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Abstract Efficient valuation of exchange options with random volatilities while
challenging at analytical level, has strong practical implications: in this paper we pres-
ent a new approach to the problem which allows for extensions of previous known
results. We undertake a route based on a multi-asset generalization of a methodology
developed in Antonelli and Scarlatti (Finan Stoch 13:269–303, 2009) to handle sim-
ple European one-asset derivatives with volatility paths described by Ito’s diffusive
equations. Our method seems to adapt rather smoothly to the evaluation of Exchange
options involving correlations among all the financial quantities that specify the model
and it is based on expanding and approximating the theoretical evaluation formula with
respect to correlation parameters. It applies to a whole range of models and does not
require any particular distributional property. In order to test the quality of our approx-
imation numerical simulations are provided in the last part of the paper.
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1 Introduction

It is well known among practitioners that, when the volatility of the underlying assets
is allowed to vary stochastically, fast and accurate pricing of exotic products such as
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46 F. Antonelli et al.

barrier, Asian, basket or spread options must be solved, as a general rule, by applying
the smartest Monte Carlo methodology at hand (we refer the reader to Glasserman
2004 for many possible implementations), since, in the quantitative finance literature,
extensions from the Black & Scholes setting to the stochastic volatility framework
leading to closed or semi-closed pricing formulas are rare for plain vanilla claims and
tend to disappear for more exotic derivatives.

In this paper we tackle the pricing of an exchange or Fisher–Margrabe option
(Margrabe 1978; Fisher 1978), under stochastic volatility using an analytical approx-
imation recently introduced in a work by Antonelli and Scarlatti (2009) to evaluate
plain vanilla European call options, by writing a power series expansion of the no
arbitrage price with respect to the correlation parameter between asset and volatility.
It resulted fairly general, working for a variety of models, including the Stein and Stein
(1991), the Heston (1993) and the Hull and White (1987) ones.

To the best of our knowledge, there are only few analytical results appearing in
the financial literature on the pricing of exchange options, or closely related options,
under stochastic volatility. The work of Duffie et al. (2000) where the price of a chooser
option is obtained by transform methods in an affine setting. The paper by Bakshi and
Madan (2000, Sect. 4) where, under the Heston dynamics, correlation options are
discussed and the corresponding pricing problem is solved. We notice that correlation
options can be related to exchange options, see e.g. Chung and Wang (2008) for an
application to currency cross-rates. Our method is different: it suggests a first order
approximation formula by expanding the option price with respect to all three correla-
tion parameters (ρ, β, ν), representing, respectively, the asset to asset correlation and
the correlations between the assets and their corresponding volatilities.

In Antonelli and Scarlatti (2009) the setting was one dimensional, but the ease of the
method made us try an application to a multidimensional situation, such as the present
one. The method is based on an iterative procedure. To identify the four coefficients
characterizing the first order approximation formula, we first formally differentiate the
associated backward Kolmogorov partial differential equation (PDE) satisfied by the
price function and we specialize it at the zero values of the parameters. This gives birth
to a series of chained PDE problems, whose solutions can be represented by means of
the Feynman-Kaĉ formula, but they are difficult to be solved explicitly. Nevertheless,
one may compute in approximated way those solutions step by step up to any desired
order.

Luckily, as in the European case, the zeroth and first order terms are sufficient to
obtain a good approximation of the price. This is probably due to the smallness of the
parameters, so that the higher order terms usually add an error comparable with the
computational one. Once identified these coefficients, to make them fully computable,
we apply a further approximation by substituting the time average of future volatility
with its mean as already suggested in the seminal paper by Hull and White (1987)
and reconsidered by Alos (2006). To test the quality of the approximation we run
numerical simulations in the case of the Hull and White model and in the case of the
Heston model. In both cases we take the Monte Carlo simulations as our benchmarks.
As expected, the method works naturally very well for small values of the correlations,
but it results quite satisfactory also for real market values of (β, ν), usually quite large.
Thus fixing those correlations on the market values, we provide tables for values of ρ
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ranging from −0.5 to 0.5, where we show that the relative error ranges from 0.001 to
8.57% for the Hull and White model and from 0.01 to 8.42% in the case of the Heston
model, with only two exceptions.

The paper is organized as follows. In the next section we introduce general sto-
chastic volatility model for the exchange option, the following one is devoted to the
presentation of the method and the last to the numerical implementations.

2 Stochastic volatility models for the exchange option

In a market with two assets, an exchange option gives the holder the right, but not
the obligation, to exchange at a future time T one share of the underlying S2 for one
share of the underlying S1. In the classical Black & Scholes model, where the assets
prices dynamics, with respect to a filtered probability space (�,F , Q, {Ft }t≥0) are
described by the equations

d S1
t = S1

t (µ1dt + σ 1dW 1
t ) d S2

t = S2
t (µ2dt + σ 2dW 2

t ),

with (W 1
t ,W 2

t ) ρ-correlated Brownian motions, an explicit pricing formula for an
exchange option was obtained by Margrabe (1978):

u

(
t,

S1
t

S2
t

)
= S2

t

[
S1

t

S2
t
N (d1)− N (d2)

]
, (1)

where

d1,2 = log S1
t /S2

t ±�(T − t)/2√
�(T − t)

, � = σ 2
1 − 2ρσ1σ2 + σ 2

2 .

It strongly resembles the classical Black & Scholes formula and the correlation between
assets gets incorporated in the volatility

√
�, see Poulsen (2009) for a recent survey

on the topic.
We wish to extend the considerations that lead to Margrabe’s formula (1) to a sto-

chastic volatility setting, where the volatilities are expressed by means of Ito’s diffusive
equations. Since usually volatilities cannot be traded, we are naturally in conditions
of incompleteness, but we maintain the no arbitrage assumption: we assume that a no
arbitrage probability P , equivalent to Q on (�,F), can be selected by some criterion
so that our market model is described by the following SDE’s

d S1
t = S1

t (rdt + f1(v
1
t )dW 1

t ), dv1
t = η1(v

1
t )dt + γ1(v

1
t )d B1

t (2)

d S2
t = S2

t (rdt + f2(v
2
t )d Zt ), dv2

t = η2(v
2
t )dt + γ2(v

2
t )d B2

t (3)

where (W 1, Z , B1, B2) are correlated Brownian motions, r > 0 is the risk-free rate
and with initial conditions S1

t = s1 > 0, S2
t = s2 > 0, v1

t = y > 0, v2
t = z > 0.

We assume that the functions fi , γi , ηi : R −→ R are well defined and in C∞(R)
with uniformly bounded derivatives of order greater than or equal 1 and that equations
(2) and (3) have a unique strong solution (Si , vi ) that verifies for any t ∈ [0, T ]
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E

(
sup

u∈[t,T ]

(
|Si

u |2 + |vi
u |2
))

< C, (4)

for some constant C depending on T, s1, s2, y, z.
The correlation structure may be modelled by four dimensional standard Brownian

motion (W 1,W 2,W 3,W 4) and 3 real parameters −1 < ρ, β, ν < 1, by rewriting

Zt = ρW 1
t +

√
1 − ρ2W 2

t , B1
t = νW 1

t +
√

1 − ν2W 3
t

B2
t = βρW 1

t + β
√

1 − ρ2W 2
t +

√
1 − β2W 4

t . (5)

Remark 1 We would like to comment the foregoing hypothesis. When the coeffi-
cients fi are also bounded, the integrability requirement (4) is automatically satisfied
by the solution (see Nualart (1996), Corollary 2.2.1). We do not want to introduce
such an assumption as it would limit the models we may consider (see for example
the Hull and White model). Under this generality, in some cases (4) does not follow,
therefore we decided to include it as part of our running hypotheses.

Instead, some smoothness of the coefficients will be needed in several points to
apply our method. For the sake of exposition we opted for C∞(R) regularity to be
always able to take as many derivatives as desired.

