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Abstract. Only recently Goyal, Olver, and Shepherd [Proc. STOC, ACM, New York, 2008]
proved that the symmetric virtual private network design (sVPN) problem has the tree routing prop-
erty, namely, that there always exists an optimal solution to the problem whose support is a tree.
Combining this with previous results by Fingerhut, Suri, and Turner [J. Algorithms, 24 (1997),
pp. 287–309] and Gupta et al. [Proc. STOC, ACM, New York, 2001], sVPN can be solved in polyno-
mial time. In this paper we investigate an APX-hard generalization of sVPN, where the contribution
of each edge to the total cost is proportional to some non-negative, concave, and nondecreasing
function of the capacity reservation. We show that the tree routing property extends to the new
problem and give a constant-factor approximation algorithm for it. We also show that the undirected
uncapacitated single-source minimum concave-cost flow problem has the tree routing property when
the cost function has some property of symmetry.
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1. Introduction. All the problems considered in this paper involve a (finite)
simple, undirected, connected graph G = (V,E) that represents a communication
network. The graph comes with a vector c ∈ QE

+ describing per-unit edge costs and a
vector b ∈ ZV

+ pertaining to the traffic departing from or arriving at each vertex; the
exact interpretation depends on the problem. A vertex v with bv > 0 is referred to as
a terminal. We denote the set of terminals by W . Also, we let B be the sum of all
components of b. Thus, W = {v ∈ V | bv > 0} and B =

∑
v∈V bv.

In the symmetric virtual private network design (sVPN) problem, the vertices want
to communicate with each other. However, the exact amount of traffic between pairs
of vertices is not known in advance. Instead, for each vertex v the cumulative amount
of traffic that it can send or receive is bounded from above by bv. The aim is to
install minimum cost capacities on the edges of the graph supporting any possible
communication scenario, where the cost for installing one unit of capacity on edge e
equals ce.

A set of traffic demands D = {duv | {u, v} ⊆ W} specifies for each unordered
pair of terminals {u, v} ⊆ W the amount duv ∈ Q+ of traffic between u and v. A set
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D is valid if it respects the upper bounds on the traffic of the terminals. That is,

∑

u∈W

duv ≤ bv for all terminals v ∈ W.

A solution to the instance of sVPN defined by the triple (G, b, c) consists of a
collection of paths P containing exactly one u–v path Puv in G for each unordered
pair u, v of terminals, and a vector γ ∈ QE

+ describing the capacity to be installed
on each edge. Such three paths P , together with capacity reservations γ, is called a
virtual private network. A virtual private network is feasible if all valid sets of traffic
demands can be routed without exceeding the reserved capacities, in case all traffic
between terminals u and v is routed along path Puv; that is,

γe ≥
∑

{u,v}⊆W :e∈Puv

duv for all edges e ∈ E.

Given a collection of paths P as above, one may compute in polynomial time
the minimum capacity reservations γe for e ∈ E in order to obtain a feasible virtual
private network [8, 12].

The concave symmetric virtual private network design (csVPN) problem is defined
similarly as sVPN. The total cost of virtual private network (P ,γ) is now

∑

e∈E

ce f(γe),(1.1)

where f : [0, B] → R+ is concave, nondecreasing, and such that f(0) = 0. (We assume
we are given oracle access to f ; see section 1.4 below.) An instance of csVPN is
described by a quadruple (G, b, c, f).

In the concave routing (CR) problem, one of the terminals is marked as root. We
denote the root by r. For each vertex v, the number bv describes the demand at the
vertex. We remark that, by the choice of r, there is a demand br > 0 at the root.
This is a dummy demand that does not play any role in the problem.1

A solution to CR consists of a collection P of simple r–v paths Pv, one path
for each terminal v distinct from the root. We call such a collection a routing. We
denote by xe(P) the amount of flow routed on the edge e by P . Thus, xe(P) =∑

v∈W\{r}:e∈Pv
bv. The cost of a routing is then

∑

e∈E

ce g(xe(P)),(1.2)

where g: [0, B] → R+ is a concave function such that g(0) = 0. (Once again, we
assume that we are given oracle access to g.) An instance of CR is then defined
by a quintuple (G, r, b, c, g). We remark that CR may be viewed as an undirected
uncapacitated single-source minimum concave-cost flow problem [10].

