption expenditure aggregates. This may explain why
total nondurable consumption expenditure has been excluded from the set of imputed variables provided by SHARE.
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Table II. Unweighted item response rates by country and sample type

Country Sample type Eligible Respondents Item response rate

Food Income Share Food Income Share

DK Main 1174 934 565 506 0.80 0.48 0.43
ES Main 1339 927 382 309 0.69 0.29 0.23

Vignette 414 290 121 95 0.70 0.29 0.23
IT Main 1376 1107 526 449 0.80 0.38 0.33

Vignette 374 298 139 119 0.80 0.37 0.32
NL Main 1563 1318 512 467 0.84 0.33 0.30

Vignette 391 329 115 106 0.84 0.29 0.27
SE Main 1850 1694 690 652 0.92 0.37 0.35

Vignette 269 261 102 102 0.97 0.38 0.38
All Main 7302 5980 2675 2383 0.82 0.37 0.33

Vignette 1448 1178 477 422 0.81 0.33 0.29
Total 8750 7158 3152 2805 0.82 0.36 0.32

structure of the imputed data. The validity of these ex post statistical adjustments relies crucially
on the assumption that the missing data mechanism underlying unit and item nonresponse are
MAR after conditioning on a suitable set of auxiliary variables. The set of auxiliary variables used
to calibrate the weights consists of gender and age class of the sampled household member.4 For
imputations, a much larger set of auxiliary variables is used, as one can exploit the additional
information collected in other parts of the interview.

3. STATISTICAL MODEL

Our statistical model is closely related to the extended sample selection model presented in Section
2.4 of DNV and further extended in Klein et al. (2010). Both models involve multiple selection
mechanisms and allow for endogeneity, with the relationship between the endogenous variables
specified as a triangular simultaneous equation system. The main difference between our model
and the one in DNV is the nature of the sample selection mechanism. In DNV, all selection
indicators are observed. In our case, individuals selected for interview first decide whether to
participate in the survey and then, given participation, they decide whether to answer the questions
on income and food expenditure. Thus item nonresponse can only be observed for those who are
unit respondents. Another difference is that, to avoid curse of dimensionality problems, we restrict
the way endogenous variables enter the model by making index function assumptions and by
imposing a partially linear structure on the food Engel curve.

3.1. Model Specification

We assume that our data are a random sample from a model with four latent endogenous variables
representing, respectively, the willingness to participate in the survey (YŁ

1), the willingness to
answer the questions on income and food expenditure (YŁ

2), the logarithm of household income
(YŁ

3) and the food share (YŁ
4). The first three latent variables obey linear models of the form

YŁ
j D ˇ>

j Xj CUj, j D 1, 2, 3

4 In Denmark and Italy, auxiliary variables also include a set of indicators for geographical area.
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where ˇj is a vector of kj unknown parameters, Xj is a vector of exogenous variables and Uj is
a random error. The fourth latent variable obeys instead the partially linear model

YŁ
4 D ˇ>

4 X4 C g�YŁ
3�CU4 �1�

where ˇ4 is a vector of k4 unknown parameters, X4 is a vector of exogenous variables, g is an
unknown smooth function and U4 is a random error.

Equation (1) allows for flexible income effects and includes as special cases well-known
parametric specifications of the Engel curve. For example, when the function g is linear we
obtain the specification adopted in the AIDS, and when g is quadratic we obtain the specification
adopted in the QUAIDS. Equation (l) could be further generalized to allow for more flexible
household composition effects while retaining consistency with the integrability conditions of
consumer theory. An example is the extended partially linear model of Blundell et al. (2003,
2007), where an index of the socio-demographic variables in X4 enters the unknown function g.

The observed endogenous variables are related to the latent endogenous variables through
different observational rules. The observed indicator of unit response, Y1, is equal to one for
those with a positive willingness to participate in the survey, and is equal to zero otherwise.
Similarly, the observed indicator of item response on food share, Y2, is equal to one for those
with a positive willingness to answer the questions on income and food expenditure, and is equal
to zero otherwise, but is only available for those with a positive willingness to participate in the
survey, namely those with Y1 D 1. Finally, one observes household income Y3 and food share
Y4 only for those who are willing to participate in the survey and to answer the questions on
income and food expenditure; that is, Y3 D YŁ

3 and Y4 D YŁ
4 whenever Y1Y2 D 1. Selectivity and

endogeneity operate through the correlations between the unobservable errors. In particular, for
the Engel curve (1), selectivity due to unit and item nonresponse is captured by the correlation of
U4 with U1 or U2, while endogeneity is captured by the correlation of U4 with U3.

Our aim is to obtain consistent estimates of the parameters in the Engel curve (1) from
the subsample of complete cases, namely those for which Y1Y2 D 1. Because of the potential
correlation between the unobservables in the model, we have5

E�Y3jY1 Y2 D 1� D �3 C h��1, �2� �2�

E�Y4jY1 Y2 D 1, Y3� D �4 C g�Y3�C l��1, �2, U3� �3�

where �j D ˇ>
j Xj, j D 1, 2, 3, 4, and

h��1, �2� D E�U3jU1 > ��1, U2 > ��2�

l��1, �2, U3� D E�U4jU1 > ��1, U2 > ��2, U3�

The functions h and l are bias correction terms that account, respectively, for sample selection
in the equation for household income, and sample selection and endogeneity in the Engel curve
relationship. Ignoring these terms would lead to inconsistent estimates of the parameters of
interest. Our approach to estimation is a simple generalization of the classical Heckman’s two-step
procedure (Heckman, 1979) and uses estimates of h and l as control functions to correct for both
sample selection and endogeneity.

Although assumptions on the distribution of the error terms are not the main concern when
estimating ordinary regression models, they play a crucial role when estimating models with

5 Throughout this section, conditioning on the set of exogenous covariates is kept implicit to simplify notation.

Copyright  2011 John Wiley & Sons, Ltd. J. Appl. Econ. (2011)
DOI: 10.1002/jae



ENGLE CURVES UNDER NONRESPONSE

sample selection. Semiparametric approaches avoid imposing distributional assumptions by leaving
the functions h and l unspecified. The two functions are treated as infinite-dimensional nuisance
parameters and are estimated together with the other parameters of interest. Parametric approaches
instead assume that h and l are known up to a finite-dimensional parameter vector. Although
analytically tedious to derive, the parametric approach provides a useful benchmark for our
semiparametric estimators. It also helps in the development of semiparametric specifications which
nest the parametric ones and allow easy ways of testing the underlying distributional assumptions.