Remark 2 We also would like to comment Eq. (5) which describe our correlation
structure. First, it follows from (5) that : cov(W 1

t , Zt ) = ρ, cov(W 1
t , B1

t ) = ν and
cov(Zt , B2

t ) = β. Second, in our model, the value of the correlation of the assets
volatilities is implied by the previous equations and equal to ρνβ. We point out that
our approach can handle correlation structures more general than the one discussed in
this paper: for example, a 4-dimensional parametric description could also be studied
exactly along the same lines as our 3-dimensional one. Finally we remark that our
model with three correlation parameters closely resembles the two-assets log-normal
model with stochastic volatility1 examinated by Bakshi and Madan (2000, Sect. 4)
in their analysis of correlation options. There, the authors focus their study on the
Heston model and solve the problem of determining in closed form the joint char-
acteristic function which leads to explicit pricing formulas. Our stochastic equations
(2, 3) describe a broader family of possible dynamics (including the Heston’s one)
depending on the choice of the functions fi , ηi , γi , i = 1, 2. We then develop a unify-
ing approach based on the idea of correlation expansion: partially because of that only
approximate solutions to the pricing problem can be in general achieved. We notice
that correlation options can be reconsidered under volatility dynamics different from
that of Heston and then studied by the same methodology presented here: for these
cases we do not expect to obtain solutions in closed or semi-closed form but comput-
able first order approximations, in the correlation parameters, of the corresponding
prices.

1 The dynamics considered in (Bakshi and Madan (2000)) can be obtained by collapsing the two SDE’s
for the volatilities appearing in (2) and (3) into a single equation and allowing, at the same time, for general
correlations.
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Theorem 3 Let [0, T ] be a finite time interval. Under the previous hypotheses, the
price of an exchange option with maturity T in a market model defined by (2) and (3)
is given by s2u(t, s1

s2
, y, z; ρ, β, ν), where u verifies the following Partial Differential

Equation, provided it has a unique classical solution for t ∈ [0, T ], x ∈ R, y, z > 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t + 1

2

[(
f 2
1 (y)− 2ρ f1(y) f2(z)+ f 2

2 (z)
)
∂2u
∂x2 + γ 2

1 (y)
∂2u
∂y2 + γ 2

2 (z)
∂2u
∂z2

]

+ νγ1(y) [ f1(y)−ρ f2(z)]
∂2u

∂x∂y
−βγ2(z)[ f2(z)−ρ f1(y)] ∂

2u

∂x∂z
+βρνγ1(y)γ2(z)

∂2u

∂y∂z

− 1

2
[ f 2

1 (y)− 2ρ f1(y) f2(z)+ f 2
2 (z)]

∂u

∂x
+ [η1(y)+ νργ1(y) f2(z)] ∂u

∂y

+ [η2(z)+ βγ2(z) f2(z)] ∂u

∂z
= 0

u(T, x, y, z; ρ, β, ν) = (ex − 1)+.

(6)

Proof A European exchange option with maturity T has pay-off defined by

ψ
(

S1
T , S2

T

)
=
(

S1
T − S2

T

)+ = S2
T

(
S1

T

S2
T

− 1

)+
.

To price it, we may use the no arbitrage pricing principle. Indeed, by the Markovian
nature of our system (2, 3), introducing the notation Eθ for the expectation given the
initial conditions at time t , θ = (s1, s2, y, z), the price of an exchange option at time
t may be written as

U (t, s1, s2, y, z; ρ, β, ν) = Eθ

(
e−r(T −t)S2

T

(
S1

T

S2
T

− 1

)+)

= Eθ

(
S̃2

T

(
S̃1

T

S̃2
T

− 1

)+)
, (7)

where S̃i
T = e−r(T −t)Si

T , i = 1, 2.
If we apply the Change-of-Numeraire technique, defining the probability measure

P∗ equivalent to P by

d P∗

d P
= S̃2

T

s2
= exp

⎧⎨
⎩−1

2

T∫
t

f 2
2

(
v2

s

)
ds +

T∫
t

f2

(
v2

s

) (
ρdW 1

s +
√

1 − ρ2dW 2
s

)⎫⎬
⎭ ,

we may rewrite (7) as

Eθ

(
S̃2

T

(
S̃1

T

S̃2
T

− 1

)+)
= s2E∗

θ

((
S̃1

T

S̃2
T

− 1

)+)
,

where E∗
θ denotes the expectation with respect to P∗. From now on we shall omit the

dependence on the initial data in the expectation. We remark that the assumed inte-
grability of S2 makes sure that the discounted process is a P—martingale (not only
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a local martingale) and that the Novikov condition, necessary to apply the change of
probability, is verified. Besides, Girsanov theorem implies that the processes

W
1
t = W 1

t − ρ

t∫
0

f2(v
2
s )ds, W

2
t = W 2

t −
√

1 − ρ2

t∫
0

f2(v
2
s )ds

are P∗—Brownian motions, which are also independent (indeed < W
1
,W

2
>.≡ 0).

Introducing the process X = log(S1/S2), under P∗, the triple (X, v1, v2) verifies
the following equations

d Xt =
[

f1

(
v1

t

)
− ρ f2

(
v2

t

)]
dW

1
t − (1 − ρ2)

1
2 f2

(
v2

t

)
dW

2
t

− 1

2

[
f 2
1

(
v1

t

)
− 2ρ f1

(
v1

t

)
f2

(
v2

t

)
+ f 2

2

(
v2

t

)]
dt (8)

dv1
t =

[
η1

(
v1

t

)
+ νργ1

(
v1

t

)
f2

(
v2

t

)]
dt+γ1

(
v1

t

) (
νdW

1
t +
√

1−ν2dW 3
t

)
(9)

dv2
t =

[
η2

(
v2

t

)
+ βγ2

(
v2

t

)
f2

(
v2

t

)]
dt

+ γ2

(
v2

t

)(
βρdW

1
t + β

√
1 − ρ2dW

2
t +

√
1 − β2dW 4

t

)
. (10)

Since (8), (9) and (10) form a Markovian system, we may use the flow notation for X to
express the dependence of the expectation upon the initial conditions t, x = s1

s2
. Con-

sequently the value of the option may be represented as U (t, s1, s2, y, z; ρ, β, ν) =
s2E∗

((
eXt,x,y,z

T − 1
)+)

. Focussing on the function

u(t, x, y, z; ρ, β, ν) : = E∗
((

eXt,x,y,z
T − 1

)+)
, (11)

due to our hypotheses, we know it is smooth in (t, x, y, z) and, applying Itô’s for-
mula, we conclude it has to satisfy the evaluation PDE (6) for t ∈ [0, T ], x ∈ R, y,
z > 0. �	
The problem is now reduced to finding a solution, possibly an approximation of it, of
the above PDE. In the next section we show how to produce a first order approximation
that gives satisfactory numerical results.

3 The correlation expansion approach

In this section we mean to write an approximation for u, defined by (11), without using
Fourier transform techniques. Since it can be shown that u exhibits a smooth depen-
dence on the correlation parameters, one may think to approximate it by its Taylor
polynomial, of appropriate degree, in ρ, β, ν written around some fixed initial values
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of them. Classically this expansion is considered around (0, 0, 0), which corresponds
to the no correlation situation, often easier to deal with.

Here, for exposition’s sake, we construct only a first order approximation, which
is often numerically satisfactory due to the smallness of the correlation parameters,
even though theoretically the method may be pushed up to higher orders. Therefore,
we propose the following approximation

u(t, x, y, z; ρ, ν, β) ≈ u(t, x, y, z; 0, 0, 0)+ ρ
∂u

∂ρ
(t, x, y, z; 0, 0, 0)

+ ν ∂u

∂ν
(t, x, y, z; 0, 0, 0)+ β

∂u

∂β
(t, x, y, z; 0, 0, 0). (12)

and we want to identify the four coefficients of the polynomial. To do so, we are going
to apply the method developed in Antonelli and Scarlatti (2009) in this multidimen-
sional context.

Let us remark that, if we denote by Fv1,v2

t,s : = σ(v1
u, v

2
u, t ≤ u ≤ s), then from (8)

we have

Xt,x,y,z
s |Fv1,v2

t,s ∼ N
(

x− 1

2
�

t,y,z
s (ρ, ν, β);�t,y,z

s (ρ, ν, β)

)

where

�
t,y,z
s (ρ, ν, β) =

s∫
t

[
f 2
1

(
v

1,t,y
u

)
− 2ρ f1

(
v

1,t,y
u

)
f2

(
v2,t,z

u

)
+ f 2

2

(
v2,t,z

u

)]
du.