We are interested in the following restrictions of CR. The instances of the non-
decreasing concave routing (ndCR) problem are those for which g is nondecreasing.
In this case, we use the letter f instead of g whenever possible. The instances of
the axis-symmetric concave routing (sCR) problem are those for which g is (axis-)
symmetric; that is, g(B − x) = g(x) for all x ∈ [0, B]. In this case, we use the letter

1We use this convention in order to be consistent with previous published work [7].
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Fig. 1.1. The problems considered in this article. Bold arrows indicate specialization, and
dashed arrows indicate “equivalence.”

h instead of g whenever possible. Finally, the instances of the pyramidal routing (PR)
problem [7] are those for which g(x) = min{x,B − x} for all x ∈ [0, B]. In this case,
we use the letter p instead of g.

The various problems considered here and their relationships are illustrated in
Figure 1.1. Notice that csVPN, sCR, and ndCR are all APX-hard because they admit
the minimum Steiner tree problem as a special case.

A feasible solution to one of the problems described above is a tree solution if the
support of the capacity vector γ or the union of the paths in P induces a tree in G.
To make the terminology concise, we say that an instance of either csVPN or sCR has
the tree routing property provided one of its optimal solutions is a tree solution.

1.1. Previous work. It was shown by Fingerhut, Suri, and Turner [3] and later,
independently, by Gupta et al. [8] that sVPN can be solved in polynomial time if it
has the tree routing property; that is, each instance has an optimal solution that is
a tree solution.2 Subsequently, it has been discussed [9] and then conjectured [2, 12]
that sVPN has the tree routing property. This has become known as the VPN tree
routing conjecture. The conjecture has first been proved for the case of cycles [11, 7],
and then in general graphs [4].

Goyal, Olver, and Shepherd [4] prove the VPN tree routing conjecture by proving
that PR has the tree routing property. This result was initially proposed as a conjecture
by Grandoni et al. [7], together with a proof that it implies the VPN tree routing
conjecture. Remarkably, Goyal, Olver, and Shepherd [4] also show that two results
are equivalent; that is, sVPN has the tree routing property if and only if PR has the
tree routing property.

1.2. Our contribution. First, we show that csVPN has the tree routing prop-
erty. Our proof goes as follows. On the one hand, we build upon the result by Goyal,
Olver, and Shepherd [4] to show that sCR has the tree routing property. On the other
hand, we show that sCR has the tree routing property if and only if csVPN has the
tree routing property.

Second, we study approximation algorithms for csVPN. For general f , using known
results on the so-called single source buy at bulk (SSBB) problem [14, 6], we give a
24.92-approximation algorithm. For a restricted class of functions f , by reducing
to the so-called single source rent or buy (SSRB) problem [1], we show that a 2.92-
approximation algorithm exists.

2Such a solution can be obtained in polynomial time by solving a single all-pair shortest paths
problem.
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Third, although sCR and ndCR both have the tree routing property, we show that
this is not the case for the general CR problem.

1.3. Outline. In section 2 we prove our main statements: csVPN and sCR have
the tree routing property. The proof uses as a basis an “equivalence,” stated in
section 2.1, between csVPN and sCR. We show that, when b is a 0-1 vector, solving an
csVPN instance (G, b, c, f) amounts to solving an sCR instance of the form (G, r, b, c, h),
where r is one of the terminals and h is obtained by symmetrizing f . Moreover,
the csVPN instance has an optimal solution that is a tree solution if and only if the
corresponding sCR instance has an optimal solution that is a tree solution. This allows
us to focus only on sCR. By combining one decisive polyhedral observation with the
fact that PR has the tree routing property [4], we show that sCR has the tree routing
property, which then implies that csVPN also has the tree routing property.