Our parametric specification assumes that the error vector U D �U1,U2,U3, U4� follows a
multivariate Gaussian distribution with zero mean and nondiagonal covariance matrix. Under this
assumption, Poirier (1980) showed that

h��1, �2� D �3 �13 h1��1, �2�C �3 �23 h2��1, �2� �4�

where �3 is the standard deviation of U3, �jk is the correlation coefficient between Uj and Uk ,
and

hj��1, �2� D
[

���j�

2��1, �2; �12�

]



�k � �12 �j√

1 � �2
12


 , j D 1, 2, k 6D j

with ��Ð� and �Ð� denoting the density and the distribution function of the N�0, 1� distribution,
and 2�Ð, Ð; �� denoting the distribution function of the bivariate Gaussian distribution with zero
mean, unit variances and correlation coefficient �. Note that hj��1, �2� reduces to the usual inverse
Mill’s ratio when �12 D 0. The form of the function l is slightly more complicated because of the
correlation �34 between U3 and U4. One can show that6

l��1, �2,U3� D �4j3 �14j3 l1��1, �2, U3�C �4j3 �24j3 l2��1, �2, U3�C �4

�3
�34 U3 �5�

where �jjk is the standard deviation of the conditional distribution of Uj given Uk , �jkjs is the
conditional correlation of Uj and Uk given Us, and lj has the same form as hj with �12 replaced
by �12j3 and �j by �Ł

j D ��j C �j3 U3/�3�/�3jj.

3.2. Identification

The sequential structure of the model facilitates its identification. It is sufficient that, at each stage,
there exists at least one variable that does not affect the outcomes at later stages.

The index �1 is always identified up to location and scale, provided the conditions in Manski
(1988) are satisfied. Identification of �2 in the item response equation requires that X1 contains at
least one variable that is not contained in X2 (Lee, 1995). The same set of exclusion restrictions is
needed for parametric identification of the model (Meng and Schmidt, 1985). As long as �1 and
�2 are identified from the two selection equations, they can be used to identify �3 in the equation
for household income. The unrestricted form of the bias correction term h requires that X1 and X2

each contains at least one variable that is not contained in X3. As shown by DNV, this condition
is sufficient to identify �3 up to an additive constant. This set of exclusion restrictions is not
necessary for parametric identification of the model, as �3 could in principle be identified through
the nonlinearity of h1 and h2 in (4). Because these terms may be linear over a wide range of their
arguments, this way of achieving identification is not very appealing. Thus exclusion restrictions

6 The proof is available from the authors on request.
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are also crucial in the parametric case. Finally, given �1, �2 and �3, we can identify �4 and
the function g in the Engel curve up to an additive constant. The unrestricted form of the bias
correction term l further requires that X1, X2 and X3 each contains at least one variable that is
excluded from X4.

Our set of exclusion restrictions guarantees identification of all the model parameters except the
intercepts. Those in the two selection equations can be absorbed into the unknown distribution
functions of the error terms and are not separately identified. This means that some location
restriction is needed on either the distributions of U1 and U2, or on the systematic part of the
two selection equations. The first alternative is complicated when the errors are correlated, so we
follow Melenberg and van Soest (1996) and set the intercepts in ˇ1 and ˇ2 to their parametric
estimates. Under certain conditions, the intercepts in ˇ3 and ˇ4 can be identified through the
concept of identification at infinity (Heckman, 1990) and estimated through generalizations of the
approach developed by Andrews and Schafgans (1998). In our empirical application, we avoid the
problem by focusing on the weighted average derivative of the function g. This is an important
parameter to consider because it provides a measure of the average slope of the Engel curve.

3.3. Predictors and Exclusion Restrictions

A unique feature of SHARE is the detailed information it offers on the sampling frame, the
survey agencies, and the fieldwork. By matching these three sources, the variables available to
predict unit nonresponse include background characteristics of the household members selected
for interview (years of age and gender), interviewers’ characteristics (years of age, gender and
years of education), and characteristics of the fieldwork. For households approached by more
than one interviewer, we always use the information on the first interviewer. This helps avoid
problems of endogeneity of interviewer-level variables that may arise because of the widespread
fieldwork strategy of switching to more experienced interviewers when there are difficulties in
making contact and gaining respondents’ cooperation.

For responding households, we can relate item nonresponse to socio-demographic characteristics
and measures of cognitive ability of the respondents, features of the data collection process and
characteristics of the interviewers. Our set of socio-demographic characteristics includes age,
gender, years of education and marital status of the household respondent, age of the partner,
household size, number of children aged less than 18 years, and an indicator for living in small
cities. Cognitive abilities of the household respondent are measured by the scores obtained in
the mathematical, orientation in time, recall, and fluency tests carried out during the SHARE
interview. We also include measures of the burden of the interview, namely indicators for proxy
interviews, interviews conducted outside home, and cases where the household respondent often
asked for clarification. Identifiability of the parameters in the equation for item nonresponse is
achieved by assuming that the fieldwork variables (the dummies for the vignette sample and the
Swedish supplementary sample, the measure of delay in the contact process, and the dummy for
the presence of an answering machine) help explain household survey participation but not item
nonresponse on food share.

The right-hand side variables in the reduced-form equation for household income consist only
of socio-demographic characteristics and measures of cognitive ability of the respondents. As sug-
gested by Fitzgerald et al. (1998) and Nicoletti and Peracchi (2005), interviewers’ characteristics
and features of the fieldwork and the interview process provide the required set of exclusion
restrictions. Since these variables are external to the individuals under investigation and are not
under their control, one may expect them to be irrelevant for household income and food share. On
the other hand, results from several validation studies suggest that these variables are important
predictors of both unit and item nonresponse.
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Finally, the right-hand-side variables in the Engel curve equation consist only of log household
income and socio-demographic characteristics. In this case, identification is attained by excluding
the measures of cognitive ability of the household respondent. This corresponds to the reasonable
assumption that, after controlling for education of the household respondent, his/her cognitive
abilities help predict household income but do not help predict the food share.

Given the high level of comparability of the SHARE data, we pool data from the various
countries but include country dummies interacted with NUTS1 regional indicators to capture
unobserved heterogeneity at the country and regional level. Pooling the data allows us to increase
efficiency of estimation and helps reduce problems of collinearity due to the limited within-country
variability of variables such as the characteristics of the fieldwork and the interviewers. Definitions
and summary statistics of all relevant variables are presented in Table III. After dropping a few
cases with missing data on the covariates, our estimation sample consists of 15,643 households,
of which 8565 (55%) agreed to participate in the survey and 2777 (18%) provided the information
needed to compute the food share.