So we are conditionally in the Black and Scholes framework and setting

d1(x,�) = x + 1
2�√
�

, d2(x,�) = x − 1
2�√
�

, � > 0,

we have that

u(t, x, y, z; ρ, ν, β) = E∗
(

E∗
((

eXt,x,y,z
T − 1

)+ |Fv1,v2

t

))

= ex E∗ (N (
d1

(
x, �t,y,z

T (ρ, ν, β)
)))

− E∗ (N (
d2

(
x, �t,y,z

T (ρ, ν, β)
)))

.

As said before, u is solution of (6), which we rewrite in the following way

{L0u − ρAu + νBu − βGu − ρνA1u + ρβA2u + ρνβA3u = 0
u(T, x, y, z; ρ, ν, β) = (ex − 1)+. (13)
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where

L0 = ∂

∂t
+ 1

2

[(
f 2
1 + f 2

2

) ∂2

∂x2 + γ 2
1
∂2

∂y2 + γ 2
2
∂2

∂z2

]
− f 2

1 + f 2
2

2

∂

∂x
+ η1

∂

∂y
+ η2

∂

∂z

A = f1 f2

(
∂2

∂x2 − ∂

∂x

)
, B = γ1 f1

∂2

∂x∂y
, G = γ2 f2

(
∂2

∂x∂z
− ∂

∂z

)

A1 = γ1 f2

(
∂2

∂x∂y
− ∂

∂y

)
, A2 = γ2 f1

∂2

∂x∂z
, A3 = γ1γ2

∂2

∂y∂z

By differentiating formally (13) and specializing the equations for (ρ, ν, β) = (0, 0, 0),
one gets to the conclusion that

u0(t, x, y, z) : = u(t, x, y, z; 0, 0, 0), u1(t, x, y, z) = ∂u

∂ρ
(t, x, y, z; 0, 0, 0),

φ1(t, x, y, z) : = ∂u

∂ν
(t, x, y, z; 0, 0, 0), ψ1(t, x, y, z) : = ∂u

∂β
(t, x, y, z; 0, 0, 0)

solve, respectively, the following four PDE problems for x ∈ R, y, z > 0 and t ∈
[0, T ]
{L0u0(t, x, y, z) = 0

u0(T, x, y, z) = (ex − 1)+
{L0u1(t, x, y, z) = Au0(t, x, y, z)

u1(T, x, y, z) = 0.
(14)

{L0φ1(t, x, y, z) = −Bu0(t, x, y, z)
φ1(T, x, y, z) = 0

{L0ψ1(t, x, y, z) = Gu0(t, x, y, z)
ψ1(T, x, y, z) = 0.

(15)

From now on we restrict our computations to the systems (14), since the same tech-
nique applies straightforward to the other two systems.

Exploiting Duhamel’s principle (see Evans (1998), Chap. 2, Sects. 2.3–2.4), we
know that

u1(t, x, y, z) = −
T∫

t

u(α)1 (t, s, y, z)dα, (16)

where, for t ∈ [0, α), x ∈ R, y, z > 0, u(α)1 is solution of

{
L0u(α)1 (t, x, y, z) = 0
u(α)1 (α, x, y, z) = Au0(α, x, y, z).

Therefore we may apply the Feynmann–Kaĉ formula to obtain the probabilistic rep-
resentation of the solution

u(α)1 (t, x, y, z) = E∗ [(Au0)
(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

)]
.
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We remark that in the equation above the processes representing the state variables
are to be intended at correlations (0, 0, 0). We know that first term of the expansion is
given by

u0(t, x, y, z) = u(t, x, y, z; 0, 0, 0)

= E∗ [exN
(

d1

(
x, �t,y,z

T (0, 0, 0)
))

− N
(

d2

(
x, �t,y,z

T (0, 0, 0)
))]

,

(17)

(from now on we omit the argument (0, 0, 0) in �t,y,z
T ) so computing the derivatives

we have

∂u0

∂x
= ex E∗ [N (

d1

(
x, �t,y,z

T

))]
,
∂2u0

∂x2 = ex
{

E∗
[
N
(

d1

(
x, �t,y,z

T

))

+N ′ (d1

(
x, �t,y,z

T

)) ∂d1

∂x

(
x, �t,y,z

T

)]}

which imply

∂2u0

∂x2 − ∂u0

∂x
= ex E∗

⎡
⎣N ′ (d1

(
x, �t,y,z

T

)) 1√
�

t,y,z
T

⎤
⎦ .

Substituting back in our formula (16), we obtain

u1(t, x, y, z) = −
T∫

t

E∗ [(Au0)
(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

)]
dα

= −
T∫

t

E∗ [ f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

)
eXt,x,y,z

α

× E∗

⎡
⎢⎢⎣

N ′
(

d1

(
Xt,x,y,z
α ,�

α,v
1,t,y
α ,v

2,t,z
α

T

))
√
�
α,v

1,t,y
α ,v

2,t,z
α

T

⎤
⎥⎥⎦

⎤
⎥⎥⎦ dα.

But the internal expectation is actually conditioned w.r.t. Xt,x,y,z
α , v

1,t,y
α , v2,t,z

α , hence
noticing that exN ′(d1) = N ′(d2), we may write
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E∗
⎡
⎣ f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

)
eXt,x,y,z

α

× E∗
⎡
⎣N ′

(
d1

(
Xt,x,y,z
α ,�

α,v
1,t,y
α ,v

2,t,z
α

T

))
1√

�
α,v

1,t,y
α ,v

2,t,z
α

T

⎤
⎦
⎤
⎦

= E∗
[

f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

)
eXt,x,y,z

α N ′
(

d1

(
Xt,x,y,z
α ,�

α,v
1,t,y
α ,v

2,t,z
α

T

))

× 1√
�
α,v

1,t,y
α ,v

2,t,z
α

T

]

= E∗
⎡
⎣ f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

) 1√
�
α,v

1,t,y
α ,v

2,t,z
α

T

× E∗
[

eXt,x,y,z
α N ′

(
d1

(
Xt,x,y,z
α ,�

α,v
1,t,y
α ,v

2,t,z
α

T

))
|Fv1,v2

T

] ⎤⎦

= E∗
⎡
⎣ f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

) 1√
�
α,v

1,t,y
α ,v

2,t,z
α

T

× E∗
[
N ′
(

d2

(
Xt,x,y,z
α ,�

α,v
1,t,y
α ,v

2,t,z
α

T

))
|Fv1,v2

T

] ⎤⎦ .

Our processes are Markovian and the flow property implies that �α,v
1,t,y
α ,v

2,t,z
α

T =
�

t,y,z
[α,T ], where by the subindex [α, T ] we mean the integral extended to such inter-

val. Thus, knowing that Xt,x,y,z
α |Fv1,v2

T ∼ N
(

x − 1
2�

t,y,z
α ;�t,y,z

α

)
, it results

d2

(
Xt,x,y,z
α ,�

t,y,z
[α,T ]

)
|Fv1,v2

T ∼ N
⎛
⎝ x − 1

2�
t,y,z
T√

�
t,y,z
[α,T ]

; �
t,y,z
α

�
t,y,z
[α,T ]

⎞
⎠ .