In section 3 we give a constant factor approximation algorithm for csVPN. Our
approximation algorithm works by reduction to the SSBB problem. The reduction is
in two steps. First, we observe in section 3.1 that the approximation algorithm for
SSBB due to Grandoni and Italiano [6], which is a variation of the algorithm of Gupta
et al. [14], gives an approximation algorithm for ndCR with the same approximation
factor. (It directly follows from known results from the literature that ndCR has a
constant-factor approximation algorithm. The aim of section 3.1 is merely to halve
the resulting approximation factor.) Then, we show in section 3.2 how to turn any
approximation algorithm for ndCR into an approximation algorithm for csVPN with
the same approximation factor. Combining both steps, we obtain a ρ-approximation
algorithm for csVPN from the ρ-approximation algorithm for SSBB [6], where ρ = 24.92.
Using a subset of the tools developed, we give a 2.92-approximation algorithm for
csVPN when the function f is to be of the type f(x) = min{µx,M} for positive
constants µ and M . Here, we resort to the SSRB problem, for which the best known
approximation factor currently is 2.92 [14, 1].

In section 4, we give an instance of CR such that no tree solution is optimal,
thereby showing that CR does not have the tree routing property.

1.4. Fractional problems and value-giving oracles. Before starting sec-
tion 2, we conclude this section by providing necessary extra details.

We define the fractional version of CR (denoted by frac-CR) where we allow, for
each terminal v '= r, to fractionally split the bv units of flow from r to v along several
r–v paths. Formally, a fractional routing P specifies, for each terminal v '= r, a set Pv

of simple r–v paths and, for each path P ∈ Pv, an amount of flow βv(P ) ∈ R+ such
that bv =

∑
P∈Pv

βv(P ). The cost of a routing is as in (1.2) above, with xe(P) :=∑
v∈W\{r}

∑
P∈Pv :e∈P βv(P ).

It results from the concavity of g (see, e.g., Goyal, Olver, and Shepherd [4,
Lemma 2.2]) that there always exists an optimal solution to CR that is unsplittable,
i.e., that routes all flows from the source to a terminal on a unique path, even when we
allow fractional flows. Therefore, the frac-CR problem and CR problem are essentially
equivalent.

The problem frac-ndCR is defined similarly. This last problem is closely related
to a known variant of the SSBB problem; see section 3.1 for details.

Finally, in the csVPN (resp., CR) problem, we assume that we are given oracle
access to the function f (resp., g). That is, we are given access to a subroutine that,
given a rational x ∈ [0, B], returns a non-negative rational f(x) (resp., g(x)) whose
size is polynomial in the size of x. The computation is assumed to take constant time.
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2. The tree routing property. We show here that both csVPN and sCR have
the tree routing property. We start by proving, in section 2.1, that the tree routing
property holds for csVPN if and only if it holds for sCR, provided that b is a 0-1 vector.
Then, in section 2.2, we prove that the tree routing property holds for sCR, and thus
also for csVPN, for any vector b ∈ ZV

+ .

2.1. The tree routing property in the binary case. Here we restrict our-
selves to instances where b is a 0-1 vector. In this case, the number of terminals is B
and, for any routing P , there are precisely xe(P) paths in P using the edge e. For
f : [0, B] → R+ concave and nondecreasing with f(0) = 0, we define

h: [0, B] → R+:x (→
{
f(x) if x ≤ B/2,
f(B − x) if x > B/2.

(2.1)

Then h is concave and axis symmetric and has h(0) = 0. The proof of the next lemma
builds upon previous results of Gupta et al. [8], Grandoni et al. [7], and Goyal, Olver,
and Shepherd [4].

Lemma 2.1. Let (G, b, c, f) be a csVPN instance with b ∈ {0, 1}V , and h as in
(2.1). There exists a choice of a root r ∈ W such that the sCR instance (G, r, b, c, h)
has the same optimum value as the csVPN instance. Moreover, the corresponding sCR
instance has the tree routing property if and only if the csVPN instance has the tree
routing property.