3.4. Estimation

Estimation is carried out in three steps. In the first step, we estimate the parameters of the unit and
the item nonresponse equations using the semi-nonparametric (SNP) approach proposed by Gallant
and Nychka (1987).7 The resulting estimator generalizes the conventional maximum likelihood
(ML) estimator for the bivariate probit model with sample selection by relaxing the assumption
that U1 and U2 are jointly Gaussian.

In the second step, we estimate equation (2) for household income accounting for sample
selection due to unit and item nonresponse. In the Gaussian case, this step coincides with the
second step of the procedure developed by Poirier (1980) and Ham (1982), with the bias correction
term h specified as in (4). In the semiparametric case, h is instead approximated by a power
series estimator. Following DNV, we use series estimators because of their relative simplicity
and computational advantage, although kernel regression methods could alternatively be used
(Robinson, 1988).

Finally, in the third step, we estimate the conditional mean (3) accounting for both sample
selection due to nonresponse and endogeneity of household income. In this case, the parametric
approach leads to a simple ordinary least squares (OLS) regression based on a known functional
form for g and the specification (5) for l. Our semiparametric approach instead uses series
estimators for both g and l. In addition to the fully parametric and semiparametric approaches,
we also consider intermediate approaches in which only one of the two functions is estimated
nonparametrically. More details on our three-step procedure are provided in the Appendix.

4. EMPIRICAL RESULTS

We present the results separately for each of the three steps of our estimation procedure.

4.1. First Step

Tables IV and V show the estimates of the parameters in the unit and item nonresponse equations.
The two equations are estimated jointly by ML probit and by our SNP estimator. For the latter,

7 An alternative approach is the semiparametric maximum likelihood (SML) estimator of Lee (1995). This estimator is
more computationally demanding than the SNP estimator since kernel regression must be conducted at each step of
the likelihood maximization process. Furthermore, the Monte Carlo evidence in De Luca (2008) suggests that the SNP
estimator has better finite sample performance.
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Table III. Definitions and summary statistics for the main variables

Variable Description Symbol Obs. Mean SD

particip Dummy for household survey participation Y1 15,895 0.55 0.50
item resp Dummy for item response on food share Y2 8750 0.32 0.47
ln income PPP-adj0. household income Y3 3152 100.08 0.78
food share Food share Y4 2805 0.23 0.20
age SHM Age of SHM X1 15,895 650.18 100.73
female SHM Dummy for female SHM X1 15,895 0.55 0.50
vignette Dummy for vignette sample X1 15,895 0.16 0.37
supplement Dummy for Swedish supplementary sample X1 15,895 0.06 0.23
ans0. machine Dummy for presence of answering machine X1 15,895 0.02 0.15
delay Measure of delay in the contact process X1 15,895 0.46 0.32
female IV Dummy for female IV X1, X2 15,894 0.74 0.44
age IV Age of IV X1, X2 15,894 490.26 110.81
educ IV IV years of education X1, X2 15,828 130.45 20.86
DK Dummy for Denmark X1, X2, X3, X4 15,895 0.11 0.31
ES Dummy for Spain X1, X2, X3, X4 15,895 0.21 0.41
ES nuts1 Dummy for Spain–Region 1 X1, X2, X3, X4 15,895 0.02 0.13
ES nuts2 Dummy for Spain–Region 2 X1, X2, X3, X4 15,895 0.02 0.14
ES nuts3 Dummy for Spain–Region 3 X1, X2, X3, X4 15,895 0.03 0.17
ES nuts4 Dummy for Spain–Region 4 X1, X2, X3, X4 15,895 0.03 0.16
ES nuts6 Dummy for Spain–Region 6 X1, X2, X3, X4 15,895 0.05 0.21
ES nuts7 Dummy for Spain–Region 7 X1, X2, X3, X4 15,895 0.01 0.11
IT Dummy for Italy X1, X2, X3, X4 15,895 0.20 0.40
IT nuts2 Dummy for Italy–Region 2 X1, X2, X3, X4 15,895 0.04 0.20
IT nuts3 Dummy for Italy–Region 3 X1, X2, X3, X4 15,895 0.04 0.20
IT nuts4 Dummy for Italy–Region 4 X1, X2, X3, X4 15,895 0.04 0.20
IT nuts5 Dummy for Italy–Region 5 X1, X2, X3, X4 15,895 0.02 0.14
NL Dummy for Netherlands X1, X2, X3, X4 15,895 0.20 0.40
NL nuts1 Dummy for Netherlands–Region 1 X1, X2, X3, X4 15,895 0.03 0.17
NL nuts2 Dummy for Netherlands–Region 2 X1, X2, X3, X4 15,895 0.03 0.17
NL nuts4 Dummy for Netherlands–Region 4 X1, X2, X3, X4 15,895 0.04 0.20
proxy Dummy for proxy interview X2 8750 0.11 0.31
clarif Dummy for often asked clarifications X2 8750 0.08 0.28
outside Dummy for interview outside home X2 8750 0.04 0.20
orient HR score on orientation in time (1–5) X2, X3 8703 30.76 0.67
math HR score on math (1–5) X2, X3 8690 30.21 10.18
recall HR score on delayed recall (0–10) X2, X3 8642 30.23 20.04
fluency HR score on fluency (0–88) X2, X3 8604 180.40 70.42
age Age of HR X2, X3, X4 8750 640.90 100.49
female Dummy for female HR X2, X3, X4 8750 0.55 0.50
education HR years of education X2, X3, X4 8728 90.14 40.53
single Dummy for HR living as single X2, X3, X4 8740 0.32 0.47
age spouse Age of spouse/partner X2, X3, X4 8740 630.17 80.26
hsize Household size X2, X3, X4 8750 20.16 10.05
children Number of children X2, X3, X4 8743 0.09 0.37
small city Dummy for household living in small city X2, X3, X4 8750 0.21 0.41

Note: SHM, sampled household member; HR, household respondent; IV, interviewer.

we considered four alternative specifications obtained by varying the degree K of the Hermite
polynomial expansion (5) in the Appendix. For brevity, we present the results for the most
parsimonious specification with K D �3, 3�, which is the one selected by BIC. In Section 4.4
we discuss the sensitivity of our three-step estimator to the choice of K.