Since N ′(d2) = exp(−d2
2/2)/

√
2π and for a Gaussian r.v. � ∼ N (µ, σ 2) is

1√
2π

E
[
e−�2/2

]
= e−µ2/2(σ 2+1)√

(σ 2 + 1)(2π)
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we have

1√
2π

E∗
[

exp

(
−1

2
d2

2

(
Xt,x,y,z
α ,�

t,y,z
[α,T ]

))
|Fv1,v2

T

]
= 1√

2π

√
�

t,y,z
[α,T ]√
�

t,y,z
T

e
− d2

2
2

(
t,x,�t,y,z

T

)

and finally we arrive at the expression

u1(t, x, y, z) = −
T∫

t

E∗
⎡
⎣ f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

) N ′
(

d2

(
x, �t,y,z

T

))
√
�

t,y,z
T

⎤
⎦ dα. (18)

Focussing now on the systems (15) and running calculations similar to those shown
above, we arrive at the following expression for the first order terms with respect to ν
and β

φ1(t, x, y, z) = −
T∫

t

T∫
α

E∗
⎡
⎣ (γ1 f1)

(
v1,t,y
α

)
( f1 f ′

1)
(
v1,t,y
α1

) ∂v1,t,y
[α,α1]
∂y

×
N ′
(

d2

(
x, �t,y,z

T

))
d2

(
x, �t,y,z

T

)

�
t,y,z
T

⎤
⎦ dα1dα (19)

and

ψ1(t, x, y, z) =
T∫

t

T∫
α

E∗
⎡
⎣(γ2 f2)

(
v2,t,z
α

)
( f2 f ′

2)
(
v2,t,z
α1

) ∂v2,t,z
[α,α1]
∂z

×
N ′
(

d2

(
x, �t,y,z

T

))
d1

(
x, �t,y,z

T

)

�
t,y,z
T

⎤
⎦ dα1dα, (20)

where for w1 = y, w2 = z we have

∂v
i,t,wi[α,α1]
∂wi

= exp

⎧⎨
⎩

α1∫
α

[
η′

i

(
vi,t,wi
α2

)
− 1

2

(
γ ′

i

(
vi,t,wi
α2

))2
]

dα2

+
α1∫
α

γ ′
i

(
vi,t,wi
α2

)
dW i+2

α2

⎫⎬
⎭ .

As already mentioned, we point out that this method may be pushed further than the
first order and in the appendix we show how to compute the second order derivatives.
Nevertheless, the first order terms are expected weight the most, as the higher order
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terms of the expansion will be multiplied by powers greater than 2 of the correla-
tion parameters, which, being naturally small, will probably reduce their numerical
contributions.

We also remark that the successive derivatives in only one of the parameters can be
computed recursively. For instance, differentiating repeatedly (13) in ρ and specializ-
ing the result at (0, 0, 0), it turns out that the coefficients

uk(t, x, y, z) = 1

k!
∂ku(t, x, y, z; 0, 0, 0)

∂ρk
,

for x ∈ R, y, z > 0, are solutions of

{
L0u0(t, x, y, z) = 0

u0(T, x, y, z) = (ex − 1)+

{
L0uk(t, x, y, z) = Auk−1(t, x, y, z)

uk(T, x, y, z) = 0.
(21)

Again Duhamel’s principle and Feynmann–Kaĉ’s representation give

u(α)k (t, x, y, z) =
T∫

t

E∗ [(Auk−1)
(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

)]
dα,

providing a tool to compute the coefficients up to any order.

Remark 4 If two of the parameters are zero, say ν and β, introducing the further
hypothesis [�t,y,z

s (ρ, 0, 0)]−1 ∈
⋂
p≥1

L p, then the convergence of the power series in

the ρ parameter

u(t, x, y, z; ρ, 0, 0) =
∑
k≥0

1

k!
∂ku(t, x, y, z; 0, 0, 0)

∂ρk
ρk,

is ensured within an appropriate radius of convergence (see Antonelli and Scarlatti
(2009) for the details).

4 The method in practice

In this section we apply the method exposed so far to two popular models: Heston and
Hull and White. Here, when needed, we index the initial conditions as w1 = y and
w2 = z.

First, we have to introduce a further approximation to make the coefficients totally
computable, since the joint distributions necessary to compute u0, u1, φ1 and ψ1 are
usually unknown. This approximation is of the same type as the one appearing in
Antonelli and Scarlatti (2009), which also contains an estimation of the relative error.
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If�t,y,z
T is a random variable sufficiently concentrated around its mean, one may think

of approximating it by its expectation

�
t,y,z
T → �̄

t,y,z
T = E∗ (�t,y,z

T

)
=

T∫
t

(
E∗ ( f 2

1

(
v

1,t,y
s

))
+ E∗ ( f 2

2

(
v2,t,z

s

)))
ds,

that leads to the following natural approximations

d̄i = di

(
x, �̄t,y,z

T

)
, i = 1, 2 (22)

ū0(t, x, y, z) = (
exN (d̄1)− N (d̄2)

)
, (23)

ū1(t, x, y, z) = − N ′(d̄2)√
�̄

t,y,z
T

T∫
t

E∗ ( f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

))
dα, (24)

φ̄1(t, x, y, z) = −N ′(d̄2)d̄2

�̄
t,y,z
T

T∫
t

T∫
α

E∗

×
[
(γ1 f1)

(
v1,t,y
α

)
( f1 f ′

1)
(
v1,t,y
α1

) ∂v1,t,y
[α,α1]
∂y

]
dα1dα, (25)

ψ̄1(t, x, y, z) = N ′(d̄2)d̄1

�̄
t,y,z
T

T∫
t

T∫
α

E∗

×
[
(γ2 f2)

(
v2,t,z
α

)
( f2 f ′

2)
(
v2,t,z
α1

) ∂v2,t,z
[α,α1]
∂z

]
dα1dα. (26)

which may be explicitly computed in the models mentioned above.
Of course, substituting a random variable with its mean is a very rough approxima-

tion. The biggest part of the error is carried by the 0th term which is not mitigated by
any power of the correlation parameters. We therefore propose to refine the approxi-
mation of u0, by pushing the Taylor expansion around the expected value of � to the
second order. Indeed, looking at u0, one realizes that it is defined as

u0(t, x, y, z) = E∗ (F
(
�

t,y,z
T

))

where F(σ ) = exN (d1(x, σ ))− N (d2(x, σ )) is regular in σ and it can be expanded
up to any desired order. In particular

F ′(σ ) = 1

2
√
σ

N ′(d2(x, σ )), F ′′(σ ) = 1

4σ 3/2 N ′(d2)[d1d2 − 1](x, σ ).
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Therefore approximating F(σ ) with its second order expansion around �̄t,y,z
T and

applying it to �t,y,z
T , we obtain

F
(
�

t,y,z
T )

)
≈ F

(
�̄

t,y,z
T

)
+ F ′ (�̄t,y,z

T

) (
�

t,y,z
T − �̄

t,y,z
T

)

+1

2
F ′′ (�̄t,y,z

T

) (
�

t,y,z
T − �̄

t,y,z
T

)2
,

taking expectations the second term vanishes and we define

ũ0(t, x, y, z) = ū0(t, x, y, z)+ N ′(d̄2)

8
(
�̄

t,y,z
T

)3/2

(
d̄2d̄1 − 1

)
var
(
�

t,y,z
T

)
, (27)

leading to the following approximation formula

u(t, x, y, z; ρ, ν, β) ≈ ũ0(t, x, y, z)+ ρū1(t, x, y, z)+ νφ̄1(t, x, y, z)

+βψ̄1(t, x, y, z). (28)

In the following we present a concrete application of such a formula by using
the well-known stochastic volatility models proposed by Hull and White (1987) and
Heston (1993). The first one is a fully non-affine model for all values of the param-
eters ρ, β, ν, while the second is affine only for ρ = 0. Even if recently Maghsoodi
(2007) presented an analytic solution to the pricing problem in the correlated Hull and
White model based on a representation of the Hartman–Watson distribution, the even-
tual extension to the two-dimensional setting does not appear to be straightforward.
Approximation techniques still remain a valuable alternative to Monte Carlo methods.