Proof. Let (P , γ) be a feasible virtual private network for (G, b, c, f), with P =
{Puv | {u, v} ⊆ W}. For each possible root r ∈ W , let Pr denote the routing consisting
of all paths of P , one of whose ends is r. So Pr := {Prv : v ∈ W \ {r}}. It is known
[8, Theorem 3.2], [7, Lemma 3] that the following holds:

γe ≥
1

B

∑

r∈W

min{xe(Pr), B − xe(Pr)}.

Since f is concave and nondecreasing we have

∑

e∈E

ce f(γe) ≥
∑

e∈E

ce f

(
1

B

∑

r∈W

min{xe(Pr), B − xe(Pr)}
)

≥ 1

B

∑

e∈E

ce
∑

r∈W

f(min{xe(Pr), B − xe(Pr)}) =
1

B

∑

r∈W

∑

e∈E

ce h(xe(Pr)).

Hence, the optimum value for the csVPN instance (G, b, c, f) is at least the optimum
value of the sCR instance (G, r, b, c, h) for some choice of root r ∈ W . Note that, if
(P , γ) is a tree solution, then Pr is also a tree solution for any r ∈ W . It is not
difficult to see that, in this case, the cost of the routing Pr is not dependent on the
root r. It follows that, given a tree solution to the csVPN instance (G, b, c, f), we can
construct a tree solution to the sCR instance (G, r, b, c, h) that is not more costly, for
any choice of root r.

Conversely, take any r ∈ W and suppose that we are given a routing Pr for some
sCR instance (G, r, b, c, h), where this time Pr := {Pv | v ∈ W \ {r}}. Following [4],
we define a collection of paths Q = {Quv | {u, v} ⊆ W}, where Quv is any u–v path
in the component of the symmetric difference Pu∆Pv containing u and v. Let δe be
the minimum amount of capacity that we must install on each edge e so that (Q, δ) is
a feasible virtual private network for (G, b, c, f). Goyal, Olver, and Shepherd [4] show
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that the following holds:

δe ≤ min{xe(Pr), B − xe(Pr)}.

Since f is nondecreasing, we have

∑

e∈E

ce f(δe) ≤
∑

e∈E

ce f(min{xe(Pr), B − xe(Pr)}) =
∑

e∈E

ce h(xe(Pr)).

Hence, the optimum value of the csVPN instance (G, b, c, f) is at most the optimum
value of any sCR instance of the form (G, r, b, c, h) for r ∈ W . Again, note that if Pr

is a tree solution to (G, r, b, c, h), then (Q, δ) is a tree solution to the csVPN instance
(G, b, c, f). Therefore, given a tree solution to the sCR instance (G, r, b, c, h), we can
construct a tree solution to the csVPN instance (G, b, c, f) that is not more costly. The
statement easily follows.

2.2. Proof of the tree routing property for sCR. In this section, we will
show how the tree routing property for sCR follows from the tree routing property for
PR.

Theorem 2.2. The tree routing property holds for sCR.
Our approach is simple and geometric: We associate polyhedra with instances of

sCR in such a way that the tree routing property for an instance can be expressed as a
property of the extreme points of the associated polyhedron. We then show how the
transition from the pyramidal function to an arbitrary concave axis-symmetric func-
tion h amounts to a transformation of the corresponding polyhedra, which preserves
the property of the extreme points.

Recall that, for a set Z ⊆ RE
+, the dominant domZ of Z is defined as follows:

domZ :=
{
z′ ∈ RE | there exists some z ∈ Z with z ≤ z′

}
.

Here, and below, comparisons between vectors are componentwise. Given G, r, b,
and h as above in the definition of sCR, a routing P defines a point y(h,P) ∈ RE

+ by
ye(h,P) := h(xe(P)) for all e ∈ E. We define the sCR polyhedron P(G,r,b,h) as the
dominant of the convex hull of the points y(h,P), where P ranges over all routings.
Now, finding a routing that is minimum w.r.t. some non-negative cost vector c is
equivalent to minimizing the linear function y (→ cT y over the sCR polyhedron. We
note an easy consequence of this fact.