The estimated coefficients from the probit and the SNP estimators are not directly comparable,
because in the former the variances of U1 and U2 are normalized to one, while in the latter they
are unconstrained functions of the Hermite polynomial parameters in � . Thus we compare ratios
of the estimated coefficients, dividing the coefficients in the equation for unit nonresponse by the
coefficient on the variable that measures delay in the contact process, and the coefficients in the
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Table IV. First-step estimates of the unit response equation

Variable Bivariate probit Bivariate SNP

female SHM �0.001 0.011
age SHM �0.009ŁŁ �0.009ŁŁ
female IV 0.085 0.300ŁŁ
age IV 0.013ŁŁ 0.010ŁŁ
educ IV �0.044ŁŁ �0.041ŁŁ
vignette 0.090 0.038
supplement �0.374ŁŁ �0.320ŁŁ
ans. machine 0.227 0.226Ł
DK 1.129ŁŁ 1.247ŁŁ
ES �0.020 0.003
ES nuts1 0.578Ł 0.450Ł
ES nuts2 1.080ŁŁ 1.073ŁŁ
ES nuts3 �0.460Ł �0.711Ł
ES nuts4 1.039ŁŁ 1.164ŁŁ
ES nuts6 0.984ŁŁ 1.123ŁŁ
ES nuts7 0.043 0.011
IT �0.064 0.018
IT nuts2 0.387Ł 0.400ŁŁ
IT nuts3 0.723ŁŁ 0.575ŁŁ
IT nuts4 0.928ŁŁ 0.947ŁŁ
IT nuts5 0.473Ł 0.447Ł
NL 0.372ŁŁ 0.473ŁŁ
NL nuts1 0.333Ł 0.455
NL nuts2 0.555ŁŁ 0.643ŁŁ
NL nuts4 0.590ŁŁ 0.845ŁŁ

T1 18.08ŁŁ
Skewness 0.16
Kurtosis 1.78ŁŁ

Note: The models are estimated jointly with those presented in Table V. Asterisks denote a Ł p-value between 5% and 1%,
and a ŁŁ p-value below 1%). Results are based on the normalization jˇdelayj D 1. Standard errors of normalized coefficient
are computed through the delta method. T1 is the likelihood ratio statistic for testing Gaussianity and has 1 d.f. Sample
size n1 D 15, 643.

equation for item nonresponse by the coefficient on the dummy for being single. The standard
errors of these ratios are computed through the delta method.

Other things being equal, we find that the probability of survey participation falls with the
age of the sampled household member and is significantly lower for households without an
answering machine and for those belonging to the Swedish supplementary sample. Interviewers’
characteristics are important predictors of survey participation. Being approached by a female
interviewer significantly increases the probability of participation. We also find that participation
is associated positively with the interviewer’s age and negatively with the interviewer’s years
of education. The estimated coefficients on the country dummies and their interactions with the
regional indicators further suggest an important role for unobservable regional differences in
sample composition and fieldwork strategy. The assumption that the error in the unit nonresponse
equation is Gaussian is rejected at the 1% level by a likelihood ratio test which compares univariate
versions of the SNP and probit models, as in Gabler et al. (1993). According to our preferred SNP
specification, the estimated error density exhibits significantly lower kurtosis than the standard
normal distribution.

For item nonresponse on food share, we find significantly lower response probabilities for
households living in small cities or with a female household respondent. Response probabilities
are also negatively associated with the age of the household respondent and with the household
size, and positively associated with the scores on the cognitive ability tests and the age of the
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Table V. First-step estimates of the equation for item response to food share

Variable Bivariate probit Bivariate SNP

female �0.524ŁŁ �0.490ŁŁ
age �0.012 �0.014ŁŁ
age spouse 0.030ŁŁ 0.027ŁŁ
hsize �0.149ŁŁ �0.149Ł
children 0.050 0.057
small city �0.584ŁŁ �0.648ŁŁ
education �0.022Ł �0.024Ł
orient 0.207ŁŁ 0.238ŁŁ
math 0.007 0.008
recall 0.057Ł 0.036
fluency 0.005 0.007
female IV �0.002 0.009
age IV 0.002 0.009Ł
educ IV 0.016 0.003
proxy 0.259Ł 0.305Ł
clarif �0.181 �0.173
outside �0.430Ł �0.340
DK �0.561 0.064
ES 0.194 0.375
ES nuts1 �0.810 �0.494
ES nuts2 �3.133ŁŁ �2.717ŁŁ
ES nuts3 �1.117Ł �0.427
ES nuts4 �2.693ŁŁ �2.276ŁŁ
ES nuts6 �1.832ŁŁ �1.481ŁŁ
ES nuts7 �0.333 �0.485
IT �0.821ŁŁ �0.956ŁŁ
IT nuts2 0.568 1.045ŁŁ
IT nuts3 0.048 0.712Ł
IT nuts4 1.160Ł 1.776ŁŁ
IT nuts5 1.063Ł 1.522ŁŁ
NL �1.042ŁŁ �0.758ŁŁ
NL nuts1 0.350 0.577Ł
NL nuts2 �0.214 0.085
NL nuts4 �0.072 0.085
T2 3.38
Skewness 0.68ŁŁ
Kurtosis 2.44
�12 �0.86ŁŁ �0.36Ł

Note: The models are estimated jointly with those presented in Table IV. Asterisks denote a Ł p-value between 5% and
1%, and a ŁŁ p-value below 1%). Results are based on the normalization jˇsinglej D 1. Standard errors of normalized
coefficient are computed through the delta method. T2 is the likelihood ratio statistics for testing Gaussianity and has 1
d.f. Sample size n2 D 8565.

partner. As for the characteristics of the interviewer and the interview process, we find that
response probabilities are positively associated with the age of the interviewer and are higher for
interviews with a proxy respondent. After controlling for our large set of covariates, we still find
that unobserved heterogeneity at the regional level plays an important role. The assumption that the
error in the item nonresponse equation is Gaussian is rejected at the 5% level for the specification
with K2 D 4, but not for the more parsimonious specification with K2 D 3. In our preferred SNP
specification, the estimated error density is characterized by significantly positive skewness.

The estimate of the correlation coefficient �12 between U1 and U2 is always negative and
significantly different from zero. This is likely to reflect the effect of the missing spouse
problem discussed in Section 2. However, point estimates are subject to sizable differences across
specifications, ranging between �0.86 in the probit specification and �0.36 in our preferred
SNP specification. These differences suggest that departures from Gaussianity push the estimated
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correlation coefficient toward the lower bound of its parameter space. This feature of the ML
probit estimator becomes a real problem when estimating the model separately by country. On the
other hand, the SNP estimates of �12 are always reasonably far from their lower bound.