4.1 Application to the Hull and White model

The model is defined by the following choices

fi (v) = v; ηi (v) = ηiv; γi (v) = γiv, ηi , γi ∈ R, i = 1, 2

and Eqs. 2 and 3 become

d S1
t = S1

t (rdt + v1
t dW 1

t ), dv1
t = v1

t (η1dt + γ1d B1
t )

d S2
t = S2

t (rdt + v2
t d Zt ), dv2

t = v2
t (η2dt + γ2d B2

t ).
(29)

The volatilities are therefore geometric Brownian motions. We remark that to guar-
antee the martingale property for the asset prices, it is necessary to have negative
correlations between assets and volatilities (see Heyde and Wong 2004 for details).
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Looking at the uncorrelated case, needed to compute the coefficients, we have that
the volatilities are

v1,t,y
α = ye

(
η1− γ 2

1
2

)
(α−t)+γ1

(
W 3
α−W 3

t
)
, v2,t,z

α = ze

(
η2− γ 2

2
2

)
(α−t)+γ1

(
W 4
α−W 4

t
)
,

hence E∗
((
v

i,t,wi
α

)p) = w
p
i e

[
pηi +p(p−1)

γ 2
i
2

]
(α−t)

, for i = 1, 2 and any p ≥ 1. This

leads to the following approximations

�̄
t,y,z
T = y2 e

(
2η1+γ 2

1

)
(T −t) − 1

2η1+γ 2
1

+ z2 e(2η2+γ 2
2 )(T −t) − 1

2η2+γ 2
2

, d̄h =dh

(
x, �̄t,y,z

T

)
, h =1, 2

which, substituted in (23–26), give

ū0(t, x, y, z) = exN (d̄1)− N (d̄2), ū1(t, x, y, z)=−yz
N ′ (d̄2

)
�̄

t,y,z
T

e(η1+η2)(T −t) − 1

η1 + η2
,

φ̄1(t, x, y, z) = − y3γ1N ′(d̄2)d̄2

(2η1 + γ 2
1 )�̄

t,y,z
T

×
[

e(3η1+3γ 2
1 )(T −t)(2η1 + γ 2

1 )

(η1 + 2γ 2
1 )(3η1 + 3γ 2

1 )
− e(2η1+γ 2

1 )(T −t)

η1 + 2γ 2
1

+ 1

3η1 + 3γ 2
1

]
.

ψ̄1(t, x, y, z) = z3γ2N ′(d̄2)d̄1

(2η2 + γ 2
2 )�̄

t,y,z
T

×
[

e(3η2+3γ 2
2 )(T −t)(2η2 + γ 2

2 )

(η2 + 2γ 2
2 )(3η2 + 3γ 2

2 )
− e(2η2+γ 2

2 )(T −t)

η2 + 2γ 2
2

+ 1

3η2 + 3γ 2
2

]
.

In this case we want to apply a better refinement of the zeroth term.
To compute the 1-order approximation (27) for u0, we first need to evaluate the

variance of �t,y,z
T

var(�t,y,z
T ) = E

[(
�

t,y,z
T

)2
]

−
(
�̄

t,y,z
T

)2
. (30)

123



60 F. Antonelli et al.

We only need to compute the first term

E((�t,y,z
T )2) = E

⎛
⎝

T∫
t

[(
v

1,t,y
s

)2 +
(
v2,t,z

s

)2
]

ds

T∫
t

[(
v1,t,y
α

)2 +
(
v2,t,z
α

)2
]

dα

⎞
⎠

=
T∫

t

T∫
t

E
[(
v

1,t,y
s v1,t,y

α

)2
]

dsdα +
T∫

t

T∫
t

E
[(
v2,t,z

s v2,t,z
α

)2
]

dsdα

+ 2

T∫
t

E
[(
v1,t,y
α

)2
]

ds

T∫
t

E
[(
v2,t,z
α

)2
]

dα.

For i = 1, 2, if s > α then E
[(
v

i,t,wi
s v

i,t,wi
α

)2
]

= w4
i e
(
4ηi +6γ 2

i

)
(α−t)+(2ηi +γ 2

i

)
(s−α),

otherwise if s < α E
[
(v

i,t,wi
s v

i,t,wi
α )2

]
= w4

i e
(
4ηi +6γ 2

i

)
(s−t)+(2ηi +γ 2

i )(α−s), both giv-

ing the same integral. Thus we may conclude

E
((
�

t,y,z
T

)2
)

= 2

⎧⎨
⎩

T∫
t

s∫
t

[
y4e

(
2η1+γ 2

1

)
(s−t)+(2η1+5γ 2

1

)
(α−t)

+ z4e(2η2+γ 2
2 )(s−t)+(2η2+5γ 2

2 )(α−t)
]

dαds

+ y2z2

T∫
t

e(2η1+γ 2
1 )(s−t)ds

T∫
t

e(2η2+γ 2
2 )(α−t)dα

⎫⎬
⎭

= 2

{
y4

[
e(4η1+6γ 2

1 )(T −t) − 1

(2η1 + 5γ 2
1 )(4η1 + 6γ 2

1 )
− e(2η1+γ 2

1 )(T −t) − 1

(2η1 + 5γ 2
1 )(2η1 + γ 2

1 )

]

+ z4

[
e(4η2+6γ 2

2 )(T −t) − 1

(2η2 + 5γ 2
2 )(4η2 + 6γ 2

2 )
− e(2η2+γ 2

2 )(T −t) − 1

(2η2 + 5γ 2
2 )(2η2 + γ 2

2 )

]

+ y2z2

(
e(2η1+γ 2

1 )(T −t) − 1
) (

e(2η2+γ 2
2 )(T −t) − 1

)
(2η1 + γ 2

1 )(2η2 + γ 2
2 )

⎫⎬
⎭ .

4.2 Application to the Heston model

The model is defined by the following choices of coefficients

fi (v) = √
v; ηi (v) = bi (ai − v); γi (v) = ci

√
v, ai , bi , ci ∈ R

+, i = 1, 2
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so that (2) and (3) become

d S1
t = S1

t (rdt +
√
v1

t dW 1
t ), dv1

t = b1(a1 − v1
t )dt + c1

√
v1

t d B1
t

d S2
t = S2

t (rdt +
√
v2

t d Zt ), dv2
t = b2(a2 − v2

t )dt + c2

√
v2

t d B2
t .

(31)

The Heston diffusion model is affine, in the sense of Duffie et al. (2000), in the state
variables (log(S1), log(S2), v1, v2) only when the correlation between the two assets,
ρ, is zero. In this case, a semi-closed form for the price of a chooser (or exchange)
option is available by the transform method (see Duffie et al. (2000)). Even though
affinity is no longer preserved for different values of ρ, we may exploit this fact to
compute more accurately a first term in the expansion, at correlations (0, β, ν) and
then correct it with higher order terms relative only to ρ. This means that we are
looking at the following dynamics for the three state processes

d Xt =
√
v1

t dW
1
t −

√
v2

t dW
2
t − 1

2 (v
1
t + v2

t )dt

dv1
t = b1(a1 − v1

t )dt + c1

√
v1

t dW 3
t

dv2
t = b2(a2 − v2

t )dt + c2

√
v2

t dW 4
t .

(32)

with W
1
,W

2
independent one dimensional Brownian motions and < W

1
,W 3 >t =

βt and < W
2
,W 4 >t = νt .

By appropriate changes of probabilities to equivalent Q1 and Q2, the solution of
the evaluation PDE (6), specialized for the model (32), may be written as

u0(t, x, y, z) = ex P1(t, T, x, y, z)− P2(t, T, x, y, z)

= ex Q1

(
Xt,x,y,z

T ≥ 0
)

− Q2

(
Xt,x,y,z

T ≥ 0
)
. (33)

Substituting this functional form into (6), one finds that Pj (t, T, x, y, z), j = 1, 2,
have to verify the following PDE’s

∂Pj

∂t
+ y+z

2

∂2 Pj

∂x2 + c2
1 y

2

∂2 Pj

∂y2 + c2
2z

2

∂2 Pj

∂z2 + νc1 y
∂2 Pj

∂x∂y
− βc2z

∂2 Pj

∂x∂z
(34)

+ (−1) j−1(y+z)

2

∂Pj

∂x
+ (

b1a1 − b̄1, j y
) ∂Pj

∂y
+ (

b2a2 − b̄2, j z
) ∂Pj

∂z
= 0

where b̄1,1 = b1 − νc1, b̄1,2 = b1, b̄2,1 = b2 and b̄2,2 = b2 − βc2. Feynman–
Kaĉ formula gives that Pj (t, T, x, y, z) = EQ j (1{X̃ j,t,x,y,z

T ≥0}), where

d X̃ j,t,x,y,z
s =

√
v

j,1,t,y
s dW̃ 1

s −
√
v

j,2,t,z
s dW̃ 2

s + (−1) j−1
(
v

j,1,t,y
s + v

j,2,t,z
s

)
ds

dv j,1,t,y
s =

(
a1b1 − b̄1, jv

j,1,t,y
s

)
ds + c1

√
v

j,1,t,y
s dW̃ 3

s

dv j,2,t,z
s =

(
a2b2 − b̄2, jv

j,2,t,z
s

)
ds + c2

√
v

j,2,t,z
s dW̃ 4

s ,
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with < W̃ 1, W̃ 2 >s= 0, < W̃ 1, W̃ 3 >s= νs and < W̃ 2, W̃ 4 >s= βs all s.
These functions are eventually obtained by Fourier inversion