Lemma 2.3. Given G, r, b, and h, as above the following are equivalent:
(i) For every extreme point y of P(G,r,b,h), there exists a tree solution T such that

y = y(h, T ).
(ii) For every c ≥ 0, the sCR instance (G, r, b, c, h) has the tree routing property.
We say that a mapping Φ:RE

+ → RE
+ is concave if Φ(tx+(1− t)y) ≥ tΦ(x)+ (1−

t)Φ(y) holds for every t ∈ [0, 1] and x, y ∈ RE
+. Similarly, we say that such a mapping

is nondecreasing if x ≤ y implies Φ(x) ≤ Φ(y). The key observation to realizing that
the tree routing property for sCR is a consequence of the tree routing property for PR
is the following.

Lemma 2.4. Let p denote the pyramidal function and h be as above. There exists
a nondecreasing concave function Φ:RE

+ → RE
+ such that Φ(y(p,P)) = y(h,P) for all

routings P.
Proof. For every e, we define Φe(y) := h(ye) whenever ye ≤ B/2 and Φe(y) :=

h(B/2) if ye ≥ B/2. The properties are readily verified, since any axis-symmetric
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concave function h: [0, B] → R+ is nondecreasing in the interval [0, B/2], and ye(p,P)
is always at most B/2.

The final ingredient is the following elementary geometric fact.
Lemma 2.5. If Φ:RE

+ → RE
+ is nondecreasing and concave, and Y is a finite

set of points in RE
+, then every extreme point of dom convΦ(Y ) is the image under Φ

of an extreme point of dom convY . In other words, Φ maps a subset of the extreme
points of dom convY onto the extreme points of dom convΦ(Y ).

Proof. Consider an extreme point z of domconvΦ(Y ). If some point in Φ−1(z)
is an extreme point of dom convY , then we are done. Otherwise, pick any point y
in Y ∩ Φ−1(z). By assumption, there exist extreme points y1, . . . , yn ∈ Y \ Φ−1(z)
and coefficients λ1, . . . , λn ≥ 0 with

∑
λj = 1 such that y ≥

∑n
j=1 λjyj . Hence,

the assumptions on Φ imply z = Φ(y) ≥ Φ(
∑n

j=1 λjyj) ≥
∑n

j=1 λjΦ(yj). Because
Φ(yj) '= z for all j, the point z is not an extreme point of dom convΦ(Y ), a con-
tradiction.

Combining the previous two lemmas and this fact we obtain our theorem.
Proof of Theorem 2.2. We give the proof for 0-1 demands first. For this situation,

Goyal, Olver, and Shepherd [4] have proven the tree routing property for all instances
of PR. Lemma 2.3 implies that for every extreme point of P(G,r,b,p) there exists a tree
solution defining it. By Lemmas 2.4 and 2.5, we know that this is also true for the
extreme points of P(G,r,b,h). Another application of Lemma 2.3 yields the result for
0-1 demands.

Now consider an sCR instance (G, r, b, c, h) such that b is not a 0-1 vector. We
define a new instance (G̃, r̃, b̃, c̃, h), as follows. For each terminal v with bv ≥ 2, we
add k := bv pendant edges vu1, . . . , vuk with cost zero to the graph. Then, we let
b̃v := 0 and b̃ui := 1 for i = 1, . . . , k. Finally, we let r̃ be one of the new vertices
pending from r except if br = 1 in which case we let r̃ = r. Since the new instance has
an optimal solution that is a tree solution, it follows that also the original instance
has an optimal solution that is a tree solution.

Corollary 2.6. The tree routing property holds for csVPN.
Proof. First, consider a csVPN instance (G, b, c, f) with bv ∈ {0, 1} for each v ∈ V .

Here the statement follows from Lemma 2.1 and Theorem 2.2. The case where some
terminals have demand greater than 1 can be reduced to the previous one by the same
arguments as in the proof of Theorem 2.2.

Remark. As pointed out by an anonymous referee, the results of this section still
hold in case a concave function fe (resp., he) is associated with each edge e of the
graph, i.e., allowing different edges to have different functions.

3. Approximation algorithms.

3.1. An approximation algorithm for ndCR. Our approximation algorithm
for csVPN is based on an approximation algorithm for ndCR. The approximation al-
gorithm for ndCR is, in its turn, related to an approximation algorithm for the SSBB
problem.