4.2. Second Step

Table VI compares four alternative approaches to estimating the reduced-form equation for
household income. The first two approaches correspond to the widespread practice of treating
the missing data mechanism as MCAR or MAR. The column labeled Model 1 presents the results
for a linear model estimated by OLS using only the complete cases. This model simply ignores
unit and item nonresponse by implicitly assuming that the underlying missing data mechanism is
MCAR. The column labeled Model 2 presents weighted OLS estimates of a linear regression
model estimated on the completed data (complete cases plus imputations). In this case, the
underlying missing data mechanism is assumed to be MAR after conditioning on the auxiliary
variables employed in constructing the weights and the imputations. The columns labeled Model
3 and Model 4 present the estimates for two alternative specifications where the missing data
mechanism is allowed to be NMAR. The two specifications differ in the assumptions about the

Table VI. Estimates of the reduced-form equation for log household income

Variable Model 1 Model 2 Model 3 Model 4

female �0.019 0.052Ł 0.128Ł 0.084
age �0.008ŁŁ �0.005ŁŁ �0.005ŁŁ �0.006ŁŁ
single �0.473ŁŁ �0.521ŁŁ �0.698ŁŁ �0.626ŁŁ
age spouse �0.007ŁŁ 0.009ŁŁ �0.014ŁŁ �0.012ŁŁ
hsize 0.073ŁŁ 0.148ŁŁ 0.120ŁŁ 0.108ŁŁ
children �0.027 �0.072Ł �0.056 �0.054
small city �0.064Ł �0.011 0.128Ł 0.095
education 0.039ŁŁ 0.044ŁŁ 0.044ŁŁ 0.042ŁŁ
orient �0.023 �0.021 �0.072Ł �0.062Ł
math 0.059ŁŁ 0.040ŁŁ 0.056ŁŁ 0.056ŁŁ
recall 0.005 �0.004 �0.006 0.002
fluency 0.007ŁŁ 0.005ŁŁ 0.005Ł 0.005Ł
DK �0.132ŁŁ �0.087ŁŁ 0.002 �0.099
ES �0.365ŁŁ �0.264ŁŁ �0.406ŁŁ �0.421ŁŁ
ES nuts1 �0.029 �0.113 0.176 0.086
ES nuts2 0.115 0.055 0.922ŁŁ 0.674Ł
ES nuts3 �0.052 0.119 0.567 0.293
ES nuts4 �0.125 �0.156Ł 0.654Ł 0.438
ES nuts6 �0.104 �0.015 0.400Ł 0.258
ES nuts7 �0.116 �0.220Ł 0.036 0.042
IT �0.161Ł �0.153ŁŁ 0.106 0.063
IT nuts2 �0.072 �0.119Ł �0.282Ł �0.295Ł
IT nuts3 0.021 0.059 �0.068 �0.147
IT nuts4 �0.228ŁŁ �0.252ŁŁ �0.616ŁŁ �0.591ŁŁ
IT nuts5 �0.174 �0.208ŁŁ �0.568ŁŁ �0.537ŁŁ
NL �0.059 0.055 0.211Ł 0.100
NL nuts1 �0.019 �0.117Ł �0.120 �0.113
NL nuts2 0.002 �0.122Ł 0.006 �0.036
NL nuts4 0.036 �0.025 0.024 0.035
h1 0.766Ł 0.194
h2 �1.099ŁŁ �0.494Ł
constant 0.359ŁŁ 0.420ŁŁ 0.351ŁŁ 0.520ŁŁ
n3 2777 8565 2618 2618

Note: Standard errors are computed from 1000 nonparametric bootstrap replications.
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distribution of the unobservables. Model 3 corresponds to the parametric specification that uses
the first-step estimates of the bivariate probit model with sample selection and the Gaussian bias
correction terms in (4). Model 4 corresponds instead to the semiparametric specification that
uses the first-step estimates of the SNP model with K D �3, 3� and the power series expansion
(8) in the Appendix (with R D 1) to approximate the unknown function h. We explored all the
semiparametric specifications that can be obtained by combining powers and interactions of the
leading terms h1 and h2 up to third order. Using leave-one-out cross-validation as model selection
criterion, our preferred specification includes only the leading terms h1 and h2. Accordingly, we
cannot reject Gaussianity of the conditional distribution of U3 given U1 and U2.

Other things being equal, we find that household income falls with the age of the household
respondents and his/her spouse, and is significantly lower if the household respondent is single.
We also find that household income is positively associated with the size of the household and
with the education and the cognitive abilities of the household respondent. As for country and
regional differences, we find significantly lower income levels for Spain and the southern Italian
regions.

In the Gaussian specification of our sample selection model, the selectivity effects of unit and
item nonresponse are both significantly different from zero and have opposite sign (positive for
unit nonresponse and negative for item nonresponse). A Wald test on the joint significance of
the two bias correction terms rejects the null at the 5% level. In our preferred semiparametric
specification, the selectivity effects of unit and item nonresponse are somewhat weaker, and only
the term corresponding to item nonresponse is statistically significant.

4.3. Third Step

Table VII compares four alternative approaches to estimating the relationship of primary interest,
namely the food Engel curve (3). The first two approaches correspond to the widespread practice
of ignoring endogeneity of household income and treating the missing data mechanism as MCAR
or MAR. The column labeled Model 1 presents the results for a partially linear model estimated
using only the complete cases under the assumption that the missing data mechanism is MCAR.
The column labeled Model 2 presents the results for a partially linear model estimated using the
completed data and the survey weights under the assumption that the missing data mechanism
is MAR. In both cases, the unknown function g is estimated by a power series estimator with
leave-one-out cross-validation as model selection criterion.

The columns labeled Model 3 and Model 4 account for endogeneity of household income and
allow the missing data mechanism to be NMAR, but differ in the assumptions about the distribution
of the unobservables. Model 3 assumes a multivariate Gaussian distribution for the latent errors
and uses a power series estimator for g. Model 4 uses instead the first-step estimates of the SNP
model with K D �3, 3�, the semiparametric second-step estimates of the reduced form residuals,
and power series estimates for both g and l. All power series estimators employ polynomial
expansions up to fourth-order and leave-one-out cross-validation as model selection procedure. In
Model 4, the additivity restriction on g and l is imposed by excluding interaction terms between
log household income Y3 and each of the leading terms l1, l2 and U3.