Pj (t, T, x, y, z) = 1

2
+ 1

π

+∞∫
0

�
{

f j (ζ, t, T, x, y, z)

iζ

}
dζ, i2 = −1,

and f j denote the joint characteristic functions of X̃ j,t,x,y,z
T , v

j,1,t,y
T , v

j,2,t,z
T . Those

characteristic functions verify the same PDE as the Pj ’s with final condition ei x and
they are given explicitly by

f j (ζ, t, T, x, y, z) = exp(C j (T − t)+ D1, j (T − t)y + D2, j (T − t)z + ixζ ),

where for j = 1, 2 the above functions are

D1, j (T − t) = b̄1, j − νc1iζ + d1, j

c2
1

1 − ed1, j (T −t)

1 − g1, j ed1, j (T −t)
,

D2, j (T − t) = b̄2, j − βc2iζ + d2, j

c2
2

1 − ed2, j (T −t)

1 − g2, j ed2, j (T −t)
,

C j (T − t) = a1b1

c2
1

[(
b̄1, j − νc1iζ + d1, j

)
(T − t)− 2 log

(
1 − g1, j ed1, j (T −t)

1 − g1, j

)]

+a2b2

c2
2

[
(b̄2, j−βc2iζ + d2, j )(T −t)− 2 log

(
1 − g2, j ed2, j (T −t)

1 − g2, j

)]
,

g1, j = b̄1, j − νc1iζ + d1, j

b̄1, j − νc1iζ − d1, j
, g2, j = b̄2, j − βc2iζ + d2, j

b̄2, j − βc2iζ − d2, j

d1, j =
√
(νc1iζ − b̄1, j )2 + c2

1(−1) j (iζ − ζ 2),

d1, j =
√
(βc2iζ − b̄2, j )2 + c2

2(−1) j (iζ − ζ 2),

which are of very easy implementation.
To compute the first order terms, following our procedure, we recall that all the

coefficients are written at correlations (0, 0, 0), in other words we are looking at the
Markovian triple described by (32), but with independent Brownian motions, and
the mean volatility is given by

�
t,y,z
T =

T∫
t

(
v

1,t,y
s + v2,t,z

s

)
ds,
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whose average can be computed explicitly

�̄
t,y,z
T =

∫ T

t
E∗ (v1,t,y

s + v2,t,z
s

)
ds

= (a1 + a2)(T − t)+ y − a1

b1

(
1 − e−b1(T −t)

)
+ z − a2

b2

(
1 − e−b2(T −t)

)
,

(35)

since E∗(vi,t,wi
s ) = (wi − ai )e−bi (s−t) + ai for i = 1, 2.

Looking at the formula for the coefficient (18) and its approximation (24), we may
conclude

u1(t, x, y, z) = −E∗
⎡
⎣N ′

(
d2

(
x, �t,y,z

T

))
√
�

t,y,z
T

T∫
t

√
v

1,t,y
α v

2,t,y
α dα

⎤
⎦

ū1(t, x, y, z) = − N ′(d̄2)√
�̄

t,y,z
T

T∫
t

E∗
[√
v

1,t,y
α

]
E∗
[√
v

2,t,y
α

]
dα,

where we used the independence between v1 and v2.

It remains to compute E∗
[√
v

i,t,wi
α

]
.

For i = 1, 2, we know that vi,t,wi
α follows a non central chi-squared distribution

with density given by

gi (ξ) = Ci e
−Ai −Ci ξ

(
Ciξ

Ai

)qi /2

Iqi

(
2
√

Ai Ciξ
)
,

where

Ci = 2bi

c2
i

(
1 − e−bi (α−t)

) , Ai = Ciwi e
−bi (α−t), qi = 2ai bi

c2
i

− 1 (36)

and Iq(·) is the modified Bessel function of the first kind of order q

Iq(ζ ) =
(
ζ

2

)q ∞∑
k=0

(
ζ 2

4

)k
1

k!�(k + q + 1)
.

Therefore, to compute the above expected value, we have

E∗
[√
v

i,t,wi
α

]
=

∞∫
0

√
ξgi (ξ)dξ
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= Ci

(
Ci

Ai

)qi /2

(Ai Ci )
qi /2e−Ai

×
∞∑

k=0

(Ai Ci )
k

k!�(k + qi + 1)

+∞∫
0

ξqi +k+1/2e−Ci ξdξ

= (Ci )
qi +1e−Ai

∞∑
k=0

(Ai Ci )
k

k!�(k + qi + 1)

+∞∫
0

ξqi +k+1/2e−Ci ξdξ

= e−Ai

√
Ci

∞∑
k=0

Ak
i �(k + qi + 3/2)

�(k + qi + 1)
.

where we used the substitution µ = Ciξ in the last integral.
Plugging back the specifications (36) into this last expression and denoting by

λi (s − t) : = e−bi (α−t)

1 − e−bi (α−t)
, we arrive at the final expression for the expectation

E∗
[√
v

i,t,wi
α

]
=
[

c2
i (1 − e−bi (α−t))

2bi

]1/2

× e
− 2bi y

c2
i
λi (α−t) ∞∑

k=0

(
2biwi

c2
i

)k

λi (α − t)k
�(qi + k + 3/2)

k!�(k + qi + 1)
.

From the above computations it follows

ū1(t, x, y, z) = − c1c2N ′(d̄2)

2
√

b1b2�̄
t,y,z
T

+∞∑
k=0

+∞∑
j=0

×
[

2b1 y

c2
1

]k
�(q1 + k + 3/2)

k!�(k + q1 + 1)

[
2b2z

c2
2

] j
�(q2 + j + 3/2)

j !�( j + q2 + 1)

×
T∫

t

e
− 2b1 y

c2
1
λ1(α−t)− 2b2 y

c2
2
λ2(α−t)

e
(b1+b2)

2 (α−t)
λ1(α − t)k− 1

2 λ2(α − t) j− 1
2 dα.

This term is computationally quite engaging, as we need to estimate accurately the
double series appearing above, but the implementation remains manageable.

A simpler situation occurs for the two terms with respect to ν and β. From (19),
we have

φ1(t, x, y, z) = −
T∫

t

T∫
α

E∗
⎡
⎣c1v

1,t,y
α exp

⎧⎨
⎩−

α1∫
α

(
b1 + c2

1

8v1,t,y
α2

)
du
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+ c1

2

α1∫
α

1√
v

1,t,y
α2

dW 3
α2

⎫⎬
⎭×

N ′
(

d2

(
x, �t,y,z

T

))
d2

(
x, �t,y,z

T

)

�
t,y,z
T

⎤
⎦dα1dα.

Since exp

⎧⎨
⎩−

α1∫
α

(
b1 + c2

1

8v1,t,y
α2

)
du + c1

2

α1∫
α

1√
v

1,t,y
α2

dW 3
α2

⎫⎬
⎭ is an exponential mar-

tingale starting at α with initial condition 1, the approximation (25) of φ1 becomes

φ̄1(t, x, y, z) = −N ′(d̄2)d̄2

�̄
t,y,z
T

T∫
t

T∫
α

E∗ [c1v
1,t,y
α e−b1(α1−α)

]
dα1dα

= −N ′(d̄2)d̄2

�̄
t,y,z
T

T∫
t

T∫
α

c1

(
(y − a1)e

−b1(α−t) + a1

)
e−b1(α1−α)dα1dα

= −c1N ′(d̄2)d̄2

b1�̄
t,y,z
T

[
y − 2a1

b1

(
1 − e−b1(T −t)

)

+(T − t)
(

a1 − (y − a1)e
−b1(T −t)

)]
.

Similarly, from (26), we obtain

ψ̄1(t, x, y, z) = c2N ′(d̄2)d̄1

b2�̄
t,y,z
T

[
z − 2a2

b2

(
1 − e−b2(T −t)

)

+ (T − t)
(

a2 − (z − a2)e
−b2(T −t)

) ]
.

4.3 Numerical results

In this section we report some numerical results obtained by implementing the approx-
imation formulas introduced in the previous sections for the Hull and White and the
Heston models. Without loss of generality, in all experiments we set t = 0.