The latter problem is defined as follows: we are given a (finite, simple, undirected,
connected) graph G = (V,E) with edge costs c ∈ QE

+, where each vertex v ∈ V wants
to exchange an amount of flow bv ∈ Z+ with a common source vertex r. In order
to support the traffic, we can install cables on edges. Specifically we can choose
among k different cables: each cable i ∈ {1, . . . , k} provides µ(i) ∈ Q+ \ {0} units
of capacity at price p(i) ∈ Q+ \ {0}. For each i ∈ {1, . . . , k − 1}, it is assumed that

µ(i) < µ(i+1) and p(i)
µ(i) ≥ p(i+1)

µ(i+1) . The latter inequality is referred to as the economy of
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scale principle. An instance of SSBB is therefore defined by a quintuple (G, r, b, c,K),
where K = {(µ(i), p(i)) | i = 1, . . . , k} describes the different cable types.

A solution to SSBB consists of a multiset κe of cables to install on each edge e ∈ E.
Repetitions are allowed; that is, several cables of the same type can be installed on
some edge.

We point out that there is some confusion in the literature in the definition of
SSBB, because in some papers SSBB is defined as above, and in some other papers the
SSBB problem is defined as the problem we call frac-ndCR. In this paper, when referring
to SSBB we always mean the version with cables. It is a known fact (see, e.g., Gupta et
al. [14]) that from an approximation viewpoint, the two formulations are equivalent
up to a factor of 2. However, we here show how to adapt the 24.92-approximation
algorithm for SSBB described in [6], in order to obtain an algorithm with the same
approximation ratio for ndCR.

Theorem 3.1. There exists a 24.92-approximation algorithm for ndCR.
Proof. We start with a description of a simple approximation preserving reduction

from ndCR to SSBB. Let I = (G, r, b, c, f) be an instance of ndCR. Consider the instance
J = (G, r, b, c,K) of SSBB obtained by settingK := {(1, f(1)), (2, f(2)), . . . , (B, f(B))}.
The capacity of the cables are nondecreasing because f is nondecreasing. Since
f(0) = 0 and f is concave, x (→ f(x)/x is nonincreasing, and thus the economy
of scale principle holds. It is easy to see that (i) given a solution to I there exists
a solution to J of the same cost; (ii) from a solution κ to J one can build, in time
polynomial in the sizes of I and κ, a solution to I that does not cost more. In other
words, we could run the 24.92-approximation algorithm for SSBB on J and obtain a
24.92-approximate solution to I.

However, we point out that the size of J is not always bounded by a polynomial
in the size of I (defined as the size of the quadruple (G, r, b, c); the function f is not
taken into account when the size of I is computed), because B could be exponentially
large. To address this issue, we rely on a key fact used in the analysis of Grandoni
and Italiano [6], which we now describe. Given any instance (G̃, r̃, b̃, c̃, K̃) of SSBB,
they select a subset {i1, . . . , ik′} ⊆ {1, . . . , k} of cables with the following properties:
i1 = 1, ik′ = k, and, for all t ∈ {1, . . . , k′ − 2}, cable it+1 is the smallest such that

p(it+1 + 1) ≥ αp(it),(3.1)

p(it+1)

µ(it+1)
≤ 1

β

p(it)

µ(it)
,(3.2)

with α := 3.1207 and β := 2.4764. Then, they find a 24.92-approximate solution to
the SSBB instance using only cables in the following subset:

K̃ ′ := {(µ(i1), p(i1)), . . . , (µ(ik′), p(ik′ ))},(3.3)

with a running time polynomial in the size of (G̃, r̃, b̃, c̃, K̃ ′).
For our purpose, the point is therefore to find a list of cables K ′ as in (3.3)

satisfying (3.1) and (3.2), with respect to the instance J , in time polynomial in logB.
To construct the list of cables K ′, we let i1 := 1. If it has been found, we search for
the (t+ 1)th cable it+1 as follows.