Several features of the estimated models are worth noting. First, for all of them, leave-
one-out cross-validation leads to the choice of a cubic approximation to the function g, thus
rejecting traditional specifications of the food Engel curve, such as the linear and the quadratic
adopted by AIDS and QUAIDS. Second, our parametric estimates show little evidence of
selectivity or endogeneity, as none of the coefficients on the Gaussian bias correction terms is
statistically significant. Third, our semiparametric estimates show instead evidence of selectivity
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Table VII. Estimates of the Engel curve for food share

Variable Model 1 Model 2 Model 3 Model 4

ln income �0.123ŁŁ �.208ŁŁ �0.106ŁŁ �0.081Ł
(ln income)2 0.040ŁŁ 0.046ŁŁ 0.042ŁŁ 0.044ŁŁ
(ln income)3 �0.015ŁŁ 0.004 �0.018ŁŁ �0.013Ł
female �0.009Ł �0.011Ł 0.001 �0.004
age �0.001ŁŁ �0.001ŁŁ �0.001 �0.000
single �0.031ŁŁ �0.048ŁŁ �0.050Ł �0.021
age spouse �0.000 0.000 �0.000 0.000
hsize 0.038ŁŁ 0.042ŁŁ 0.038ŁŁ 0.033ŁŁ
children �0.012 �0.009 �0.010 �0.008
small city �0.019ŁŁ �0.018ŁŁ �0.003 �0.012
education 0.002ŁŁ 0.004ŁŁ 0.002 0.000
DK �0.021ŁŁ �0.023ŁŁ 0.005 �0.029
ES .212ŁŁ 0.166ŁŁ .218ŁŁ .233ŁŁ
IT 0.172ŁŁ 0.126ŁŁ 0.194ŁŁ 0.186ŁŁ
NL 0.031ŁŁ 0.050ŁŁ 0.061ŁŁ 0.035Ł
ES nuts1 0.007 �0.001 0.033 0.010
ES nuts2 0.003 0.003 0.083 0.004
ES nuts3 0.022 0.015 0.057 0.006
ES nuts4 �0.095ŁŁ �0.053ŁŁ �0.082 �0.148ŁŁ
ES nuts6 0.042 0.015 0.101ŁŁ 0.048
ES nuts7 0.000 0.023 0.009 0.008
IT nuts2 �0.029 0.011 �0.036 �0.032
IT nuts3 �0.043 �0.002 �0.037 �0.056Ł
IT nuts4 0.013 0.005 0.001 0.003
IT nuts5 �0.056 �0.009 �0.100ŁŁ �0.077
NL nuts1 �0.005 �0.011 �0.012 �0.022
NL nuts2 0.008 �0.007 0.021 �0.003
NL nuts4 �0.005 �0.005 �0.004 �0.026
l1 0.060 0.071
l2 �0.089 �0.022
u3 0.093 0.043
l21 0.097Ł
l1 ð l2 �0.076
l1 ð u3 0.040
l22 0.006
l2 ð u3 �0.097Ł
u2

3 0.082ŁŁ
l21 ð l2 �0.089
l1 ð l2 ð u3 �0.056
u3

3 �0.032Ł
constant 0.137ŁŁ 0.155ŁŁ 0.139ŁŁ 0.132ŁŁ

n4 2724 8396 2591 2591
WAD �0.16ŁŁ �0.20ŁŁ �0.14ŁŁ �0.11ŁŁ

Note: WAD is the estimated weighted average derivative. Standard errors are computed using 1000 nonparametric bootstrap
replications.

and endogeneity, as the higher-order terms are statistically significant. Thus we also reject
Gaussianity of the conditional distribution of U4 given U1, U2 and U3.

Since interpretation of the polynomial coefficients is difficult, we investigate the implications
of the various models for the shape and the average slope of the food Engel curve. Figure 1
plots the estimates of the Engel curve derivatives together with the 95% symmetric confidence
bands for each model. Although the estimated derivatives are always negative, as predicted by
the Engel law, their level and profile differ across models. In Model 1, the estimated Engel curve
derivatives have a concave profile and the estimated weighted average derivative (WAD) is �0.16
with a bootstrap standard error of 0.005. Using instead the household weights and the imputations
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Figure 1. Estimated food share derivatives with 95% symmetric confidence bands. In each panel, the dash-dot
line is from Model 1, the short-dash line from Model 2, the long-dash line from Model 3 and the solid line
from Model 4. This figure is available in color online at wileyonlinelibrary.com/journal/jae

provided by SHARE (Model 2), the profile of the estimated Engel curve derivatives is now steeper
and convex, and the estimated WAD is lower (�0.20 with a bootstrap standard error of 0.003).
The estimated WAD of a similar model which uses the completed data but not the survey weights
is �0.18 with a bootstrap standard error of 0.002. This suggests that imputations and survey
weights both play some role for the nonresponse adjustments from Model 2. The fact that the
standard errors for the estimates from Model 2 are low is due partly to the much larger sample
size, as missing values are replaced by imputations, and partly to the fact that we ignore the
additional uncertainty caused by imputation. The parametric estimates from Model 3 lead to a
profile of the Engel curve derivatives which is not statistically different from that obtained from
Model 1. In this case, the estimated WAD is �0.14 with a bootstrap standard error of 0.044.
After relaxing the Gaussianity assumption, we find instead a much flatter profile of the Engel
curve derivatives. Note that the estimates from Models 1 and 2 are downward biased because
of endogeneity of household income. A semiparametric instrumental variable (IV) correction of
Model 1 gives indeed an estimated WAD of �0.09 with a bootstrap standard error of 0.034. After
correcting for both endogeneity of household income and selectivity of unit and item nonresponse,
the estimated WAD from Model 4 is instead �0.11 with a bootstrap standard error of 0.036.
Thus our semiparametric corrections for endogeneity and nonresponse have opposite sign and
they partly offset each other. The estimates of our sample selection models are then closer to
the estimates of Model 1, which completely ignores endogeneity and nonresponse, than to the
estimates of Model 2, which ignores endogeneity and uses survey weights and imputations to
correct for nonresponse.

4.4. Sensitivity Analysis

We now investigate the sensitivity of our estimates to three issues: the choice of the order of the
polynomial expansions in the various steps of the estimation procedure, the implications of using
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a less conservative definition of item nonresponse on income, and the importance of accounting
for unobserved country heterogeneity.