For the Hull and White model we compare our approximation with the Monte Carlo
price, that we denote ûMC .

Even though the Monte Carlo procedure for this model is rather straightforward,
its computational time remains rather lengthy, while our method requires a time com-
paratively negligible.

For the Heston case things are a little different. As long as we remain in the affine
case (0, β, ν) we may compute the term (33) by numerical inversion of the Fourier
transform, while in the non-affine case ρ �= 0 again we have to resort to the Monte
Carlo price to define a benchmark for our method. The simulation of the Heston model
is much more involved than for the Hull and White dynamics, due to the structure of
the CIR diffusion equations. Many different schemes have been proposed in recent

123



66 F. Antonelli et al.

Table 1 Differences ũ0 − ûMC for the Hull and White model

T \S1
0/S2

0 100/95 100/100 100/105

T = 0.25 −0.0139 0.0069 −0.0006

T = 0.5 −0.0060 −0.0020 −0.0085

T = 1 −0.0061 0.0056 0.0209

All the approximated prices fall within the 95% confidence interval of the Monte Carlo estimates. The
estimated standard deviations of ûMC range from 0.0075 to 0.0240

Table 2 T = .25
ρ\S1

0/S2
0 100/95 100/100 100/105

−0.5 0.0660 0.0736 0.0470

−0.3 0.0329 0.0397 0.0060

−0.1 0.0210 0.0066 −0.0086

0 0.0217 0.0102 −0.0104

0.1 0.0173 0.0088 0.0075

0.3 0.0116 0.0472 0.0261

0.5 0.0612 0.1244 0.0667

literature (see e.g. Lord et al. 2006; Andersen 2008 and the references therein). The
exact and bias-free technique in Broadie and Kaya (2006) does not appear to extend
easily to our model, due to the correlation structure. Therefore we resorted to an Euler–
Maruyama discretization scheme. It is well known that a näive implementation of this
scheme can produce negative samples of the variance process even for values of the
parameters satisfying the Feller condition c2 < 2kθ . Different solutions have been
proposed to get around this problem. In our experiments we chose to implement the
scheme denoted full truncation, as it appears to produce the smallest discretization
bias among a set of alternative schemes (see Lord et al. 2006).

Results for the Hull and White model. In this paragraph we test the performance
of our approximation technique for the Hull and White model. For our experiment
we fixed the values of the parameters β and ν (around typical market values) while
varying the values of the asset-to-asset correlation ρ, the ratio S1

0/S2
0 and the maturity

T . We used formula (28) with the coefficients developed in Sect. 4.1.
The model parameters were set to η1 = η2 = 0, γ1 = 0.1, γ2 = 0.15 and the

asset-to-volatility correlations were β = −0.45 and ν = −0.55. The Monte Carlo
estimates of the prices ûMC were obtained by simulating M = 250000 paths with
N = 1000 equispaced time-grid points on the interval [0, T ] needed for the numerical
evaluation of the integrals involved in the solution of (29).

In the first table (Table 1) we report the difference between the price computed by
using the second-order approximation (27) of u0 and the Monte Carlo estimate ûMC

with ρ = β = ν = 0. The results show the quality of such an approximation.
Next we fixed β and ν to the chosen market values and we let ρ and the ratio S1

0/S2
0

vary. The next three tables show the difference between our approximation and the
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Table 3 T = .5
ρ \S1

0/S2
0 100/95 100/100 100/105

−0.5 0.1051 0.0934 0.0805
−0.3 0.0607 0.0224 0.0275
−0.1 −0.0096 0.0227 0.0066
0 −0.0121 0.0010 −0.0089
0.1 −0.0157 −0.0041 0.0025
0.3 0.0347 0.0730 0.0432
0.5 0.1175 0.1759 0.1394

Table 4 T = 1
ρ \S1

0/S2
0 100/95 100/100 100/105

−0.5 0.1287 0.1453 0.1747
−0.3 0.0862 0.0571 0.0759
−0.1 0.0294 0.0044 −0.0314
0 0.0359 0.0440 −0.0037
0.1 0.0182 0.0096 −0.0041
0.3 0.0761 0.0926 0.0657
0.5 0.1796 0.2529 0.2031

Monte Carlo estimate for T = 0.25 (Table 2), T = 0.5 (Table 3) and T = 1 (Table 4).
We marked the results in bold when the approximated price lied in the (estimated) 95%
confidence interval. The estimated standard deviations of ûMC range from 0.0046 to
0.0159 for T = 0.25, from 0.0080 to 0.0213 for T = 0.5 and from 0.0129 to 0.0291
for T = 1. For large values of the correlation parameter ρ (|ρ| ≥ .3) the approximation
improves when T becomes smaller (with the only exception ρ = −0.3 and S1

0/S2
0 =

100/100). For |ρ| ≤ .1 the errors range from 0.001 (ρ = 0, S1
0/S2

0 = 100/100 and
T = 0.5) to 0.0440 (ρ = 0, S1

0/S2
0 = 100/100 and T = 1).

Results for the Heston model We first considered the affine case (ρ = 0) for the
Heston model, since in this context we can compare our approximation with the exact
price, evaluated according to (33). The model parameters were fixed to a1 = 0.025,
a2 = 0.035, b1 = 1.6, b2 = 1.1, c1 = 0.45, c2 = 0.4, y = 0.025, z = 0.035, accord-
ing to typical market values, as found in the literature (see e.g. Bakshi et al. 1997).
Table 5 reports the errors for varying values of (β, ν) and (T, S1

0/S2
0 ). As expected,

we attain the best results for small values of the correlations β and ν. The errors tend
to become larger also as T increases. In the small correlation scenarios, the absolute
errors are smaller for the out-of-money options than for the in-the-money options, at
each maturity. This monotonicity with respect to the starting values S1

0/S2
0 gets lost

at larger correlations. Finally, our approximation seems to overestimate the true value
when correlations are small [(β, ν) = (−0.1,−0.1)] and to underestimate it when
correlations are large ((β, ν) = (−0.7,−0.7)).

Netx, we considered the non-affine case ρ �= 0. The asset-to-volatility correlations
were set to ν = −0.6 and β = −0.76 (see Bakshi et al. (1997)). The corresponding
Monte Carlo prices were obtained by simulating M = 6,40,000 paths from the SDE
(31) by means of the full-truncation Euler-Maruyama scheme with 800 equispaced
time-grid points on the interval [0, T ]. The estimated standard deviations of the Monte
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Table 5 Errors and (absolute relative errors) for the Heston model in the affine case ρ = 0

(−01,−0.1) (−0.3 −0.3) (−05,−0.5) (−0.7,−0.7)

(0.25, 100/95) 0.0075 (0.0010) 0.0129 (0.0017) 0.0039 (0.0005) −0.0225 (0.0030)
(0.25, 100/100) 0.0038 (0.0008) −0.0014 (0.0003) −0.0250 (0.0053) −0.0705 (0.0153)
(0.25, 100/105) 0.0003 (0.0001) −0.0085 (0.0031) −0.0292 (0.0105) −0.0603 (0.0220)
(0.5, 100/95) 0.0168 (0.0018) 0.0271 (0.0029) 0.0023 (0.0003) −0.0669 (0.0075)
(0.5, 100/100) 0.0111 (0.0017) 0.0064 (0.0010) −0.0376 (0.0058) −0.1297 (0.0205)
(0.5, 100/105) 0.0054 (0.0012) −0.0069 (0.0015) −0.0499 (0.0111) −0.1241 (0.0282)
(1, 100/95) 0.0393 (0.0033) 0.0736 (0.0063) 0.0432 (0.0038) −0.0683 (0.0061)
(1, 100/100) 0.0297 (0.0032) 0.0414 (0.0045) −0.0156 (0.0017) −0.1565 (0.0181)
(1, 100/105) 0.0198 (0.0027) 0.0147 (0.0021) −0.0515 (0.0074) −0.1858 (0.0275)

Several scenarios are considered with varying maturities and starting values (T, S1
0/S2

0 ) (the rows) and
asset-to-volatility correlation levels (β, ν) (the columns)

Table 6 Errors obtained with the approximations (37) and (28) (in parenthesis) for T = .25

ρ \S1
0/S2

0 100/95 100/100 100/105

−0.3 0.0085 (−0.0856) 0.0785 (0.1002) 0.0733 (0.1877)
−0.1 −0.0052 (−0.0825) 0.0046 (0.0547) 0.0409 (0.1740)
0.1 0.0197 (−0.0409) 0.0056 (0.0841) −0.0199 (0.1317)
0.3 0.0471 (−0.0219) 0.0218 (0.0861) −0.0049 (0.1374)

Table 7 Errors obtained with the approximations (37) and (28) (in parenthesis) for T = .5

ρ \S1
0/S2

0 100/95 100/100 100/105

−0.3 0.0237 (−0.0389) 0.0342 (0.1479) 0.0811 (0.3065)
−0.1 0.0091 (−0.0535) 0.0064 (0.1200) 0.0239 (0.2493)
0.1 0.0073 (−0.0552) −0.0078 (0.1058) 0.0278 (0.2531)
0.3 0.0957 (0.0431) 0.0909 (0.2045) 0.0180 (0.2434)

Carlo prices ûMC range from 0.0079 to 0.0171 for T = 0.25, from 0.0092 to 0.0148
for T = 0.5 and from 0.0133 to 0.0317 for T = 1.