First, since f is increasing, given p(it), a binary search in {it+1, . . . , B} finds the
smallest value i′ satisfying (3.1) with it+1 replaced by i′. If no such i′ satisfies (3.1),
we let it+1 := k and k′ := t+1. If i′ does exist, since x (→ f(x)/x is nonincreasing, the
smallest possible value for it+1 satisfying (3.2) in the range {i′, . . . , B} can be found
by binary search. Again, if no it+1 satisfies (3.2), we let it+1 := k and k′ := t+ 1.
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Recalling that µ(it) = it, from (3.1) and (3.2) it follows: it+1 ≥ β ·it· f(it+1)
f(it)

≥ β ·it·
it+1

it+1+1
f(it+1+1)

f(it)
≥ 1

2α ·β · it. Therefore the number of selected cables is O(log αβ
2

B) =

O(logB) and each cable can be found in time O(logB). The result follows.

3.2. An approximation algorithm for csVPN. In order to state our approxi-
mation algorithm for csVPN we need two further results from the literature.

First, let (G, b, c, f) be an instance of the csVPN problem. Consider a tree T
spanning all the terminals in W . For each pair of terminals {u, v} ⊆ W there is a
unique u–v path in T . These paths form a collection of paths that we denote PT . It
is straightforward to compute the minimum amount of capacity γT

e we have to reserve
on each edge e of T in order to obtain a feasible virtual private network from PT . We
denote z(PT , γT ) the cost of this virtual private network.

For any choice of root r ∈ V (T ), one can similarly derive from T a tree solution
to the ndCR instance (G, r, br, c, f), where we let brv := bv for all vertices v '= r, and
brr := max{br, 1} (recall that in the definition of CR, we assume to have a positive,
dummy demand at the root). We denote the resulting routing by PT

r and its cost by
z(PT

r ). The next lemma is known [8, Lemma 2.1], [12, Lemma 2.4]. For the sake of
completeness, we give a sketch of its proof.

Lemma 3.2. Let T , PT , γT , and PT
r (for r ∈ V (T )) be as above. Then, there

exists a vertex r of T such that γT
e = xe(PT

r ) for all edges e of T . For that choice of
r, we have z(PT , γT ) = z(PT

r ).
Proof. Consider an edge e of T . The removal of e from T determines a par-

tition of the set of terminals W into two of its subsets, say, W1(e) and W2(e).
For definiteness, we assume that W1(e) and W2(e) are chosen in such a way that∑

v∈W1(e)
bv ≤

∑
v∈W2(e)

bv. Then, the minimum capacity reservation γT
e for edge e

is simply
∑

v∈W1(e)
bv. By breaking ties consistently and orienting each edge e ∈ E(T )

towards W1(e), we can turn T into an arborescence. Letting r denote the root of this
arborescence, we have γT

e = xe(PT
r ) for all edges e of T .

Second, suppose that we are given a solution Pr to an instance (G, r, br, c, f) of
ndCR. As observed by Goyal, Olver, and Shepherd [4] and used in Lemma 2.1 above,
we can build a feasible solution (Q, δ) to the instance (G, b, c, f) of csVPN as follows:
for each pair of terminals u, v, choose the path Quv to be any path in Pu∆Pv from u to
v, where Pu and Pv, respectively, denote the unique r–u and r–v paths in Pr. Define
Q as the collection formed by all the paths Quv. As mentioned in the Introduction, we
may efficiently deduce from Q the minimum capacity reservation δ such that (Q, δ) is
a feasible virtual private network. Let z(Q, δ) denote the cost of this virtual private
network. We will need the next lemma. We omit its proof because it is not difficult
(see Goyal, Olver, and Shepherd [4] for a stronger result).

Lemma 3.3. Let Pr, Q, and δ be as above. Then, we have δe ≤ xe(Pr) for all
edges e of G. Thus z(Q, δ) ≤ z(Pr).

We are now ready to complete the description and analysis of our approximation
algorithm for csVPN. The input to the algorithm is a csVPN instance (G, b, c, f). In
the proof below, we use OPT(.) to denote the cost of an optimal solution to the
corresponding csVPN or ndCR instance.