As for the first issue, Donald and Newey (1994) suggest that some undersmoothing may help
reduce the bias of power series estimators. Thus Figure 2 looks at the effects of undersmoothing
by comparing the Engel curve derivatives from the specifications selected by leave-one-out cross-
validation with those from less parsimonious specifications based on a fourth-order polynomial
expansion of g. For Model 4 only, we also use K D �4, 4� for the SNP estimator of the two
selection equations, R D 2 for the power series estimator of h, and S D 3 for the power series
estimator of l. Overall, undersmoothing produces profiles of the Engel curve derivatives that are
very similar to those from the specifications selected by leave-one-out cross-validation. The main
differences occur for Model 4 where, at high level of income, undersmoothing leads to a steeper
profile, thus providing stronger support for the selectivity and endogeneity effects discussed above.
However, undersmoothing also leads to larger standard errors. Thus, at these income levels, Engel
curve derivatives are not accurately estimated.

As for the second issue, household income is a generated variable obtained by aggregating
various income components collected at the individual and the household level. So far, this
variable has been regarded as missing if any of its components was missing. This is a very
conservative definition of item nonresponse. Income from capital assets is heavily affected by item
nonresponse (with item nonresponse rates ranging from 46% for dividend from stocks or shares, to
60% for interest from bank accounts) but, after imputation, income from capital assets represents
a relatively unimportant fraction of household income (only 2%). Adopting a less conservative
definition, which ignores missing values on this income source, the item nonresponse rate on
income decreases from 64% to 45% and the number of complete cases increases from 2805 to
4180. The right-hand-side panel of Figure 3 shows that, with this less conservative definition, our
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Figure 2. Estimated food share derivatives with 95% symmetric confidence bands under alternative degrees
of the polynomial expansions. In each panel, the dash-dot line is from Model 1, the short-dash line from
Model 2, the long-dash line from Model 3 and the solid line from Model 4. This figure is available in color
online at wileyonlinelibrary.com/journal/jae
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Figure 3. Estimated food share derivatives with 95% symmetric confidence bands under alternative definitions
of item nonresponse to household income. In each panel, the dash-dot line is from Model 1, the short-dash
line from Model 2, the long-dash line from Model 3 and the solid line from Model 4. This figure is available
in color online at wileyonlinelibrary.com/journal/jae

semiparametric estimator leads to a linear profile of the Engel curve derivatives or, equivalently, to
a quadratic specification of the food Engel curve. As before, evidence of selectivity and endogeneity
effects is only found with the semiparametric specification of the model.

As for the third issue, Figure 4 provides some evidence on the importance of accounting for
unobserved country heterogeneity by comparing pooled and country-specific estimates of the Engel
curve derivatives. The latter have been obtained by estimating each model separately by country.
We omit the fully parametric model (Model 3) because of convergence problems with the ML
estimator employed in the first step. The profiles of the food Engel curves derivatives differ both
across countries and estimation methods. In particular, our semiparametric approach produces
more evidence of linearity than the standard approach (Models 1 and 2). Table VIII presents the
estimated WAD and their bootstrap standard errors by model and country. Estimates are always
negative but not very precise at the country level because of sample size problems. Interestingly,
for all estimated models, the average slope of the Engel curve is steepest in Mediterranean countries
(Italy and Spain).

5. CONCLUSIONS

In this paper we consider estimating Engel curves with data from the first wave of a panel survey
affected by problems of unit and item nonresponse. Because the first wave of a panel is essentially
a pure cross-section, the results that we obtain are valid more generally for cross-sectional data.

Our approach differs from traditional adjustment methods in many respects. First, we simulta-
neously address issues of selectivity due to nonresponse and issues of endogeneity in the structural
relationship of interest, namely the Engel curve for food. Second, we treat the underlying missing
data mechanism as NMAR. Third, we jointly model the two types of nonresponse. Fourth, we
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Figure 4. Estimated food share derivatives by country. In each panel, the dash-dot line is from Model 1, the
short dash line from Model 2 and the solid line from Model 4. This figure is available in color online at
wileyonlinelibrary.com/journal/jae

Table VIII. Estimated weighted average derivatives (WAD) and their bootstrap standard errors (SD) by model
and country

Country Model 1 Model 2 Model 4

WAD SD WAD SD WAD SD

All �0.16 0.005 �0.20 0.003 �0.11 0.036
DK �0.11 0.014 �0.12 0.009 �0.07 0.059
ES �0.24 0.016 �0.27 0.007 �0.33 0.146
IT �0.22 0.014 �0.22 0.008 �0.20 0.137
NL �0.13 0.009 �0.13 0.004 �0.09 0.068
SE �0.09 0.007 �0.09 0.004 �0.05 0.026

allow unit and item nonresponse to be correlated. Since assumptions about the distribution of
the unobservables play a key role when estimating sample selection models, we consider both
parametric and semiparametric specifications of our model.

Our empirical results reject the assumption that nonresponse is MAR and therefore question
the validity of traditional adjustment methods that rely on that assumption. We provide strong
evidence of endogeneity of household income and of country heterogeneity in the shape of
the food Engel curve. Our results also confirm the importance of avoiding strong parametric
assumptions when estimating models with sample selection. Last, but not least, we illustrate
the usefulness of supplementing survey data with information about fieldwork operations and
interviewer characteristics. In our approach, this information provides the exclusion restrictions

Copyright  2011 John Wiley & Sons, Ltd. J. Appl. Econ. (2011)
DOI: 10.1002/jae



G. DE LUCA AND F. PERACCHI

through which we identify a sample selection model with NMAR missing data mechanisms for
unit and item nonresponse.

This information could also be useful in other contexts. An example is identification and estima-
tion of treatment effects in observational or experimental studies with nonignorable nonresponse
among the treatment and the control units. In this case, nonresponse may be viewed as a post-
treatment complication that requires the availability of some instruments which, by definition, must
be related to the missing data process but unrelated to the outcome of interest. If the instruments
are interpreted as additional treatment variables, then they are also required to be randomized
conditional on a vector of exogenous variables (Mealli and Pacini, 2008). This assumption is not
easily satisfied if the candidate instruments consist of characteristics of the units that may be
correlated with either the outcome of interest or the missingness indicator. Unlike other instru-
ments, fieldwork operations and interviewer characteristics have the advantage that they can be
controlled by the survey designer and so can easily be randomized. Another argument in favor of
these instruments is the possibility of imposing credible monotonicity restrictions on the missing
data process to achieve either partial or point identification of the causal effect of interest.
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APPENDIX: DETAILS OF THE THREE-STEP ESTIMATION PROCEDURE

First Step

The log-likelihood function for a random sample of n observations is

L�ˇ1, ˇ2� D
n∑
iD1

[�1 � Yi1� ln	i0�ˇ1�C Yi1�1 � Yi2� ln	i10�ˇ1, ˇ2�C Yi1Yi2 ln	i11�ˇ1, ˇ2�] �6�

where, dropping for simplicity the suffix i,

	0�ˇ1� D PrfY1 D 0g D F1���1�,

	10�ˇ1, ˇ2� D PrfY1 D 1, Y2 D 0g D F2���2�� F���1, ��2�,

	11�ˇ1, ˇ2� D PrfY1 D 1, Y2 D 1g D 1 � F1���1�� F2���2�C F���1, ��2�

with F1, F2 and F denoting, respectively, the unknown marginal distribution functions of U1 and
U2 and their joint distribution function.