In this case, the results (Table 6 in parenthesis) are not completely satisfactory,
since the approximation error ranges from −0.0219 to 0.2951 for in-the-money and
at-the-money options and even higher for the out-the-money case. This behavior would
suggest to push the approximation further than the first order (see the “Appendix”) for
the Heston model. This additional computational effort may be avoided, as we noticed
that we achieve much better results by using the following first order approximation

u(t, x, y, z; ρ, ν, β) ≈ u(t, x, y, z; 0, β, ν)+ ρū1(t, x, y, z). (37)

Indeed, by exploiting the exact numerical evaluation of the 0-th term u(t, x, y, z; 0, β,
ν), this approximation captures the apparently strong non-linearity in the correlations
(β, ν) (see Tables 6, 7, 8).

Acknowledgments We would like to thank the referee for useful comments and pointing us out ref.
Bakshi and Madan (2000).
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Table 8 Errors obtained with the approximations (37) and (28) (in parenthesis) for T = 1

ρ \S1
0/S2

0 100/95 100/100 100/105

−0.3 0.0294 (−0.0681) 0.0290 (0.1497) 0.0702 (0.3540)
−0.1 −0.0475 (−0.1451) 0.0178 (0.1386) −0.0019 (0.2819)
0.1 0.0119 (−0.0857) 0.0361 (0.1568) 0.0054 (0.2892)
0.3 0.1531 (0.0556) 0.1478 (0.2686) 0.1015 (0.3852)

Appendix

In this appendix we want to show briefly how the second order terms may be computed
with our technique.

Referring to the evaluation PDE (6), by differentiating it twice with respect to the
three correlation parameters one obtains the following chain of PDE problems for
x ∈ R, y, z > 0 and t ∈ [0, T ]

{L0u0(t, x, y, z) = 0
u0(T, x, y, z) = (ex − 1)+

{L0u1 = Au0
u1(T, x, y, z) = 0.

(38)

{L0φ1 = −Bu0
φ1(T, x, y, z) = 0

{L0ψ1 = Gu0
ψ1(T, x, y, z) = 0.

(39)

{L0u2 = Au1
u2(T, x, y, z) = 0.

{L0φ2 = −Bφ1
φ2(T, x, y, z) = 0

(40)

{L0ψ2 = −Gψ1
ψ2(T, x, y, z) = 0

{L0θ12 = Aφ1 − Bu1 + A1u0
θ12(T, x, y, z) = 0

(41)

{L0θ13 = Aψ1 + Gu1 − A2u0
θ13(T, x, y, z) = 0

{L0θ23 = −Bψ1 + Gφ1
θ23(T, x, y, z) = 0

(42)

Hence, by using again Duhamel’s principle and Feynman–Kac’s representation of the
solutions of the PDE’s, we obtain that

u2(t, x, y, z) = −
T∫

t

E
(
(Au)

(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

))
dα (43)

φ2(t, x, y, z) = −
T∫

t

E
(
(−Bφ1)

(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

))
dα (44)

ψ2(t, x, y, z) = −
T∫

t

E
(
(−Gψ1)

(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

))
dα (45)

θ12(t, x, y, z) = −
T∫

t

E
(
(Aφ1 − Bu1 + A1u0)

(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

))
dα

(46)
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θ13(t, x, y, z) = −
T∫

t

E
(
(Aψ1 + Gu1 − A2u0)

(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

))
dα

(47)

θ23(t, x, y, z) = −
T∫

t

E
(
(−Bψ1 + Gφ1)

(
α, Xt,x,y,z

α , v1,t,y
α , v2,t,z

α

))
dα (48)

and repeating the same calculations as before, we arrive at the explicit representa-
tion of those coefficients. The first three coefficients are obtained by iterating the
corresponding first order coefficients

u2(t, x, y, z) = E

⎧⎪⎪⎨
⎪⎪⎩
(d1d2 − 1)N ′(d2)(

�
t,y,z
T

) 3
2

(
x, �t,y,z

T

)

×
T∫

t

f1

(
v1,t,y
α

)
f2

(
v2,t,z
α

)
Ft,y,z

[α,T ]dα

⎫⎪⎪⎬
⎪⎪⎭

φ2(t, x, y, z) = −E

⎧⎪⎪⎨
⎪⎪⎩
(
1 − d2

2

)N ′(d2)(
�

t,y,z
T

) 3
2

(
x, �t,y,z

T

)

×
T∫

t

(γ1 f1)
(
v1,t,y
α

)[∂v1,t,y
α

∂y

]−2
∂c1,t,y

[α,T ]
∂y

dα

+
(
3d2

2 − 3+ 3d1d2−d1d3
2

)N ′(d2)

2
(
�

t,y,z
T

) 5
2

(
x, �t,y,z

T

)

T∫
t

(γ1 f1)
(
v1,t,y
α

)[∂v1,t,y
α

∂y

]−2

c1,t,y
[α,T ]

∂�
t,y,z
[α,T ]
∂y

dα

⎫⎪⎪⎬
⎪⎪⎭

ψ2(t, x, y, z) = E

⎧⎪⎪⎨
⎪⎪⎩
(1 − d2

1 )N ′(d2)(
�

t,y,z
T

) 3
2

(
x, �t,y,z

T

)

×
T∫

t

(γ2 f2)
(
v2,t,z
α )

) [∂v2,t,z
α

∂z

]−2 ∂c2,t,z
[α,T ]
∂z

dα
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+ (3d2
1 − 3+ 3d1d2−d3

1 d2)N ′(d2)

2
(
�

t,y,z
T

) 5
2

(
x, �t,y,z

T

)

×
T∫

t

(γ2 f2)
(
v2,t,z
α

) [∂v2,t,z
α

∂z

]−2

c2,t,z
[α,T ]

∂�
t,y,z
[α,T ]
∂z

dα

⎫⎪⎪⎬
⎪⎪⎭
,

while the coefficients coming from the mixed derivatives are

θ12(t, x, y, z) = −E

[
(2d2 + d1 − d2

2 d1)N ′(d2)

2(�t,y,z
T )2

(
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T

)
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T∫

t

{
2 f1

(
v1,t,y
α

)
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α

)
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(
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α

)
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[α,T ]
∂�

t,y,z
[α,T ]
∂y

}[
∂v

1,t,y
α
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]−1

dα

−N ′(d2)

�
t,y,z
T

(
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T

)

×
T∫

t

{
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α )
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[α,T ]
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α ) f2(v

2,t,z
α )

∂�
t,y,z
[α,T ]
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}

×
[
∂v

1,t,y
α

∂y

]−1

dα

⎤
⎦

θ13(t, x, y, z) = −E

[
(2d1 + d2 − d2

1 d2)N ′(d2)

2(�t,y,z
T )2

(x, �t,y,z
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×
T∫
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{
2 f1

(
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α

)
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(
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}
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×
[
∂v2,t,z
α

∂z

]−1

dα

]
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[(
4d1d2 − 3 − d2

1 d2
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where for α ≥ t and w1 = y, w2 = z, we denoted
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