Theorem 3.4. Algorithm 1 is a ρ-approximation algorithm for csVPN.
Proof. From Corollary 2.6, we know that there exists a tree T such that z(PT , γT )

= OPT(G, b, c, f). By Lemma 3.2, minr∈V (T ) z(PT
r ) ≤ z(PT , γT ). Since PT

r is
a solution to the ndCR instance (G, r, br, c, f), it follows that minr∈V (T ) z(PT

r ) ≥
minr∈V OPT(G, r, br, c, f). Let r̃ ∈ V be such that minr∈V OPT(G, r, br, c, f) =
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Algorithm 1. Approximation algorithm for csVPN

(1) For each r ∈ V , compute a ρ-approximate solution Pr to the ndCR instance
(G, r, br, c, f).

(2) Let r∗ be such that z(Pr∗) = minr∈V z(Pr).
(3) From Pr∗ , build a solution (Q, δ) to the csVPN instance (G, b, c, f) as in

Lemma 3.3.
(4) Output (Q, δ).

OPT(G, r̃, br̃, c, f). By choice of r∗, z(Pr∗) ≤ z(Pr̃) ≤ ρOPT(G, r̃, br̃, c, f). From
Lemma 3.3, z(Q, δ) ≤ z(Pr∗). Putting everything together, we conclude z(Q, δ) ≤
ρOPT(G, b, c, f), as desired.

By Theorem 3.1, there exists a ρ-approximation algorithm for csVPN with ρ =
24.92.

Notice that Algorithm 1 preserves the function f when the approximation algo-
rithm for ndCR is invoked. In particular, if f belongs to a restricted class of functions
where ndCR has a small approximation factor, our algorithm will have the same factor
on the corresponding instances. In particular, if f is defined as f(x) := min{µx,M},
for two positive numbers µ, M , then the ndCR instance constructed in Algorithm 1
from a csVPN instance is, except for decomposing into paths, just an instance of the
so-called SSRB problem [14, 1]. Hence, our results imply an approximation-preserving
reduction from csVPN—restricted to instances such that f(x) := min{µx,M} for some
positive numbers µ and M—to SSRB. The best known approximation algorithm for
SSRB known to us is the one by Gupta et al. [14], which has an approximation factor
of 2.92, as was shown by Eisenbrand et al. [1].

4. A remark on general concave functions. It is known (see, e.g., [13]) that
the tree routing property is satisfied by every CR instance such that g is nondecreasing,
and it follows from our results that this also holds when g is axis symmetric. A natural
question arises: is the tree routing property satisfied by all CR instances?

The example below shows that this is not the case, even if g(x) ≤ g(B − x), for
each x ∈ [0, B/2], and G is a cycle.

Example. Consider an instance (G, r, b, c, g) of the CR problem, where G = (V,E)
is a cycle with vertex set V := {0, 1, 2, 3, 4} and edge set E := {{i, i + 1} | i ∈ V }
(the sum is modulo 5). Let r := 0; let bi := 1 for i ∈ V ; let ce := M for e = {3, 4},
ce := M + ε for e = {0, 1}, and ce := 0 otherwise. Finally, let g be defined as
the linear interpolation of the following points: g(0) = 0, g(2) = 2, g(3) = 2 + 2ε,
g(5) = 0. It is easy to check that g is concave, non-negative, non-axis-symmetric, and
g(x) ≤ g(B − x), for each x ∈ [0, B/2].

Consider the routing P where the paths from 0 to i go counterclockwise (that is,
have the edge {0, 4} as their first edge) for i = 1, 2, 3, while the path from 0 to 4 goes
clockwise. The cost of this solution is (2+ ε)M+ ε, and it is easy to check that taking
ε and M , respectively, small and big enough, every tree solution costs more.

Acknowledgment. We thank the three anonymous referees for providing re-
marks that guided us when revising this manuscript.

Note added in preparation. Following the results in this manuscript, an alternative
proof of the fact that the tree routing property holds for csVPN has been given [5].
This proof, however, does not show that it also holds for sCR.
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