Following Gallant and Nychka (1987), we approximate the joint density f of the latent errors
by an Hermite polynomial expansion of the form

fŁ�u1, u2; �� D 1

 K���

K�u1, u2; ��2��u1���u2� �7�

where 
K�u1, u2; �� is a polynomial of order K D �K1, K2� in u1 and u2, � is a vector of K1K2

unknown parameters, and  K��� is a normalization factor which ensures that fŁ is a proper density.
This polynomial expansion can approximate densities with arbitrary skewness and kurtosis, but
not violently oscillatory densities or densities with tails that are either too fat or too thin (Gallant
and Nychka, 1987). De Luca (2008) shows that, after imposing some identifiability restrictions,
integrating the joint density (7) gives the following approximation to the joint distribution function
of U1 and U2:

FŁ�u1, u2; �� D �u1��u2�C 1

 K���
AŁ

12�u1, u2; ����u1���u2�

� 1

 K���
AŁ

1�u1; ���u2���u1�� 1

 K���
AŁ

2�u2; ���u1���u2�

where AŁ
12�u1, u2; ��, AŁ

1�u1; �� and AŁ
2�u2; �� are polynomials in u1 and u2. Integrating

FŁ�u1, u2; �� one obtains the following approximations to the marginal distribution functions
of U1 and U2:

FŁ
1�u1; �� D �u1�� 1

 K���
AŁ

1�u1; ����u1�,

FŁ
2�u2; �� D �u2�� 1

 K���
AŁ

2�u2; ����u2�

The SNP estimator of (ˇ1, ˇ2, �) is obtained by maximizing the pseudo log-likelihood function
(6), with the unknown distribution functions replaced by their approximations FŁ, FŁ

1 and FŁ
2.

Gallant and Nychka (1987) show that the resulting estimator is
p
n-consistent provided that the
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degree K of the polynomial increases with the sample size, but do not provide distributional results.
However, if K is treated as known, inference can be conducted as though the model was estimated
parametrically. Thus the SNP model is better viewed as a flexible parametric specification for
a fixed value of K, with the choice of K as part of the model selection procedure. For a given
sample size, the value of K may be selected either through a sequence of likelihood ratio tests
or by model selection criteria such as AIC, BIC, or the cross-validation strategies proposed by
Coppejans and Gallant (2002).

Second Step

In the second step we estimate (2) using the subsample of complete cases, with the unknown
function h approximated by a power series expansion. As argued by DNV, series estimators have
lower bias when their leading terms provide a good approximation. Thus, instead of expanding
in power series of �1 and �2, we expand in power series of functions of �1 and �2 with the
Gaussian bias correction (4) as leading term. The proposed approximation to h��1, �2� is of the
form

hŁ��1, �2� D
R∑
rD0

R�r∑
sD0

�rs h1��1, �2�
r h2��1, �2�

s �8�

where R is the degree of the power expansion, �00 is normalized to zero, and the leading terms
h1 and h2 are exactly equal to the elements of the Gaussian bias correction term (4), while the
higher-order terms capture departures from normality. A test of the Gaussian assumption can then
be obtained by testing whether these higher-order terms are significantly different from zero.

After replacing �1 and �2 by their SNP estimates O�1 and O�2, the second step corresponds
to a simple OLS regression of Y3 on X3 and powers of Oh1 D h1� O�1, O�2� and Oh2 D h2� O�1, O�2�
plus their interactions.8 Under regularity conditions, the resulting estimator of ˇ3 is consistent and
asymptotically normal provided that the degree R of the power series expansion increases with the
sample size (DNV). For a given sample size, R can be selected by leave-one-out cross-validation.
Note that the regularity conditions for our series estimator require some trimming of the data to
guarantee that the estimated indexes from the first step are finite. Accordingly, we symmetrically
trim 1% of the complete cases based on the values of O�1 and O�2.

Third Step

In the third step we estimate (3) from the subsample of complete cases, with the unknown functions
g approximated by a power series in the logarithm of household income and the function l by a
power series in functions of �1, �2 and U3 D YŁ

3 � �3. In the latter case, the leading terms of the
power series correspond to the correction for endogeneity and sample selection in the Gaussian
case. Thus

lŁ��1, �2,U3� D
S∑
rD0

S�r∑
sD0

S�r�s∑
tD0

υrstl1��1, �2, U3�
rl2��1, �2, U3�

sUt3 �9�

where S is the degree of the power expansion and υ000 is normalized to zero. The leading terms l1,
l2 and U3 in (9) are exactly equal to the elements of the Gaussian bias correction term (5), while

8 In constructing the Ohj, the correlation coefficient �12 is estimated by combining the SNP estimates of the first- and the
second-order moments of U1 and U2 (De Luca 2008).
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the higher-order terms capture departures from normality. A test of the Gaussian assumption can
then be obtained by testing whether these higher-order terms are significantly different from zero.

After replacing �1 and �2 by their SNP estimates O�1 and O�2 and U3 by OU3 D Y3 � O�3, the
third step corresponds to a simple OLS regression of Y4 on X4, powers of log household income,
and powers of Ol1 D l1� O�1, O�2, OU3�, Ol2 D l2� O�1, O�2, OU3� and OU3 plus their interactions.9 The
higher-order terms included in the power series approximations for g and l are again selected by
cross-validation. Again, some trimming of the data is needed to limit the impact of outliers. Thus
we symmetrically trim another 1% of the observations on the basis of the values of Y3 and OU3.
The standard errors of our three-step estimator are computed by the nonparametric bootstrap based
on 1000 replications.10

9 In constructing the Olj, the standard deviation �3 is estimated using the procedure proposed by Ham (1982), while the
correlation coefficient �12j3 is estimated by combining the estimates of �12, �13 and �23 obtained from the first and the
second step.
10 For each replication, we sample with replacement from the original data and re-estimate the overall process (first,
second and third step). This approach is time consuming, especially because of the SNP estimator used in the first step.
To speed up the process, we use a MATA version of the bivariate SNP routine written in STATA by De Luca (2008).
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